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ABSTRACT 

A zirconolite glass-ceramic material is a candidate wasteform for immobilisation of chlorine 

contaminated plutonium residues, in which plutonium and chlorine are partitioned to the 

zirconolite and aluminosilicate glass phase, respectively.  A preliminary investigation of 

chlorine speciation was undertaken by analysis of Cl K-edge X-ray Absorption Near Edge 

Spectroscopy (XANES), to understand the incorporation mechanism.  Cl was found to be 

speciated as the Cl- anion within the glass phase, according to the characteristic chemical shift 

of the X-ray absorption edge.    By comparison with Cl K-edge XANES data acquired from 

reference compounds, the local environment of the Cl- anion is most closely approximated by 

the mineral marialite, in which Cl is co-ordinate to 4 x Na and/or Ca atoms.  

INTRODUCTION 

A significant fraction of the UK plutonium stockpile, predicted to reach 140 tons 

at the end of nuclear fuel reprocessing, is known to be unsuitable for reuse as (U,Pu)O2 

mixed oxide (MOX) nuclear fuel.1-3 A zirconolite glass-ceramic wasteform is under 

development for the immobilisation and disposal of contaminated plutonium and 

plutonium residues as a waste.1,4-7 In this wasteform, the plutonium is targeted for 

immobilisation by solid solution in the zirconolite phase, for which there is high 

confidence in long term performance, given the evidence available from natural analogues 

and investigation of prototype and surrogate materials.  The contaminants and impurities 



are targeted for immobilisation within the accessory aluminosilicate glass phase, which 

should therefore have a high solubility for these elements.  Some of the waste plutonium 

inventory is contaminated by chlorine resulting from degradation of the polyvinyl chloride 

(PVC) liner used within the can-in-can storage package.8  It is thought that thermal and 

radiation induced degradation of PVC resulted in the release of HCl which was 

subsequently adsorbed onto the surface of the PuO2.  Chlorine is known to have a low 

solubility in silicate glasses, typically < 3 wt%,9-11 above which phase separation of a 

chloride salt (such as NaCl) is observed.  Incorporation of Pu within such a salt, would 

afford a highly soluble instant release fraction, which would be a challenge to wasteform 

disposability.  To address this issue, one approach is heat treatment of the plutonium waste 

prior to immobilsiation, in order to volatilise the chloride contaminant.  Alternatively, if 

there is confidence that the chlorine can be accommodated within the solubility limit of 

the glass phase, with sufficient head room, for the highest expected chlorine content, then 

heat treatment prior to immobilisation will not be required.  The aim of this work, 

therefore, was to make a preliminary investigation of chlorine solubility and speciation in 

a baseline zirconolite glass-ceramic, comprising 30 wt% CaZrTi2O7–ceramic and 70wt% 

NaAlSi3O8–glass.  Cl K-edge X-ray Absorption Spectroscopy was exploited to directly 

probe the speciation and local environment of Cl atoms, by analysis of the X-ray 

Absorption Near Edge Structure (XANES) and comparison with data from well 

characterised reference compounds.  More generally, understanding the speciation and 

solubility of Cl in silicate glasses is an important consideration, since the incorporation of 

hydrosaline liquids in silicate melts at subduction zones is known to be of importance for 

the global chlorine cycle.10 

EXPERIMENTAL 

Zirconolite glass-ceramics were fabricated by hot isostatic pressing.  Reagents 

(CaTiO3, TiO2, ZrO2, Na2SiO3, Al2O3, SiO2, NaCl) were batched to a target stoichiometry 

of 70 wt% CaZrTi2O7 ceramic and 30 wt% NaAlSi3O8 glass.  The Cl concentration in the 

glass phase was targeted to be 0.3 – 2.5 wt% Cl, with replacement of 2 NaCl for Na2O on 

a molar basis, such that the overall Na concentration remained constant.  Reagent powders 

were milled at 500 rpm for 30 min in a planetary mill with heptane as the milling medium 

(in which NaCl is insoluble). Milled powders were calcined overnight at 600 °C and 

packed into stainless steel canisters (approximately 50 ml initial capacity). The canisters 

were evacuated at room temperature and baked-out at 300 °C before being welded closed. 

The HIP (Hot Isostatic Pressing) cycle applied a process temperature of 1250 °C for 4 h 

under 103 MPa of argon gas pressure, as previously described.5-7 The HIPped glass 

ceramics were characterised for phase assemblage, in particular for phase separation of 

chloride compounds, by powder X-ray diffraction (XRD: Bruker D2 Phaser, Ni filtered 

Cu K radiation, and Lynxeye detector) and Scanning Electron Microscopy with Energy 

Dispersive X-ray analysis (SEM/EDX: Hitachi TM3030, Bruker Quantax 30 EDX 

system).  

Cl K-edge XANES data from glass ceramics, and reference compounds, were 

acquired on Beamline 8 of the DELTA storage ring, Germany.12 The configuration utilised 

a Si (111) double crystal monochromator and harmonic rejection mirror; the incident 

intensity (I0(E)) was determined by electron yield utilising a gold grid electrode, the 

fluoresence yield (If(E) was measured using a Canberra large area Passivated Implanted 

Planar Silicon (PIPS) detector. Measurements were performed in vacuum, using powdered 

samples and reference compounds ground to a fine powder, mixed with polyethylene 

glycol, and pressed into 10 mm diameter pellets.  Reference compounds included: 

synthetic NaCl, CaCl2, and CaCl2.2H2O; and the minerals marialite (Na4Al3Si9O24Cl), 



sodalite (Na8Al6Si6O24Cl2), and variant hackmanite.  Specimens of sodalite (BM.1985,79) 

and marialite (BM.1971,216) were provided by the Natural History Museum, London, UK.  

All XANES data were dead time corrected and processed using the ATHENA software13 

with standard background subtraction and normalisation procedures. 

RESULTS AND DISCUSSION 

Zirconolite glass-ceramics were initially characterized by powder XRD and 

SEM/EDX analysis.14  The phase assemblage was found to comprise zirconolite as the 

major phase, plus a minor glass phase, as demonstrated by the example microstructure 

presented in Fig. 1.  Additionally, sphene (CaTiSiO5), rutile (TiO2), baddelyite (ZrO2), and 

zircon (ZrSiO4), were identified as trace accessory phases, as shown in Fig. 1.  The phase 

assemblage did not change with chlorine content up to 0.9 wt% Cl, whereas for 1.7 wt% 

and 2.5 wt% Cl content, NaCl was apparent as an additional trace impurity phase in both 

XRD and SEM/EDX data.  EDX analysis demonstrated Cl to be partitioned exclusively to 

the glass phase below a solubility limit of 0.9 ± 0.1 wt% Cl, well above the maximum 

envisaged chorine incorporation rate of 0.4 wt. %.  The determined solubility limit for Cl 

is within the range of 0.5 – 3.0 wt% reported for natural and synthetic silicate glasses, 

depending on composition and conditions of formation9-11. 

Figure 1: Microstructure (back scattered electron image) of zirconolite glass-ceramic (0.9 wt% Cl), comprising 

zirconolite (light grey; Z), ZrO2 (white; B), TiO2 (black; R), and CaTiSiO5 and ZrSiO4 (mid grey; S and Zr 

respectively). 

Cl K-edge XANES data were acquired, in fluorescence mode, from the chloride 

reference compounds (Figures 2 and 3) and glass-ceramic materials (Figure 4), to 

understand the incorporation mechanism within the glass phase of the glass-ceramics.  

Figure 2 shows Cl K-edge XANES data for Na salts incorporating Cl in formal oxidation 

states Cl7+ (NaClO4), Cl5+ (NaClO3), Cl3+ (NaClO2) and Cl- (NaCl).  In these compounds 

Cl is co-ordinated, respectively, to: 4 x oxygens in ClO4
- tetrahedra; 3 x oxygens in ClO3

- 

pyramids; 2 x oxygens in bent ClO2
- units; and 6 x Na in an octahedral arrangement in 

NaCl.15 These Cl K-edge XANES data show increasing chemical shift of E0 with oxidation 

state, relative to NaCl, of approximately +4 eV for NaClO3 and +8 eV for NaClO4.  In 

contrast, the E0 of NaClO2 is shifted approximately -1 eV relative to that of NaCl.  Overall, 

these data and chemical shifts are in good agreement with those reported for the same 

compounds by McKeown et al.,11 bearing in mind the different methodologies between 

the studies (note that Mckeown et al. report their chemical shifts relative to E0 = 2823.5 



eV for CF3Cl).  Further comparison of the data of the reference compounds shown in 

Figure 2 with those previously reported, identified additional features in our data not 

reported by McKeown et al.11 – highlighted by an asterisk.  From comparison of the 

XANES data of the reference compounds it was inferred that the NaClO4 sample was 

slightly contaminated by NaClO3 and NaClO2, and NaClO3 by NaClO2.  It is believed that 

material was transferred between the samples as the vertical sample stack was translated 

between analyses. 

All Cl K-edge XANES data acquired from reference compounds incorporating 

anionic Cl-, and the glass-ceramic materials, shown in Figures 3 and 4 showed E0 within a 

narrow range of 2827.4 – 2827.8 ± 0.5 eV, determined as the first peak in the first-

derivative of the spectra, as summarized in Table 1.  The common E0 for the reference 

compounds and glass-ceramics implies a common chlorine speciation in all materials as 

the Cl- anion, and the presence of oxidized Cl species can be confidently ruled out. 

Figure 2: Cl K-edge XANES data of NaCl, NaClO2, NaClO3 and NaClO4, incorporating Cl-, Cl3+, Cl5+ and Cl7+ species 

respectively. 

Figure 3: Cl K-edge XANES data from reference compounds NaCl, CaCl2, CaCl2.2H2O, hackmanite, marialite 

and sodalite 

Comparison between the XANES features of the glass-ceramic and reference 

compounds in Figures 2 and 3 provided some further insight into the local environment of 

the Cl- anion within the glass phase.  A weak feature at 2840 eV was just observable in the 



XANES of the glass-ceramic composition with 0.9 wt% Cl; this increased in relative 

magnitude with increased Cl content in the compositions with 1.7 and 2.5 wt% Cl, together 

with a feature at 2836 eV.  Concomitantly, a subtle change in the profile of the white line 

was observed, with two distinctive components apparent at lower Cl content merging to 

give a single component at a Cl content of 1.7 wt% and greater.  The features observed at 

2835 eV and 2840eV in the spectra of the glass-ceramics, and white line profile comprising 

a single component, are characteristic of the XANES of NaCl and are therefore interpreted 

as arising from exsolution of NaCl from the glass phase above 0.9 wt% Cl incorporation, 

consistent with SEM/EDX and XRD data.   

Figure 4 Cl K-edge XANES data glass ceramic compositions with 0.3 wt%, 0.6 wt%, 0.9 wt%, 1.7 wt% and 2.5 

wt% Cl. 

 

Table 1: Determined edge positions from Cl K-edge XANES data of reference compounds and glass-ceramic 

materials. 

 

 

 

 

 

 

 

 

The Cl K-edge XANES data of the 0.3 and 0.6 wt% glass-ceramic compositions 

(in which SEM/EDX and XRD confirm Cl partitioning exclusively to the glass phase) most 

closely resemble those of the mineral marialite based on comparison of the profile of the 

white line and post-edge XANES features.  Marialite, prototypically, Na4Al3Si9O24Cl, is 

characterized by Cl co-ordinated to 4 x Na atoms, within an aluminosilicate cage formed 

by corner sharing AlO4 and SiO4 tetrahedra.16  Incorporation of Ca and K within marialite 

is known, and quantitative EDX analysis of our marialite specimen afforded a composition 

of Na3.18K0.13Ca0.54Si8.49Si3.54O24Cl0.95 normalized to the expected oxygen stoichiometry. 

Additionally, qualitative EDX analysis of the glass phase in the glass-ceramic materials, 

determined a detectable minor content of CaO.  Thus marialite provides a plausible model 

Sample Edge Position - E0 (eV) 

NaCl 2827.4 

CaCl2 2827.5 

CaCl2.2H2O 2827.5 

Hackmanite 2827.8 

Marialite 2827.8 

Sodalite 2827.8 

Glass-Ceramic:  0.3 wt% Cl 2827.4 

Glass-Ceramic: 0.6 wt% Cl 2827.2 

Glass-Ceramic: 0.9 wt% Cl 2827.4 

Glass-Ceramic: 1.7 wt% Cl 2827.4 

Glass-Ceramic: 2.5 wt% Cl 2827.4 



for Cl incorporation within the aluminosilicate glass phase of the glass ceramic materials 

with Cl co-ordinated to 4 x Na / Ca atoms.   

The Cl K-edge XANES of sodalite and hackmanite present a white line 

composed of two features, whilst the white line of CaCl2 and CaCl2.2H2O have a distinctive 

shoulder; these features are not observed in the XANES spectra of the glass-ceramic 

materials. Cl is co-ordinated to 3 x Ca cations in a trigonal arrangement in CaCl2, and 4 x 

Na cations in a tetrahedral arrangement in sodalite and its photochromic variant 

hackmanite.17,18 Thus, the chemical environment of Cl in these reference compounds are 

less plausible models for the Cl environment in the glass ceramic materials. 

  In their analysis of chloride bearing borosilicate glasses developed for 

immobilization of Hanford low activity wastes, McKeown et al. propose an incorporation 

mechanism whereby Cl is incorporated within linear CaCl2 species, similar to that in the 

mineral davyne, based on their analysis of Cl K-edge XANES data and modelling of 

EXAFS data13. Likewise, 35Cl MAS-NMR studies of simple Na2O-Al2O3-SiO2 and Na2O-

CaO-Al2O3-SiO2 glasses have provided evidence for Cl co-ordination by both Na and Ca.19  

Our Cl K-edge XANES data, and inferred Cl speciation as Cl- co-ordinated to 4 x Na / Ca 

atoms, are consistent with these studies on related glass compositions. 

CONCLUSION 

Preliminary investigation of the microstructure of Cl solubility in glass-ceramics 

for Pu immobilisation, established a solubility limit of 0.9 wt% Cl.  Below the solubility 

limit, Cl is incorporated within the glass matrix, with exsolution of NaCl above the 

solubility limit.  Cl K-edge XANES analysis of zirconolite glass-ceramic materials and 

reference compounds points to a local environment in the aluminosilicate glass phase 

similar to that in the mineral marialite, in which Cl is coordinated to 4 x Na / Ca atoms.  

Above the Cl solubility limit in the aluminosilicate glass phase, the XANES data show 

features characteristic of NaCl, consistent with observation of this phase in both XRD and 

SEM/EDX data.  Our findings are consistent with the available but limited studies of Cl 

speciation and local environment in silicate glasses. 
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