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Generalized Task-Parameterized Skill Learning

Yanlong Huang, João Silvério, Leonel Rozo, and Darwin G. Caldwell

Abstract— Programming by demonstration has recently
gained much attention due to its user-friendly and natural way
to transfer human skills to robots. In order to facilitate the
learning of multiple demonstrations and meanwhile generalize
to new situations, a task-parameterized Gaussian mixture
model (TP-GMM) has been recently developed. This model
has achieved reliable performance in areas such as human-
robot collaboration and dual-arm manipulation. However, the
crucial task frames and associated parameters in this learning
framework are often set by the human teacher, which renders
three problems that have not been addressed yet: (i) task
frames are treated equally, without considering their individual
importance, (ii) task parameters are defined without taking
into account additional task constraints, such as robot joint
limits and motion smoothness, and (iii) a fixed number of task
frames are pre-defined regardless of whether some of them
may be redundant or even irrelevant for the task at hand. In
this paper, we generalize the task-parameterized learning by
addressing the aforementioned problems. Moreover, we provide
a novel learning perspective which allows the robot to refine
and adapt previously learned skills in a low dimensional space.
Several examples are studied in both simulated and real robotic
systems, showing the applicability of our approach.

I. INTRODUCTION

As an intuitive and user-friendly way to endow a robot

with skills from humans, Programming by Demonstration

(PbD) has become appealing in the past few years [1]. The

basic idea of PbD is to extract the important or consistent

features from demonstrations and then adapt them to various

situations, which is also referred to as generalization. In prac-

tice, a myriad of robot tasks are formulated as a regression

problem, e.g., a mapping from sensory information to robot

(motor) actions. However, typical regression approaches such

as locally weighted regression (LWR) [2] or Gaussian pro-

cess regression (GPR) [3] may suffer from limited extrapo-

lation capabilities [4]. In order to adapt learned robot skills

to a broader range of task instances, a multi-frame based

probabilistic learning framework TP-GMM was proposed

[4]. This approach exploits locally consistent features among

demonstrations in different local coordinate systems instead

of using a single global reference frame, and subsequently

transfers local features to new task frames (which describe

new task situations), yielding reliable performance for both

interpolation and extrapolation.

However, the crucial task frames and associated param-

eters in TP-GMM are usually set according to the human

knowledge about the task, which renders three main limita-

tions: (i) task frames are treated equally without considering
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their individual importance. However, depending on human

interpretation of tasks, the task frames influence may vary

over time, which can be interpreted as the expertise or confi-

dence that a specific frame has with respect to a portion of the

task, which is overlooked in [4]; (ii) task parameters are de-

fined regardless of additional task constraints, such as robot

joint limits and motion smoothness. These new constraints

demand the robot to adapt the learned task-parameterized

skill according to additional requirements while performing

successfully; (iii) a fixed number of task frames are pre-

defined ignoring whether some of them are redundant or even

irrelevant for the task at hand. These unnecessary frames will

increase the computational burden and potentially degrade

the overall performance of TP-GMM.

Besides the foregoing problems, it is worth mentioning

that human demonstrations might not be optimal for the

robot. Namely, the demonstrator may mainly focus on the

task at hand while the robot capability is not fully exploited,

which may lead to high energy movements, unnecessary

large joint displacements, or high torque motion, among

other problems. Also, due to the complicated structure or

non-linearity exhibited in the demonstrated trajectories, it

is non-trivial to optimize these trajectories effectively. We

here propose to take advantage of the task-parametrized

formulation of TP-GMM by optimizing task parameters

instead of directly modifying the model parameters (i.e.,

GMM means and covariance matrices), while the latter is

conventionally done [5]. A clear advantage of our approach

is that task parameters lie in a lower dimensional space

compared to that of trajectory model parameters.

In this paper, we first briefly introduce TP-GMM (Sec-

tion II). Subsequently, we consider a variant of TP-GMM

(Section III-A) so as to address the stated problems prop-

erly. Using this new formulation, we propose a confidence-

weighted scheme to address problem (i) (Section III-B).

In order to cope with problem (ii), we formulate the op-

timization of task parameters as a reinforcement learning

(RL) problem (Section IV-A), with the aim of enabling

the robot to finish the task while satisfying additional task

constraints. Also, we provide a dual perspective to show that

the optimization of task parameters in a lower dimensional

space is equivalent to that of model parameters in a higher

dimensional space (Section IV-B). Furthermore, as a solution

to problem (iii) we propose an iterative frame selection al-

gorithm to exploit the most relevant task frames (Section V),

where the task parameters optimization is used. Finally,

we evaluate our approaches through several examples in

Section VI and conclude this paper in Section VII. An

overview of our main contributions is illustrated in Fig. 1.
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Fig. 1. Illustrations of task-parameterized movement learning. Top-left plot depicts projected trajectories in different task frames, where ‘o’ and ‘+’ denote
the start and end points of trajectories, respectively. Top-right plot shows trajectory encoding using GMM and trajectory retrieval using GMR, where
the ellipses depict GMM components and the solid curves represent the mean trajectories retrieved by GMR. Bottom-left graph illustrates the trajectory
generation using the confidence-weighted scheme. Bottom-middle graph presents the trajectory adaptation using the optimized task parameters. Bottom-right

figure shows a case where the selection of task frames is important.

II. AN OVERVIEW OF TASK-PARAMETERIZED GAUSSIAN

MIXTURE MODEL

In the context of imitation learning, one crucial ingredient

is the consistent features underlying human demonstrations

[4], [5], [6]. In order to facilitate the extraction of con-

sistent features, TP-GMM has been exploited in numerous

applications, e.g., human-robot collaborative transportation

[7] as well as robot bimanual sweeping [8]. Often, a set

of candidate task frames (e.g., frames at target objects [7]

or robot end-effectors [8]) needs to be pre-defined for the

implementation of TP-GMM.

Formally, let us consider P task frames, and refer to

the rotation matrix A
(j)
t and translation vector b

(j)
t of

each frame {j} with respect to the global reference frame

{O} as the task parameters, where t denotes the time

step and j = 1, 2, . . . , P . We then project human demon-

strations {{ξt,m}Nt=1}
M
m=1 into each frame separately and

subsequently exploit the local features in different frames.

Here, N and M respectively represent the time length of

each demonstration and the number of demonstrations, while

ξt,m ∈ R
D represents a D-dimensional trajectory point. The

projected trajectories in each frame {j} are computed by (see

[4] for details)

ξ
(j)
t,m = (A

(j)
t )−1(ξt,m − b

(j)
t ). (1)

If we consider the estimation of consistent features among

the projected trajectories from a probabilistic perspective,

GMM can be employed [4], [7], [8], [9], which has shown

reliable modeling of joint distribution of trajectories. By

using Expectation Maximization (EM) algorithm, GMM pa-

rameters {πk, {µ
(j)
k ,Σ

(j)
k }Pj=1}

K
k=1 in different frames can

be estimated, where K represents the number of Gaussian

components, πk, µ
(j)
k and Σ

(j)
k respectively denote mixture

coefficients, Gaussian centers and covariance matrices in

each frame {j}.

By using affine transformations and product of Gaussians,

new GMM components {πk,µk,t,Σk,t}
K
k=1 at time t in the

global frame {O} can be computed as

N(µk,t,Σk,t)∝
P∏

j=1

N
(
A

(j)
t µ

(j)
k +b

(j)
t ,A

(j)
t Σ

(j)
k (A

(j)
t )T

)
,

(2)

which yields a distribution ξt ∼
∑K

k=1 πkN (µk,t,Σk,t) in

the frame {O}. Furthermore, we can decompose ξ into input

ξI and output ξO, and subsequently, generate a trajectory

in the global frame {O} as ξt,O|ξt,I ∼ N (µt,O,Σt,O) by

using Gaussian mixture regression (GMR) [4], [10]. To name

an example, if we consider ξI and ξO as time and a 3-D

trajectory point, respectively, then a sequence of trajectory

points in frame {O} at different time steps can be generated.

Note that the input is not limited to be time, other inputs can

be possible depending on the task characteristics.

III. CONFIDENCE-WEIGHTED TASK-PARAMETERIZED

MOVEMENT LEARNING

In order to formulate the confidence assignments to task

frames, optimization of task parameters as well as frame

selection, we first introduce a variant of TP-GMM in Sec-

tion III-A. Note that intuitive insights on this variant have

been studied for two frames [11] and multiple frames [12],

while here we aim to provide a mathematical proof. Sub-

sequently, we propose a novel confidence-weighted scheme

(described in Section III-B) which, for example, allows the

demonstrator to include information about his/her confidence

regarding the relevance/influence of each task frame with

respect to the task that is being learned.



A. Task-parameterized Movement Trajectories

Assuming that we can access to the local GMM mod-

els in different task frames, the local trajectory distribu-

tion in each frame {j} can be represented as ξ(j) ∼∑K

k=1 πkN (µ
(j)
k ,Σ

(j)
k ). By decomposing ξ(j) as the in-

put ξ
(j)
I and the output ξ

(j)
O , we can generate a local

trajectory in frame {j} as ξ
(j)
t,O|ξ

(j)
t,I ∼ N (µ

(j)
t,O,Σ

(j)
t,O)

using GMR. The global trajectory can be viewed as

a trade-off among all local trajectories. Formally, the

global trajectory ξt,O can be estimated by maximiz-

ing
∏P

j=1 P
(
ξt,O|A

(j)
t,Oµ

(j)
t,O + b

(j)
t,O,A

(j)
t,OΣ

(j)
t,O(A

(j)
t,O)

T
)

.

Through the logarithmic transformation, this objective can

be solved by minimizing the cost function

J(ξt,O) =

P∑

j=1

(ξt,O −A
(j)
t,Oµ

(j)
t,O − b

(j)
t,O)

T

(A
(j)
t,OΣ

(j)
t,O(A

(j)
t,O)

T )−1(ξt,O −A
(j)
t,Oµ

(j)
t,O − b

(j)
t,O).

(3)

By calculating derivatives of (3) with respect to ξt,O, the

optimal solution can be derived, which is equivalent to the

product of Gaussians, i.e.,

ξt,O ∼
P∏

j=1

N
(
A

(j)
t,Oµ

(j)
t,O + b

(j)
t,O,A

(j)
t,OΣ

(j)
t,O(A

(j)
t,O)

T
)
,

(4)

where A
(j)
t,O and b

(j)
t,O respectively correspond to the out-

put blocks of A
(j)
t = blockdiag(A

(j)
t,I ,A

(j)
t,O) and b

(j)
t =

[(b
(j)
t,I)

T (b
(j)
t,O)

T ]T . Note that the input blocks A
(j)
t,I and b

(j)
t,I

are used to retrieve the local desired inputs ξ
(j)
t,I projected

into the different task frames, which act as the conditional

inputs for the generation of local trajectories. An illustration

of trajectory encoding via GMM and trajectory retrieval

via GMR is provided in Fig. 1. It can be observed from

Fig. 1(top-right) that, the first Gaussian component in frame

{1} and the third component in frame {2} (counting from left

to right) have the smallest covariances, implying that trajec-

tory segments encapsulated by these components are highly

consistent across demonstrations, and therefore represent an

important feature of the movements.

B. Confidence-weighted Task-parameterized Movement

Learning

Among previous works on task-parameterized learning

[4], [7], [8], task frames and associated parameters

{A
(j)
t ,b

(j)
t } were defined beforehand. Moreover, task

frames were assigned with equal priorities. However, it may

happen that, for some specific task frames, their influences

are expected to be larger than the rest of frames, and hence

it is desired to introduce human confidence about task

frames. On the basis of (4), the human prior information

can be naturally incorporated into task frames. Assuming

that the confidences of different task frames are known,

let us denote them as ct,j ∈ (0, 1). We then formulate

the original objective of the variant of TP-GMM as

∏P

j=1 P
(
ξt,O|A

(j)
t,Oµ

(j)
t,O + b

(j)
t,O,A

(j)
t,OΣ

(j)
t,O(A

(j)
t,O)

T
)ct,j

.

Here, ct,j can be interpreted as a measurement of the

contribution of each local conditional Gaussian distribution

to the product operation. Similar to the derivation of (4),

the optimal estimation of ξt,O can be determined by

ξt,O∼
P∏

j=1

N
(
A

(j)
t,Oµ

(j)
t,O+b

(j)
t,O,A

(j)
t,O(Σ

(j)
t,O/ct,j)(A

(j)
t,O)

T
)
.

(5)

The above result has an intuitive interpretation: if the frame

{j} has a higher (lower) confidence ct,j at time t, its con-

tribution to the Gaussian product is higher (lower) due to a

smaller (larger) covariance , i.e., Σ
(j)
t,O/ct,j . Figure 1(bottom-

left) depicts an example of applying confidence-weighted

scheme, where the resulting trajectory favors local trajectory

in the task frame that is assigned with a higher confidence.

IV. OPTIMIZATION OF TASK-PARAMETERIZED

MOVEMENT TRAJECTORIES

In this section we address the question: how can good

task parameters be selected? For instance, for applications

with flexible task parameters, i.e., different values of task

parameters allow for finishing the same task, which config-

uration of parameters is better? We tackle this problem by

optimizing task parameters from a reinforcement learning

perspective (Section IV-A), and subsequently, we provide a

dual perspective on this optimization, so that a connection

between our approach and the standard optimization of

GMM components is built (Section IV-B).

A. Reinforcement Learning of Task Parameters

Considering that task parameters {A
(j)
t ,b

(j)
t } describe

different task frames (and therefore, different task situations),

a straightforward way to refine them is by applying rotation

and translation operations to their pre-defined values. Since

the input blocks in task parameters are often uncontrollable

(e.g., a time sequence input), we only discuss the learning

of output blocks, i.e., {A
(j)
t,O, b

(j)
t,O}. Formally, let us define

new rotation matrices and translational vectors as {R
(j)
t }Pj=1

and {d
(j)
t }Pj=1, respectively. Then, for an arbitrary local

trajectory point ξ
(j)
t,O in the frame {j}, after new rotational

and translational operations are performed, we can prove that

its representation in the reference frame {O} becomes

ξ̂
(j)

t,O = A
(j)
t,OR

(j)
t︸ ︷︷ ︸

Â
(j)

t,O

ξ
(j)
t,O +A

(j)
t,Od

(j)
t + b

(j)
t,O︸ ︷︷ ︸

b̂
(j)

t,O

. (6)

Accordingly, new task parameters {Â
(j)

t,O, b̂
(j)

t,O} of the frame

{j} are determined, which can be later used to replace

initial task parameters {A
(j)
t,O,b

(j)
t,O} and generate a new

trajectory sequence in the frame {O} via (4). With the affine

transformation in (6), we actually learn task parameters by

finding the optimal rotation matrices R
(j)
t and translational

vectors d
(j)
t .

We here consider that the rotation matrix represents se-

quential rotations about (x, y, z) axes with angles (α, β, γ),



and therefore the determination of {R
(j)
t }Pj=1 is equiv-

alent to that of {α
(j)
t , β

(j)
t , γ

(j)
t }Pj=1. Furthermore, let

us denote a
(j)
t = [α

(j)
t β

(j)
t γ

(j)
t d

(j)T
t ] and at =

[a
(1)
t a

(2)
t · · · a

(P )
t ]T . In order to formulate the learning

of at into a RL problem, we represent at as a parametric

policy, i.e.,

at = Φt(θ + ǫ), (7)

where Φt and ǫ represent basis functions and stochastic

exploration noise, respectively, and θ denotes the policy

parameters to be learned. By optimizing θ with respect to ad-

ditional constraints (i.e., task-dependent cost functions), the

optimal parameters at can be found, which are subsequently

used to retrieve new task parameters based on (6). Since

we focus on optimizing the task parameters associated with

task frames, the rotation matrix (defined by rotation angles)

is an intuitive way to modify frames. Also, here we focus

on learning positions rather than orientations, and thus this

rotation operation suffices for our optimization problem.

For the typical policy search problem (7), many algorithms

have been proven effective. Here, we take policy improve-

ment with path integrals (PI2) [13], [14] as an example to

illustrate the reinforcement learning of task parameters. Let

us denote the exploration noise at time step i ∈ {1, 2, . . . , N}
during the roll-out (i.e., episode) h ∈ {1, 2, . . . , H} as

ǫi,h, where N is the time length of a roll-out and H is

the number of roll-outs. As suggested in [15], we apply

a constant exploration noise ǫh during the h-th roll-out

(i.e., ǫh = ǫi,h, ∀i ∈ {1, 2, . . . , N}) and update the policy

parameters using every H roll-outs. In each roll-out, we can

first calculate at using (7). Subsequently, we can retrieve

new task parameters {Â
(j)

t,O, b̂
(j)

t,O}
P
j=1 using (6). By plugging

new task parameters and local trajectories in different frames

into (4), an updated trajectory in the reference frame can be

generated. Moreover, on the basis of the cost function (which

is usually pre-defined depending on the specific task and

additional constrains), we can compute the cumulative cost

value Sh for each roll-out. Thus, given the cumulative costs

{Sh}
H
h=1 in H roll-outs, the policy parameters are updated

as follows

θ := θ +

H∑

h=1

whǫh, (8)

with wh = e−κSh∑
H
h=1 e−κSh

and κ > 0. We can continuously

perform explorations and update θ every H roll-outs until θ

converges or the cumulative cost is below a certain value. The

complete learning procedure is illustrated in Algorithm 1.

Figure 1(bottom-middle) shows trajectory adaptation using

optimized task parameters. As it can be seen, the final

trajectory is modulated by using new task parameters.

B. Dual Perspective of Optimizing Task Parameters

In this section, we provide a dual perspective to interpret

the optimization of task parameters. To do so, let us first

recall the main result (2) in TP-GMM. Note that in (2),

there exists an affine transformation of the GMM component

{µ
(j)
k ,Σ

(j)
k } through the task parameters {A

(j)
t ,b

(j)
t }. If

we write the block-decomposition of µ
(j)
k =

[
µ

(j)
k,I

µ
(j)
k,O

]
,

Σ
(j)
k =

[
Σ

(j)
k,II Σ

(j)
k,IO

Σ
(j)
k,OI Σ

(j)
k,OO

]
and substitute the optimized task

parameters {Â
(j)

t,O, b̂
(j)

t,O} into (2), new mean and covariance

can be derived as

µ̂
(j)
t,k =

[
A

(j)
t,I 0

0 Â
(j)

t,O

][
µ

(j)
k,I

µ
(j)
k,O

]
+

[
b
(j)
t,I

b̂
(j)

t,O

]

Σ̂
(j)

t,k =

[
A

(j)
t,I 0

0 Â
(j)

t,O

][
Σ

(j)
k,II Σ

(j)
k,IO

Σ
(j)
k,OI Σ

(j)
k,OO

][
A

(j)
t,I 0

0 Â
(j)

t,O

]T

.

(9)

This new mean and covariance can also be seen as being

equivalent to a new local model {µ̂
(j)
k , Σ̂

(j)

k }, rotated and

translated by the old parameters {A
(j)
t ,b

(j)
t }, resulting in

µ̂
(j)
t,k =

[
A

(j)
t,I 0

0 A
(j)
t,O

][
µ̂

(j)
k,I

µ̂
(j)
k,O

]
+

[
b
(j)
t,I

b
(j)
t,O

]

Σ̂
(j)

t,k =

[
A

(j)
t,I 0

0 A
(j)
t,O

][
Σ̂

(j)

k,II Σ̂
(j)

k,IO

Σ̂
(j)

k,OI Σ̂
(j)

k,OO

][
A

(j)
t,I 0

0 A
(j)
t,O

]T

.

(10)
By rewriting both (9) and (10) in their expanded forms, we
have that

µ̂
(j)
k,I = µ

(j)
k,I

µ̂
(j)
k,O =

(
A

(j)
t,O

)−1

Â
(j)

t,Oµ
(j)
k,O +

(
A

(j)
t,O

)−1 (
b̂
(j)

t,O − b
(j)
t,O

)

Σ̂
(j)

k,II = Σ
(j)
k,II

Σ̂
(j)

k,OI =

(
A

(j)
t,O

)−1

Â
(j)

t,OΣ
(j)
k,OI

Σ̂
(j)

k,IO =

(
Σ̂

(j)

k,OI

)T

Σ̂
(j)

k,OO =

(
A

(j)
t,O

)−1

Â
(j)

t,OΣ
(j)
k,OO

((
A

(j)
t,O

)−1

Â
(j)

t,O

)T

.

(11)

Thus, the optimization of task parameters (i.e., transform

{A
(j)
t,O,b

(j)
t,O} into {Â

(j)

t,O, b̂
(j)

t,O}) is equivalent to the opti-

mization of GMM components (i.e., transform {µ
(j)
k ,Σ

(j)
k }

into {µ̂
(j)
k , Σ̂

(j)

k }). Note that rotation angles and translational

vectors in (6) are learned to optimize task parameters. In

contrast to classic approaches where GMM parameters (i.e.,

means, covariances and mixture coefficients) are updated

[5], learning task parameters renders a lower dimensional

optimization, which may speed up the learning process.

More importantly, the optimization of task parameters is

independent from the model parameters, and thus local

consistent features from demonstrations are still maintained,

which might be highly desirable for imitation learning.

V. FORWARD SEARCH OF TASK FRAMES

Within the task-parameterized learning framework, the

number of task frames are usually fixed and pre-determined

[4], [7], [8]. A natural question concerning the number of



Algorithm 1 Optimization of task-parameterized movements

Initialization

1: Define a global reference frame {O} and initial candidate

task frames {j}Pj=1.

2: Collect demonstrations {{ξt,m}Nt=1}
M
m=1.

Phase 1: learn from demonstrations

1: Project demonstrations into each frame via (1) sepa-

rately.

2: Fit GMM to projected trajectories in each frame us-

ing EM and generate local trajectories from condi-

tional probabilities P(ξ
(j)
t,O|ξ

(j)
t,I) in different frames us-

ing GMR.

Phase 2: generalization with optimized task parameters

1: Define new task parameters {{A
(j)
t ,b

(j)
t }Nt=1}

P
j=1 de-

pending on the new task instance.

2: Optimize {{A
(j)
t ,b

(j)
t }Nt=1}

P
j=1 using (8) to minimize

the cost function defined based on task requirements.

3: Use optimized task parameters {{Â
(j)

t,O, b̂
(j)

t,O}
N
t=1}

P
j=1,

combined with local trajectories in different task frames,

to estimate ξt,O in {O} via (4).

task frames arises: can we change the number of task frames?

More specifically, how can we determine the number of task

frames? For instance, in a robot task with many candidate

frames, redundant or irrelevant frames might exist, thus it

is reasonable to remove these less important task frames

so as to alleviate their undesired influences. As shown in

Fig. 1(bottom-right), the task frame {2} should be removed

since this frame fails to encapsulate any consistent features

from demonstrations. Even though this problem may have a

significant impact on the robot performance, it has not been

addressed in the previous works.

In analogy to the classical forward search used for se-

lecting high dimensional features, we propose an iterative

learning scheme to select the most-relevant task frames

with respect to additional task constraints (which can be

formulated as a cost function). We first consider the tra-

jectory generation using a single frame. Through separate

optimization of task parameters of each candidate frame

via Algorithm 1, we can evaluate the influence of each

frame based on their corresponding cost values. Note that

the important frames influence the task significantly, and

thus their corresponding cost values should decrease rapidly

over the learning iterations. In other words the lower the

cost, the higher the importance of the frame. With this

insight, we can find the best frame in terms of cost values.

Subsequently, we consider the trajectory generation using

two frames, i.e., the best frame and one from the remaining

ones. By evaluating the combination of the best frame and

each of the other frames, the optimal two-frames set can

be determined. Similarly, we can find the optimal frame set

with more frames until the number of task frames reaches the

upper limit. Note that the frame selection scheme depends

on the definition of the cost function, which is closely related

Fig. 2. Kinesthetic teaching of a reaching skill on the COMAN robot.
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Fig. 3. Trajectories (left graph) generated by assigning different confidences
(right plot) to task frames. The first, second and third columns of the right

graph are associated with trajectories depicted by red, green and blue curves
in the left graph, respectively. The start and end point of each trajectory are
denoted by ‘∗’ and ‘◦’, respectively.

to the task requirements.

VI. EVALUATIONS

In this section, we evaluate our proposed methods us-

ing several examples on the simulated/real COMAN robot

[16]: (i) we consider the confidence-weighted scheme with

different sets of frame confidences (Section VI-A) in the

simulated robot; (ii) we apply the task frame optimization

to a simulated task of reaching a pole (Section VI-B.1), a

simulated and real tasks of reaching a point (Section VI-B.2)

and a real reaching task with obstacle avoidance (Section VI-

B.3); (iii) we implement a simulated pick-and-place task to

show the frame selection procedure (Section VI-C). Since

the tasks are all learned in the robot task space, we use the

Jacobian matrix J of the robot end-effector to control the

joint movement, i.e., q̂t+1 = qt + J(qt)
†(p̂t+1 − pt) with

J† = JT (JJT )−1, qt and pt respectively represent the joint

and Cartesian positions at time t, q̂t+1 and p̂t+1 represent

the desired positions at time t+ 1.

A. Confidence-weighted Scheme

We collected 10 reaching trajectories with data-points

represented by ξt = [t pT ]T in the robot base frame

{O} using kinesthetic teaching on the COMAN’s left arm

(as shown in Fig. 2), lasting around 2s each. Assuming

that the object orientation does not influence the reaching

task, we define two initial frames located respectively at

the start and end points of each demonstration. Through

projecting demonstrations into these frames separately, we

train a 4-states GMM to extract local consistency among

projected trajectories in each frame, which is after used to

retrieve local trajectories using GMR. Then, we consider

the generalization of local trajectories to new task frames.

Note that the robot arm starts from the same position, we

therefore use the same start frame, i.e., frame {1} in Fig. 3
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Fig. 4. Trajectories generated by using different task parameters from
Table I in the task of reaching a static pole.

(left graph), described by task parameters A(1) = I4×4 and

b
(1) = [0 0.005 0.156 − 0.050]T .

In order to illustrate the impact of frame confidences, we

consider two new targets which are respectively located at

[0.2 0.2 0.2]T and [0.3 0.3 0.2]T , and thus we define two

corresponding target frames {2} and {3} represented by task

parameters A(2) = A(3) = I4×4, b(2) = [0 0.2 0.2 0.2]T ,

b
(3) = [0 0.3 0.3 0.2]T . Three different groups of frame

confidences are evaluated, where each group corresponds to

a column in Fig. 3 (right graph). The final trajectories in

{O} are computed using (5) and illustrated in the Fig. 3

(left graph). Observe that the blue curve coincides with

the red one at the beginning and gradually moves towards

the green one, implying that frame confidences determine

the contributions of frames, i.e., the frame assigned with

a large (small) confidence has a large (small) influence

on the final trajectory. It is worth pointing out that the

confidence-weighted scheme provides a straightforward way

to incorporate additional human experience (if available)

about the importance of task frames, whereas the original

formulation of TP-GMM does not address this functionality.

B. Task Frame Optimization

Here we show the experiments corresponding to the opti-

mization of task parameters (Algorithm 1), where the same

set of demonstrations of the reaching skill introduced in

Section VI-A are used. The optimization is carried out under

three different scenarios: (i) reaching a pole (Section VI-

B.1), (ii) reaching a point (Section VI-B.2), and (iii) obstacle

avoidance (Section VI-B.3). In task (i), we compare our

approach with TP-GMM [4] to show the importance of

optimizing task frames. In task (ii), we compare our work

with optimization of GMM [5] to show the efficiency of our

method. In task (iii) we show that obstacle avoidance can be

achieved by optimizing task parameters.

1) Reaching a Pole : We consider the reaching of a static

pole that is located at [0.3 0.1] with the height ranging from

−0.2 to 0.4, and the robot only needs to reach it regardless of

the exact location along the vertical axis. Here, we introduce

an additional constraint in the joint space, which minimizes

the weighted joint displacement, i.e.,

fq =

N−1∑

t=1

||W(qt+1 − qt)|| (12)

trial number

100 200 300 400 500

c
o

s
t

2

3

4

5

6

7
optimize GMM means

optimize task parameters

trial number

100 200 300

c
o

s
t

3

4

5

6
optimize GMM means

optimize task parameters

Fig. 5. These graphs show cost values of optimizing GMM means
and task parameters in different reaching tasks, where the left and right

figures correspond to the target object located at [0.3 0.3 0.2]T and
[−0.3 0.2 0.2]T in frame {O}, respectively. Error-bars represent means
and standard deviations of cost values.

where W denotes a weight matrix and || · || represents 2-

norm. In order to illustrate the importance of optimizing task

parameters, we take TP-GMM as a comparison. Since the

robot starts from the same position, we define frame {1} with

parameters A(1) = I4×4, b(1) = [0 0.005 0.156 − 0.050]T .

Note that the reaching point can be located at any position

along the pole vertical axis, so we define three groups

of task parameters for frame {2}, as shown in Table I,

which are compared with the optimized task parameters

later. In contrast to these manually defined parameters, we

employ our approach (introduced in Section IV) to search

optimal task parameters (i.e., the rotation operation and

the vertical component in the translational operation) for

frame {2}, where 500 trials are carried out and the policy

parameters in (8) are updated every 10 trials. The optimal

task parameters, found by our approach, are presented in

Table I. The Cartesian trajectories that are generated by using

task parameters from Table I are depicted in Fig. 4. The cost

values of using task parameters from group 1, group 2 and

group 3 are 5.21, 5.87 and 5.70, respectively. The optimal

task parameters have the cost value 3.26. As it can be seen, it

is difficult to manually define appropriate task parameters in

TP-GMM. Instead, our method provides an effective way to

set task parameters while addressing additional requirements.

2) Reaching a Point : In this task, we consider the same

joint constraint (12). Now, let us first consider the reaching

of an object at [0.3 0.3 0.2]T in frame {O}. We define two

task frames described by A(1) = A(2) = I4×4, b
(1) =

[0 0.005 0.156 − 0.050]T , b(2) = [0 0.3 0.3 0.2]T . Note

that both frames have their origins at the start and target

points respectively, thus only the rotation operations are

implemented. We use our approach to learn rotation angles

for both frames simultaneously, where the policy parameters

are updated every 10 roll-outs. For comparison purposes, we

also evaluate the optimization of GMM components using

PI2. Here, similar to [5], we optimize Gaussian means while

the higher dimensional covariance matrices are kept fixed.

Besides this current target, we evaluate both optimizations

again using a different target located at [−0.3 0.2 0.2]T

in {O}. We have 5 runs for each method and for each

target. Meanwhile, we calculate the average cost every 20

roll-outs in each run. Finally, the means and standard de-

viations of average costs are computed, as shown by the



TABLE I

TASK PARAMETERS OF FRAME {2}

Group 1 Group 2 Group 3 Optimized Parameters

A
(2)

I4×4







1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1













1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1













1 0 0 0
0 0.5477 −0.6153 −0.5670
0 0.7500 0.6615 0.0067
0 0.3709 −0.4288 0.8237







b
(2) [0 0.3 0.1 0.3]T [0 0.3 0.1 0.05]T [0 0.3 0.1 0]T [0 0.3 0.1 0.14]T

Fig. 6. Top row: reaching task learned by optimizing task parameters with respect to the cost function (12). Middle row: reaching task with obstacle
collision, where only the constraint (12) is used. Bottom row: reaching task learned by optimizing task parameters with respect to the cost function (13).

error-bar curves in Fig. 5. Our approach converges faster

than GMM components optimization. This result coincides

with our intuitions since the frame-based optimization has

fewer parameters compared with the GMM optimization. In

addition to these evaluations, we test the reaching task on the

real COMAN robot, as shown in Fig. 6 (top row), showing

that the proposed algorithm generates a trajectory that allows

COMAN to perform successfully.

3) Obstacle Avoidance: We here consider the case in

which an obstacle occupies a portion of the learned robot

movement path (shown in Fig. 6). In order to formulate

the cost function easily, we simplify the obstacle as a

bounded rectangle S and the robot end-effector as a point.

Subsequently, we estimate the intersection point p̃ of the end-

effector trajectory and S, and determine if the intersection

point lies inside or outside S. Furthermore, let us denote

the distance between p̃ and each edge of S as di with

i ∈ {1, 2, 3, 4}. Then, the cost function can be defined as

C =

{
fq + k1e

(k2d), p̃ ∈ S
fq + k3e

(−k4d), p̃ /∈ S
, (13)

where d = min{d1, d2, d3, d4} and ki > 0. Here, the joint

constraint is used to avoid large trajectory deviation from

the original desired trajectory. As a comparison, we test

the reaching task using only the cost function (12). The

evaluations on the real robot are illustrated in Fig. 6 (middle

and bottom rows), showing that the robot is capable of
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Fig. 7. These figures depict cost values in the frame selection. The left

plot shows cost values through optimizing a single task frame while the
right plot shows cost values of optimizing the best frame {2} and each of
the rest frames. Error-bars represents means and standard deviations of cost
values.

both avoiding the obstacle and reaching the target object by

optimizing task parameters with respect to (13).

C. Automatic Frame Selection

We have evaluated a fixed set of task frames in the experi-

ments previously reported, now we consider a transportation

task to show the application of the proposed frame selection

scheme given a large set of candidate frames. We collected

8 demonstrations of the task through kinesthetic teaching,

which guided the robot to reach and pick up an object, and

subsequently release it at the goal position, lasting about

10s each. We defined 5 initial candidate frames associated

with the end-effector positions at time steps 2s, 4s, 7s, 9.5s
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Fig. 8. These figures show the trajectory evolutions (color: from light
to dark) through optimizing task parameters of frame {2} and frame {3}
simultaneously. The start and end point of each trajectory are depicted by
the blue ‘∗’ and ‘+’, respectively. The red and purple solid boxes denote
the desired via-point and end-point.

and 10s, respectively. Then, we projected the demonstrations

into these candidate frames, and subsequently trained local

GMMs and generated local trajectories.

Considering a new task instance, which requires the robot

to pick up the object located at ps = [0 0.3 0.1]T (in frame

{O}) when t = 4s, and subsequently release it at pe =
[0.3 0.2 0.2]T (in frame {O}) when t = 10s. Meanwhile, we

expect to reduce the joint displacement. Through combining

the task and joint constrains, the cost function is defined as

C = fq + kp1||pt=4 − ps||+ kp2||pt=10 − pe||, (14)

where kp1 and kp2 are positive scalars. For this new task, we

adapt 5 candidate frames using new task parameters A(j) =
I4×4, j = {1, 2, . . . , 5}, b

(1) = [0 − 0.05 0.25 0.05]T ,

b
(2) = [0 0.0 0.3 0.1]T , b

(3) = [0 0.10 0.25 0.15]T ,

b
(4) = [0 0.25 0.22 0.15]T and b

(5) = [0 0.3 0.2 0.2]T .

Since these candidate frames only differ in their origins, it

is not needed to apply translational operations, and hence

we focus on rotation operations. We first evaluate each

frame separately as shown in Fig. 7 (left plot). Since the

frame {2} has the most significant influence on the pick-

and-place task (i.e., the smallest cost values and the fastest

convergence speed), it is viewed as the most important frame.

Furthermore, we evaluate the combination of frame {2} and

the rest of frames. An illustration of trajectory evolutions in

one run through combined optimization of frame {2} and

{3} is reported in Fig. 8. The evaluations of two frames are

shown in Fig. 7 (right graph), showing that the combined

performance of frame {2} and frame {5} attains the lowest

cost values. In summary, the frame forward search provides

an optimal solution to define a frame set achieving lowest

cost values. Finally, we emphasize that humans usually have

better understanding of task goals than task frames, and thus

the strategy of frame selection offers an alternative solution

to discover the most task-relevant frames automatically.

VII. CONCLUSIONS

In this paper we presented a generalized task-

parameterized learning framework, which is initially

learned from human demonstrations. The generalization first

considers the confidence-weighted scheme, which allows

for the incorporation of human prior knowledge on the task

frames into a variant of TP-GMM. Subsequently, a novel

learning perspective is proposed, which directly optimizes

task parameters instead of GMM components, rendering

a lower dimensional optimization problem. Moreover, an

iterative feature selection scheme is proposed, which has

shown effective to select important task frames and remove

frames that are either redundant or irrelevant for the task. In

our evaluations, we learn task parameters of different frames

without considering their correlations. However, in many

tasks (e.g., the robot bimanual task) the task frames are often

relevant to each other, and thus the correlations between

frames could be exploited, which might help to accelerate

the learning process. In addition, since various movement

primitives such as non-parametric [17] and parametric

[18] formulations have been developed, a comprehensive

comparison needs further exploitation.
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