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Abstract

Imitation learning has been studied widely as a convenient way to transfer human skills to robots. This learning approach

is aimed at extracting relevant motion patterns from human demonstrations and subsequently applying these patterns

to different situations. Despite many advancements have been achieved, the solutions for coping with unpredicted

situations (e.g., obstacles and external perturbations) and high-dimensional inputs are still largely open. In this paper,

we propose a novel kernelized movement primitive (KMP), which allows the robot to adapt the learned motor skills

and fulfill a variety of additional constraints arising over the course of a task. Specifically, KMP is capable of learning

trajectories associated with high-dimensional inputs due to the kernel treatment, which in turn renders a model with

fewer open parameters in contrast to methods that rely on basis functions. Moreover, we extend our approach by

exploiting local trajectory representations in different coordinate systems that describe the task at hand, endowing KMP

with reliable extrapolation capabilities in broader domains. We apply KMP to the learning of time-driven trajectories

as a special case, where a compact parametric representation describing a trajectory and its first-order derivative is

utilized. In order to verify the effectiveness of our method, several examples of trajectory modulations and extrapolations

associated with time inputs, as well as trajectory adaptations with high-dimensional inputs are provided.

Keywords

Imitation learning, movement primitives, information theory, kernel-based learning.

1 Introduction

In a myriad of robotic systems, trajectory generation plays a

very important role since trajectories govern the robot actions

at both joint and task space levels. One popular trajectory

generation approach for robots is imitation learning (Ijspeert

et al. 2013; Calinon et al. 2007), where the trajectory of

interest is learned from human demonstrations. Typically,

the learned trajectories can be successfully reproduced or

generalized by the robot under conditions that are similar to

those in which the demonstrations took place. However, in

practice, robots may also encounter unseen situations, such

as obstacles or human intervention, which can be considered

as new task constraints, requiring the robot to adapt its

trajectory in order to perform adequately.

In the context of imitation learning, several algorithms

such as dynamic movement primitives (DMP) (Ijspeert et

al. 2013) and probabilistic movement primitives (ProMP)

(Paraschos et al. 2013) have been developed to generate

desired trajectories in various scenarios. However, due to

an explicit description of the trajectory dynamics, DMP

introduces many open parameters in addition to basis

functions and their weighting coefficients. The same problem

arises in ProMP, which fits trajectories using basis functions

that are manually defined. Moreover, DMP and ProMP were

formulated towards the learning of time-driven trajectories

(i.e., trajectories explicitly dependent on time), where the

learning with high-dimensional inputs was not addressed.

In order to alleviate the modeling of trajectories via

specific functions and meanwhile facilitate the learning of

trajectories driven by high dimensional inputs, Gaussian

mixture model (GMM) (Calinon et al. 2007) has been

employed to model the joint distribution of input variables

and demonstrated motions. Usually, GMM is complemented

with Gaussian mixture regression (GMR) (Cohn et al. 1996)

to retrieve a desired trajectory distribution. Despite the

improvements with respect to other techniques, adapting

learned skills with GMM/GMR is not straightforward.

Indeed, it is difficult to re-optimize GMM to fulfill new

requirements (e.g., via-points), since this usually requires to

re-estimate new model parameters (i.e., mixture coefficients,

means and covariance matrices) that actually lie on a high-

dimensional space .

An alternative solution to refine trajectories for satisfying

new task constraints is reinforcement learning (RL). For

instance, a variant of policy improvement with path integrals

(Buchli et al. 2011) was employed to optimize the movement

pattern of DMP (Stulp and Sigaud 2013). Also, natural actor-

critic (Peters et al. 2005) was used to optimize the centers

of GMM components (Guenter et al. 2007). However, the

time-consuming search of the optimal policy might make the

application of RL approaches to on-line refinements (such

as those required after perturbations) impractical. In contrast

to the RL treatment, ProMP formulates the modulation

of trajectories as a Gaussian conditioning problem, and
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therefore derives an analytical solution to adapt trajectories

towards new via-points or targets. It is worth pointing out that

DMP can adapt trajectories towards different goals, however,

the via-point constraints are not addressed therein.

Besides the generation of adaptive trajectories, another

desired property in imitation learning is extrapolation. Often,

human demonstrations are provided for a limited set of task

instances, but the robot is expected to apply the learned

movement patterns in a wider range of circumstances. In

this context, DMP is capable of generating trajectories

starting from arbitrary locations and converging to a goal.

This is achieved through a formulation based on a spring-

damper system whose equilibrium corresponds to the target

of the robot motion. In contrast, ProMP and GMM model

the distribution of demonstrated trajectories in absolute

frames rather than relative frames, which limits their

extrapolation capabilities. As an extension of GMM, a task-

parameterized formulation is studied in Calinon (2016),

which in essence models local (or relative) trajectories and

corresponding local patterns, therefore endowing GMM with

better extrapolation performance.

While the aforementioned algorithms have achieved

reliable performances, we aim for a solution that addresses

the most crucial limitations of those approaches. In

particular, we propose an algorithm that:

(i) preserves the probabilistic properties exhibited in

multiple demonstrations,

(ii) deals with adaptation and superposition of trajectories,

(iii) can be generalized for extrapolations,

(iv) learns human demonstrations associated with high-

dimensional inputs while alleviating the need to

explicitly define basis functions.

The main contribution of this paper is the development

of novel kernelized movement primitives (KMPs), which

allow us to address the above listed problems using a

single framework. Specifically, provided with a distribution

of demonstrations, KMP provides a non-parametric solution

for imitation learning and hence alleviates the explicit

representation of trajectories using basis functions, rendering

fewer open parameters and easy implementation. More

importantly, in light of the kernel treatment, KMP has

the ability to learn demonstrations associated with high-

dimensional inputs, which is usually viewed as a non-trivial

problem due to the curse of dimensionality.

In addition, this paper extends KMP from a task-

parameterized perspective and formulates local-KMP,

improving the extrapolation capabilities to different task

situations described by a set of local coordinate frames.

Finally, as a special case, we consider the application of

KMP to the learning of time-driven trajectories, which

inherits all the advantages of KMP while being suitable for

time-scale modulation. For the sake of clear comparison,

we list most relevant features of state-of-the-art methods

as well as our approach in Table 1. Note that we consider

the modulation of robot trajectories to pass through desired

via-points and end-points as the adaptation capability.

The structure of this paper is arranged as follows. We

formulate imitation learning from an information-theory

Table 1. Comparison Among the State-of-the-Art and KMP

DMP ProMP GMM Our Approach

Probabilistic - X X X

V ia−point - X - X

End−point X X - X

Extrapolation X - - X

High-dim Inputs - - X X

perspective and propose KMP in Section 2. Subsequently,

we extend KMP to deal with trajectory modulation and

superposition in Section 3.1 and Section 3.2, respectively.

Moreover, we introduce the concept of learning local

trajectories into KMP in Section 3.3, augmenting its

extrapolation capabilities in task space. In Section 4,

we discuss a special application of KMP to time-driven

trajectories. We test the performance of KMP on trajectory

modulation, superposition and extrapolation in Section

5, where several scenarios are considered, ranging from

learning handwritten letters to real robot experiments. After

that, we review related work in Section 6. An insightful

discussion is provided in Section 7, where we elaborate on

the potential of our approach and the similarities between

KMP and ProMP, as well as open challenges. Finally, we

close with conclusions in Section 8.

2 Kernelized Representation of Movement

Trajectories Distribution

Learning from multiple demonstrations allows for encoding

trajectory distributions and extracting important or consistent

features of the task. In this section, we first illustrate a prob-

abilistic modeling of human demonstrations (Section 2.1),

and, subsequently, we exploit the resulting trajectory distri-

bution to derive KMP (Section 2.2).

2.1 Learning from Human Demonstrations

Formally, let us denote the set of demonstrated training data

by {{sn,h, ξn,h}
N
n=1}

H
h=1 where sn,h ∈ R

I is the input and

ξn,h ∈ R
O denotes the output. Here, the super-indexes I,

O, H and N respectively represent the dimensionality of

the input and output space, the number of demonstrations,

and the trajectory length. Note that a probabilistic encoding

of the demonstrations allows the input s and output ξ

to represent different types of variables. For instance, by

considering s as the position of the robot and ξ as its

velocity, the representation becomes an autonomous system.

Alternatively, if s and ξ respectively represent time and

position, the resulting encoding corresponds to a time-driven

trajectory.

In order to capture the probabilistic distribution of

demonstrations, a number of algorithms can be employed,

such as GMM (Calinon et al. 2007), hidden Markov models

(Rozo et al. 2013), and even a single Gaussian distribution

(Englert et al. 2013; Osa et al. 2017), which differ in the type

of information that is extracted from the demonstrations. As

an example, let us exploit GMM as the model used to encode

the training data. More specifically, GMM is employed

to estimate the joint probability distribution P(s, ξ) from

Prepared using sagej.cls
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demonstrations, i.e.,

[
s

ξ

]
∼

C∑

c=1

πcN (µc,Σc), (1)

where πc, µc and Σc respectively represent the prior

probability, mean and covariance of the c-th Gaussian

component, while C denotes the number of Gaussian

components.

Furthermore, a probabilistic reference trajectory {ξ̂n}
N
n=1

can be retrieved via GMR (Cohn et al. 1996; Calinon

2016), where each point ξ̂n associated with sn is

described by a conditional probability distribution with

mean µ̂n and covariance Σ̂n, i.e, ξ̂n|sn ∼ N (µ̂n, Σ̂n)
(see Appendix A for details). This probabilistic reference

trajectory encapsulates the variability in the demonstrations

as well as the correlations among outputs. We take advantage

of the probabilistic reference trajectory to derive KMP.

2.2 Kernelized Movement Primitive (KMP)

We start the derivation of KMP by considering a parametric

trajectory

ξ(s) = Θ(s)Tw (2)

with the matrix Θ(s) ∈ R
BO×O defined as

Θ(s) =




ϕ(s) 0 · · · 0

0 ϕ(s) · · · 0
...

...
. . .

...

0 0 · · · ϕ(s)


 , (3)

and the weight vector w ∈ R
BO, where ϕ(s) ∈ R

B denotes

B-dimensional basis functions∗. Furthermore, we assume

that w is normally distributed, i.e., w ∼ N (µw,Σw),
where the mean µw and the covariance Σw are unknown.

Therefore, the parametric trajectory satisfies

ξ(s) ∼ N
(
Θ(s)Tµw,Θ(s)TΣwΘ(s)

)
. (4)

Note that our goal is to imitate the probabilistic reference

trajectory {ξ̂n}
N
n=1, thus we aim to match the parametric

trajectory distribution formulated by (4) with the reference

trajectory distribution. In order to address this problem,

we propose to minimize the Kullback-Leibler divergence

(KL-divergence) (Kullback and Leibler 1951; Rasmussen

and Williams 2006) between both trajectory distributions

(Section 2.2.1). Subsequently, we derive optimal solutions

for both µw and Σw, and formulate KMP by using the kernel

trick in Sections 2.2.2 and 2.2.3, respectively.

2.2.1 Imitation Learning Based on Information Theory:

Since the well-known KL-divergence can be used to measure

the distance between two probability distributions, we here

exploit it to optimize the parametric trajectory distribution so

that it matches the reference trajectory distribution. From the

perspective of information transmission, the minimization of

KL-divergence guarantees minimal information-loss in the

process of imitation learning.

Formally, we consider the minimization of the objective

function

Jini(µw,Σw)=

N∑

n=1

DKL

(
Pp(ξ|sn)||Pr(ξ|sn)

)
, (5)

where Pp(ξ|sn) represents the probability distribution of the

parametric trajectory (4) given the input sn, i.e.,

Pp(ξ|sn)=N
(
ξ|Θ(sn)

Tµw,Θ(sn)
TΣwΘ(sn)

)
, (6)

and Pr(ξ|sn) corresponds to the probability distribution of

the reference trajectory associated with sn (as described in

Section 2.1), namely

Pr(ξ|sn) = N (ξ|µ̂n, Σ̂n). (7)

DKL(·||·) denotes the KL-divergence between the probabil-

ity distributions Pp and Pr, which is defined by

DKL(Pp(ξ|sn)||Pr(ξ|sn))

=

∫
Pp(ξ|sn) log

Pp(ξ|sn)

Pr(ξ|sn)
dξ.

(8)

By using the properties of KL-divergence between two

Gaussian distributions, we rewrite (5) as

Jini(µw,Σw)=

N∑

n=1

1

2

(
log |Σ̂n|−log |Θ(sn)

TΣwΘ(sn)|

−O +Tr(Σ̂
−1

n Θ(sn)
TΣwΘ(sn))

+(Θ(sn)
Tµw−µ̂n)

TΣ̂
−1

n (Θ(sn)
Tµw−µ̂n)

)
,

(9)

where | · | and Tr(·) denote the determinant and trace of a

matrix, respectively.

After removing the coefficient ‘ 12 ’, the constant terms

log |Σ̂n| and O, this objective function (9) can be further

decomposed into a mean minimization subproblem and a

covariance minimization subproblem. The former is defined

by minimizing

Jini(µw)=

N∑

n=1

(Θ(sn)
Tµw−µ̂n)

TΣ̂
−1

n (Θ(sn)
Tµw−µ̂n)

(10)

and the latter is written as the minimization of

Jini(Σw) =

N∑

n=1

(
− log |Θ(sn)

TΣwΘ(sn)|

+Tr(Σ̂
−1

n Θ(sn)
TΣwΘ(sn))

). (11)

In the following two sections, we separately solve the

mean and covariance subproblems, resulting in the KMP

formulation.

2.2.2 Mean Prediction of KMP: In contrast to kernel ridge

regression (KRR) (Saunders et al. 1998; Murphy 2012), we

introduce a penalty term ||µw||
2 into the mean minimization

subproblem (10) so as to circumvent the over-fitting problem.

Thus, the new mean minimization subproblem can be re-

rewritten as

J(µw)=
N∑

n=1

(Θ(sn)
Tµw−µ̂n)

TΣ̂
−1

n (Θ(sn)
Tµw−µ̂n)

+ λµT

wµw,

(12)

∗The treatment of fitting trajectories by using basis functions has also been

studied in DMP (Ijspeert et al. 2013) and ProMP (Paraschos et al. 2013).

Prepared using sagej.cls
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where λ > 0.

The cost function (12) resembles a weighted least squares

formulation, except for the penalty term λµT

wµw. Also, it

is similar to the common quadratic cost function minimized

in KRR, where Σ̂
−1

n = IO. However, the variability of

the demonstrations encapsulated in Σ̂n is introduced

in (12) as an importance measure associated to each

trajectory datapoint, which can be understood as relaxing

or reinforcing the optimization for a particular datapoint. In

other words, this covariance-weighted cost function permits

large deviations from the reference trajectory points with

high covariances, while demanding to be close when the

associated covariance is low.

By taking advantage of the dual transformation of KRR,

the optimal solution µ∗
w of (12) can be derived as (see

Murphy (2012); Kober et al. (2011) for details)

µ∗
w = Φ(ΦTΦ+ λΣ)−1µ, (13)

where

Φ = [Θ(s1) Θ(s2) · · · Θ(sN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂T

1 µ̂
T

2 · · · µ̂
T

N ]T.

(14)

Subsequently, for a query s∗ (i.e., new input), its

corresponding output (expected value) is computed as

E(ξ(s∗))=Θ(s∗)Tµ∗
w=Θ(s∗)TΦ(ΦTΦ+λΣ)−1µ. (15)

In order to facilitate the application of (15) (particularly for

high-dimensional s), we propose to kernelize (15) so as to

avoid the explicit definition of basis functions. Let us define

the inner product for ϕ(si) and ϕ(sj) as

ϕ(si)
Tϕ(sj) = k(si, sj), (16)

where k(·, ·) is a kernel function. Then, based on (3) and

(16), we have

Θ(si)
TΘ(sj) =




k(si, sj) 0 · · · 0

0 k(si, sj) · · · 0
...

...
. . .

...

0 0 · · · k(si, sj)


 ,

(17)

which can be further rewritten as a kernel matrix

k(si, sj) = Θ(si)
TΘ(sj) = k(si, sj)IO, (18)

where IO is the O-dimensional identity matrix. Also, let us

denote the matrix K as

K =




k(s1, s1) k(s1, s2) · · · k(s1, sN )
k(s2, s1) k(s2, s2) · · · k(s2, sN )

...
...

. . .
...

k(sN , s1) k(sN , s2) · · · k(sN , sN )


 , (19)

and write the matrix k
∗ as

k
∗ = [k(s∗, s1) k(s

∗, s2) · · · k(s
∗, sN )], (20)

then the prediction in (15) becomes

E(ξ(s∗)) = k
∗(K+ λΣ)−1µ. (21)

Note that a similar result was derived in the context

of reinforcement learning (Kober et al. 2011) (called cost

regularized kernel regression, CrKR). In contrast to the

mean prediction of KMP, CrKR models target components

separately without considering their correlations, i.e., a

diagonal weighted matrix Rn = rnIO is used instead of

the full covariance matrix Σ̂
−1

n from (12). Furthermore,

for the case in which Σ̂n = IO, the prediction in (21) is

identical to the mean of the Gaussian process regression

(GPR) (Rasmussen and Williams 2006).

It is worth pointing out that the initial mean minimization

subproblem (10) is essentially equivalent to the problem

of maximizing the posterior
∏N

n=1 P(Θ(sn)
Tµw|µ̂n, Σ̂n),

please refer to Appendix B for the proof. Thus, the optimal

solution µ∗
w can be viewed as the best estimation given the

observed reference trajectory distribution.

2.2.3 Covariance Prediction of KMP: Similar to the

treatment in (12), we propose to add a penalty term into

the covariance minimization subproblem (11) in order to

bound the covariance Θ(sn)
TΣwΘ(sn). On the basis of

the properties of the Rayleigh quotient, the penalty term

could be defined by the largest eigenvalue of Σw. For the

sake of easy derivation, we impose a relaxed penalty term

Tr(Σw) which is larger than the largest eigenvalue of Σw

since Σw is positive definite. Therefore, the new covariance

minimization subproblem becomes

J(Σw) =

N∑

n=1

(
− log |Θ(sn)

TΣwΘ(sn)|

+Tr(Σ̂
−1

n Θ(sn)
TΣwΘ(sn))

)
+λcTr(Σw)

(22)

with λc > 0. By computing the derivative of (22) with

respect to Σw and setting it to 0, we have†

N∑

n=1

(
−Σ−1

w +Θ(sn)Σ̂
−1

n Θ(sn)
T

)
+ λcI = 0. (23)

Furthermore, we can rewrite (23) in a compact form by using

Φ and Σ from (14) and derive the optimal solution Σ∗
w as

Σ∗
w = N(ΦΣ−1ΦT + λcI)

−1. (24)

This solution resembles the covariance of weighted least

square estimation, except for the factor ‘N ’ and the

regularized term λcI.

According to the Woodbury identity‡, we can determine

the covariance of ξ(s∗) for a query s∗ as

D(ξ(s∗)) = Θ(s∗)TΣ∗
wΘ(s∗)

= NΘ(s∗)T(ΦΣ−1ΦT + λcI)
−1Θ(s∗)

=
N

λc
Θ(s∗)T

(
I−Φ(ΦTΦ+λcΣ)−1ΦT

)
Θ(s∗).

(25)

Recall that we defined the kernel matrix in (18)-(19), and

hence the covariance of ξ(s∗) becomes

D(ξ(s∗)) =
N

λc

(
k(s∗, s∗)− k

∗(K+ λcΣ)−1k
∗T
)
. (26)

†The following results on matrix derivatives (Petersen and Pedersen 2008)

are used:
∂|AXB|

∂X
= |AXB|(XT)−1 and ∂

∂X
Tr(AXB) = A

T
B

T.
‡(A+CBC

T)−1 = A
−1−A

−1
C(B−1 +C

T
A

−1
C)−1C

T
A

−1.
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Algorithm 1 Kernelized Movement Primitive

1: Initialization

- Define the kernel k(·, ·) and set the factors λ and λc.

2: Learning from demonstrations (see Section 2.1)

- Collect demonstrations {{sn,h, ξn,h}
N
n=1}

H
h=1.

- Extract the reference database {sn, µ̂n, Σ̂n}
N
n=1.

3: Prediction using KMP (see Section 2.2)

- Input: query s∗.

- Calculate Σ, µ, K and k
∗ using (14), (19) and (20).

- Output: E(ξ(s∗)) = k
∗(K+ λΣ)−1µ and

D(ξ(s∗)) = N
λc

(
k(s∗, s∗)− k

∗(K+ λcΣ)−1k
∗T
)

.

In addition to the factor ‘ N
λc

’, the covariance formula in

(26) differs from the covariances defined in GPR and CrKR

in two essential aspects. First, the variability Σ extracted

from demonstrations (as defined in (14)) is used in the term

(K+ λcΣ)−1, while the identity matrix and the diagonal

weighted matrix are used in GPR and CrKR, respectively.

Second, in contrast to the diagonal covariances predicted

by GPR and CrKR, KMP predicts a full matrix covariance

which allows for predicting the correlations between output

components. For the purpose of convenient descriptions in

the following discussion, we refer to D = {sn, µ̂n, Σ̂n}
N
n=1

as the reference database. The prediction of both the mean

and covariance using KMP is summarized in Algorithm 1.

3 Extensions of Kernelized Movement

Primitive

As previously explained, human demonstrations can be used

to retrieve a distribution of trajectories that the robot exploits

to carry out a specific task. However, in dynamic and

unstructured environments the robot also needs to adapt its

motions when required. For example, if an obstacle suddenly

occupies an area that intersects the robot motion path, the

robot needs to modulate its movement trajectory so that

collisions are avoided. A similar modulation is necessary

(e.g., in pick-and-place and reaching tasks) when the target

varies its location during the task execution. The trajectory

modulation problem will be addressed in Section 3.1 by

exploiting the proposed KMP formulation.

Besides the modulation of a single trajectory, another

challenging problem arises when the robot is given a set

of candidate trajectories to follow, which represent feasible

solutions for the task. Each of them may be assigned

with a different priority (extracted, for example, from task

constraints). These candidate trajectories can be exploited to

compute a mixed trajectory so as to balance all the feasible

solutions according to their priorities. We cope with the

superposition problem in Section 3.2 by using KMP.

Finally, human demonstrations are often provided in a

relatively convenient task space. However, the robot might

be expected to apply the learned skill to a broader domain. In

order to address this problem, we extend KMP by using local

coordinate systems and affine transformations as in Calinon

(2016); Huang et al. (2018), which allows KMP to exhibit

better extrapolation capabilities (Section 3.3).

3.1 Trajectory Modulation Using KMP

We here consider trajectory modulation in terms of

adapting trajectories to pass through new via-points/end-

points. Formally, let us define M new desired points as

{s̄m, ξ̄m}
M
m=1 associated with conditional probability distri-

butions ξ̄m|s̄m ∼ N (µ̄m, Σ̄m). These conditional distribu-

tions can be designed based on new task requirements. For

instance, if there are new via-points that the robot needs to

pass through with high precision, small covariances Σ̄m are

assigned. On the contrary, for via-points that allow for large

tracking errors, high covariances can be set.

In order to consider both new desired points and

the reference trajectory distribution simultaneously, we

reformulate the original objective function defined in (5) as

JU
ini(µw,Σw)=

N∑

n=1

DKL

(
Pp(ξ|sn)||Pr(ξ|sn)

)

+
M∑

m=1

DKL

(
Pp(ξ|s̄m)||Pd(ξ|s̄m)

) (27)

with

Pp(ξ|s̄m)=N
(
ξ|Θ(s̄m)Tµw,Θ(s̄m)TΣwΘ(s̄m)

)
(28)

and

Pd(ξ|s̄m) = N (ξ|µ̄m, Σ̄m). (29)

Let D̄ = {s̄m, µ̄m, Σ̄m}
M
m=1 denote the desired database.

We can concatenate the reference database D with the

desired database D̄ and generate an extended reference

database {sUi ,µ
U
i ,Σ

U
i }

N+M
i=1 , which is defined as follows

{
sUi =si, µU

i = µ̂i, ΣU
i =Σ̂i, if 1 ≤ i ≤ N

sUi = s̄i−N ,µU
i = µ̄i−N ,ΣU

i =Σ̄i−N , if N< i≤N+M
.

(30)

Then, the objective function (27) can be written as follows

JU
ini(µw,Σw)=

M+N∑

i=1

DKL

(
Pp(ξ|s

U
i )||Pu(ξ|s

U
i )

)
, (31)

with

Pp(ξ|s
U
i )=N

(
ξ|Θ(sUi )

Tµw,Θ(sUi )
TΣwΘ(sUi )

)
(32)

and

Pu(ξ|s
U
i ) = N (ξ|µU

i ,Σ
U
i ). (33)

Note that (31) has the same form as (5). Hence, for the

problem of enforcing trajectories to pass through desired

via-points/end-points, we can first concatenate the original

reference database with the desired database through (30)

and, subsequently, with the extended reference database, we

follow Algorithm 1 to predict the mean and covariance for

new queries s∗.

It is worth pointing out that there might exist con-

flicts between the desired database and the original refer-

ence database. In order to illustrate this issue clearly, let

us consider an extreme case: if there exist a new input

s̄m = sn, but µ̄m is distant from µ̂n while Σ̄m and Σ̂n

are nearly the same, then the optimal solution of (31)

corresponding to the query sn can only be a trade-off
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between µ̄m and µ̂n. In the context of trajectory modulation

using via-points/end-points, it is natural to consider new

desired points with the highest preference. Thus, we propose

to update the reference database from the perspective of

reducing the above mentioned conflicts while maintaining

most of datapoints in the reference database. The update

procedure is carried out as follows. For each datapoint

{s̄m, µ̄m, Σ̄m} in the desired database, we first compare

its input s̄m with the inputs {sn}
N
n=1 of the reference

database so as to find the nearest datapoint {sr, µ̂r, Σ̂r}
that satisfies d(s̄m, sr) ≤ d(s̄m, sn), ∀n ∈ {1, 2, . . . , N},
where d(·) could be an arbitrary distance measure

such as 2-norm. If the nearest distance d(s̄m, sr) is

smaller than a predefined threshold ζ > 0, we replace

{sr, µ̂r, Σ̂r} with {s̄m, µ̄m, Σ̄m}; Otherwise, we insert

{s̄m, µ̄m, Σ̄m} into the reference database. More specif-

ically, given a new desired point {s̄m, ξ̄m} described by

ξ̄m|s̄m ∼ N (µ̄m, Σ̄m), we update the reference database

according to

{
D←{D/{sr, µ̂r, Σ̂r}}∪{s̄m, µ̄m, Σ̄m}, if d(s̄m, sr)<ζ,

D← D ∪ {s̄m, µ̄m, Σ̄m}, otherwise,
(34)

where r = argminn d(s̄m, sn), n ∈ {1, 2, . . . , N} and the

symbols ‘/’ and ‘∪’ represent exclusion and union

operations, respectively.

3.2 Trajectory Superposition Using KMP

In addition to the modulation operations on a single

trajectory, we extend KMP to mix multiple trajectories that

represent different feasible solutions for a task, with different

priorities. Formally, given a set of L reference trajectory

distributions, associated with inputs and corresponding

priorities γn,l, denoted as {{sn, ξ̂n,l, γn,l}
N
n=1}

L
l=1, where

ξ̂n,l|sn ∼ N (µ̂n,l, Σ̂n,l), and γn,l ∈ (0, 1) is a priority

assigned to the point {sn, ξ̂n,l} satisfying
∑L

l=1 γn,l = 1.

Since each priority indicates the importance of one

datapoint in a reference trajectory, we use them to weigh the

information-loss as follows

JS
ini(µw,Σw)=

N∑

n=1

L∑

l=1

γn,lDKL

(
Pp(ξ|sn)||P

l
s(ξ|sn)

)
,

(35)

where P l
s is defined as

P l
s(ξ|sn) = N (ξ|µ̂n,l, Σ̂n,l), (36)

representing the distribution of the l-th reference trajectory

given the input sn.

Similar to the decomposition in (9)–(11), the objective

function (35) can be decomposed into a weighted mean

minimization subproblem and a weighted covariance

minimization subproblem. The former is written as

JS
ini(µw)=

N∑

n=1

L∑

l=1

γn,l(Θ(sn)
Tµw − µ̂n,l)

TΣ̂
−1

n,l

(Θ(sn)
Tµw−µ̂n,l),

(37)

and the latter is

JS
ini(Σw)=

N∑

n=1

L∑

l=1

γn,l

(
−log |Θ(sn)

TΣwΘ(sn)|

+Tr(Σ̂
−1

n,lΘ(sn)
TΣwΘ(sn))

) . (38)

It can be proved that the weighted mean subproblem can

be solved by minimizing (see Appendix C)

J̃S
ini(µw)=

N∑

n=1

(Θ(sn)
Tµw−µ

S
n)

TΣS
n

−1
(Θ(sn)

Tµw−µ
S
n),

(39)

and the weighted covariance subproblem is equivalent to the

problem of minimizing (see Appendix D)

J̃S
ini(Σw)=

N∑

n=1

(
− log |Θ(sn)

TΣwΘ(sn)|

+Tr(ΣS
n

−1
Θ(sn)

TΣwΘ(sn))
), (40)

where

ΣS
n

−1
=

L∑

l=1

(
Σ̂n,l/γn,l

)−1

and (41)

µS
n = ΣS

n

L∑

l=1

(
Σ̂n,l/γn,l

)−1

µ̂n,l. (42)

Observe that (39) and (40) have the same form as the

subproblems defined in (10) and (11), respectively. Note that

the definitions in (41) and (42) essentially correspond to the

product of L Gaussian distributionsN (µ̂n,l, Σ̂n,l/γn,l) with

l = 1, 2, . . . , L, given by

N (µS
n ,Σ

S
n) ∝

L∏

l=1

N (µ̂n,l, Σ̂n,l/γn,l). (43)

Thus, for the problem of trajectory superposition, we first

determine a mixed reference database {sn,µ
S
n ,Σ

S
n}

N
n=1

through (43), then we employ Algorithm 1 to predict the

corresponding mixed trajectory points for arbitrary queries.

Note that the weighted mean minimization subproblem (37)

can be interpreted as the maximization of the weighted

posterior
∏N

n=1

∏L
l=1 P

(
Θ(sn)

Tµw|µ̂n,l, Σ̂n,l

)γn,l

. In

comparison with the trajectory mixture in ProMP (Paraschos

et al. 2013), we here consider an optimization problem with

an unknown µw rather than the direct product of a set of

known probabilities.

3.3 Local Movement Learning Using KMP

So far we have considered trajectories that are represented

with respect to the same global frame (coordinate system).

In order to enhance the extrapolation capability of KMP in

task space, human demonstrations can be encoded in local

frames§ so as to extract local movement patterns, which can

then be applied to a wider range of task instances. Usually,

the definition of local frames depends on the task at hand.

For example, in a transportation task where the robot moves

§Also referred to as task parameters in Calinon (2016).
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Algorithm 2 Local Kernelized Movement Primitives with

Via-points/End-points

1: Initialization

- Define k(·, ·) and set λ and λc.

- Determine P local frames {A(p),b(p)}Pp=1.

2: Learning from local demonstrations

- Collect demonstrations {{sn,h, ξn,h}
N
n=1}

H
h=1 in {O}.

- Project demonstrations into local frames via (44).

- Extract local reference databases{s
(p)
n ,µ̂(p)

n ,Σ̂
(p)

n }
N
n=1.

3: Update local reference databases

- Project via-points/end-points into local frames via (44).

- Update local reference databases via (34).

- Update K(p),µ(p),Σ(p) in each frame {p}.
4: Prediction using local-KMPs

- Input: query s∗.

- Update P local frames based on new task requirements.

- Project s∗ into local frames via (44), yielding {s∗(p)}Pp=1.

- Predict the local trajectory point associated with s∗(p)

in each frame {p} using KMP.

- Output: Compute ξ̃(s∗) in the frame {O} using (46).

an object from a starting position (that may vary) to different

target locations, two local frames can be defined respectively

at the starting and ending positions.

Formally, let us define P local frames as {A(p),b(p)}Pp=1,

where A(p) and b
(p) respectively represent the rotation

matrix and the translation vector of frame {p} with respect

to the base frame {O}. Demonstrations are projected

into each frame {p}, resulting in new trajectory points

{{s
(p)
n,h, ξ

(p)
n,h}

N
n=1}

H
h=1 for each local frame, where

[
s
(p)
n,h

ξ
(p)
n,h

]
=

[
A(p)

s 0

0 A
(p)
ξ

]−1([
sn,h
ξn,h

]
−

[
b
(p)
s

b
(p)
ξ

])
, (44)

with A(p)
s = A

(p)
ξ = A(p) and b

(p)
s = b

(p)
ξ = b

(p)¶. Subse-

quently, by following the procedure in Section 2.1, for each

local frame {p} we can generate a local reference database

D(p) = {s
(p)
n , µ̂(p)

n , Σ̂
(p)

n }
N
n=1.

We refer to the learning of KMPs in local frames

as local-KMPs. For sake of simplicity, we only discuss

the trajectory modulations with via-points/end-points. The

operation of trajectory superposition can be treated as

explained in Section 3.2. Given a set of desired points in

the robot base frame {O} described by the desired database

{s̄m, µ̄m, Σ̄m}
M
m=1, we project the desired database into

local frames using (44), leading to the set of transformed

local desired databases D̄
(p)

= {s̄
(p)
m , µ̄

(p)
m , Σ̄

(p)
m }

M
m=1 with

p = {1, 2, . . . , P}. Then, we carry out the update procedure

described by (34) in each frame {p} and obtain a new local

reference database D(p).

For a new input s∗ in the base frame {O}, we first

project it into local frames using the input transformation in

(44), yielding local inputs {s∗(p)}Pp=1. Note that, during the

prediction phase, local frames might be updated depending

on new task requirements and the corresponding task

parameters A(p) and b
(p) might vary accordingly. Later,

in each frame {p} we can predict a local trajectory point

ξ̃
(p)
(s∗(p)) ∼ N (µ∗(p),Σ∗(p)) with updated mean µ∗(p) and

covariance Σ∗(p) by using (21) and (26). Furthermore,

new local trajectory points from all local frames can be

simultaneously transformed into the robot base frame using

an inverse formulation of (44). Thus, for the query s∗ in

the base frame {O}, its corresponding trajectory point ξ̃(s∗)
in {O} can be determined by maximizing the product of

linearly transformed Gaussian distributions

ξ̃(s∗)=argmax
ξ

P∏

p=1

N

(
ξ|A

(p)
ξ µ∗(p)+b

(p)
ξ︸ ︷︷ ︸

µ̃p

,A
(p)
ξ Σ∗(p)A

(p)
ξ

T

︸ ︷︷ ︸
Σ̃p

)
,

(45)

whose optimal solution is

ξ̃(s∗) =

( P∑

p=1

Σ̃
−1

p

)−1 P∑

p=1

Σ̃
−1

p µ̃p. (46)

The described procedure is summarized in Algorithm 2. Note

that the solution (46) actually corresponds to the expectation

part of the product of Gaussian distributions in (45).

4 Time-driven Kernelized Movement

Primitives

In many robotic tasks, such as biped locomotion (Nakanishi

2004) and striking movements (Huang et al. 2016), time

plays a critical role when generating movement trajectories

for a robot. We here consider a special case of KMP by taking

time t as the input s, which is aimed at learning time-driven

trajectories.

4.1 A Special Treatment of Time-Driven KMP

Similarly to ProMP, we formulate a parametric trajectory

comprising positions and velocities as

[
ξ(t)

ξ̇(t)

]
= Θ(t)Tw, (47)

where the matrix Θ(t) ∈ R
BO×2O is

Θ(t)=




ϕ(t) 0 · · · 0 ϕ̇(t) 0 · · · 0

0 ϕ(t) · · · 0 0 ϕ̇(t) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · ϕ(t) 0 0 · · · ϕ̇(t)


.

(48)

Note that we include the first-order derivative of the

parametric trajectory ξ(t) in (47), which allows us to encode

the observed dynamics of the motion. Consequently, we

include the derivative of basis functions as shown in (48).

In order to encapsulate the variability in demonstra-

tions, we here model the joint probability P(t, ξ, ξ̇)
using GMM, similarly to Section 2.1. The probabilis-

tic reference trajectory associated with time input tn can

then be extracted by GMR as the conditional probabil-

ity P(ξ̂n,
ˆ̇
ξn|tn) ∼ N (µ̂n, Σ̂n). Finally, we can derive the

time-driven KMP by following the derivations presented in

Section 2.2.

¶Note that, if the input s becomes time, then A
(p)
s =1 and b

(p)
s =0.
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Figure 1. Learning of handwritten letters ‘G’. (a) and (b) show trajectories of ‘G’, ‘∗’ and ‘+’ in (b) denote the starting and ending

points of the demonstrations, respectively. (c) depicts the estimated GMM with ellipses representing Gaussian components. (d)

displays the reference trajectory distribution retrieved by GMR (green color) and the reproduced distribution by KMP (pink color), the

curves and shaded areas, respectively, correspond to the mean and standard deviation of the trajectories.

Figure 2. Reproduced trajectory distributions through KMP

(pink color) and ProMP (blue color), where gray curves depict

demonstrations. The pink and blue curves as well as their

associated shaded areas respectively represent the means

and standard deviations of the retrieved trajectories. Note that

the over-estimation of variance via ProMP results from the

regularized term added to Σw.

It is noted that, when we calculate the kernel matrix as

previously defined in (16)–(18), we here encounter four

types of products ϕ(ti)
Tϕ(tj), ϕ(ti)

Tϕ̇(tj), ϕ̇(ti)
Tϕ(tj)

and ϕ̇(ti)
Tϕ̇(tj). Hence, we propose to approximate ϕ̇(t)

as ϕ̇(t) ≈ ϕ(t+δ)−ϕ(t)
δ by using the finite difference method,

where δ > 0 is an extremely small constant. So, based on

the definition ϕ(ti)
Tϕ(tj) = k(ti, tj), we can determine the

kernel matrix as

k(ti, tj)=Θ(ti)
TΘ(tj)=

[
ktt(i, j)IO ktd(i, j)IO
kdt(i, j)IO kdd(i, j)IO

]
,

(49)

where

ktt(i, j)=k(ti, tj),

ktd(i, j)=
k(ti, tj+δ)−k(ti, tj)

δ
,

kdt(i, j)=
k(ti+δ, tj)−k(ti, tj)

δ
,

kdd(i, j)=
k(ti+δ,tj+δ)−k(ti+δ,tj)−k(ti,tj+δ)+k(ti,tj)

δ2
.

(50)

It follows that we can actually model the output

variable ξ(t) and its derivative ξ̇(t) in (47) using

Θ(t) = blockdiag(ϕ(t),ϕ(t), · · · ,ϕ(t)). In other words,

the derivative of basis functions is not used. However, this

treatment requires a higher dimensional Θ(t), (i.e., 2BO ×

2O) and thus leads to a higher dimensional w ∈ R
2BO. In

contrast, if both basis functions and their derivatives (as

defined in (48)) are employed, we can obtain a compact

representation which essentially corresponds to a lower

dimensional w ∈ R
BO.

While the derivation presented in this section applies for a

time-driven case, it cannot be easily generalized to the case

of high-dimensional s. Unlike a straightforward approxima-

tion of ϕ̇(t) by using the finite difference method, for the

high-dimensional input s it is a non-trivial problem to esti-

mate ϕ̇(s) = ∂ϕ(s)
∂s

∂s
∂t unless we have an additional model

which can reflect the dynamics between time t and the input

s. Due to the difficulty of estimating ϕ̇(s), an alternative way

to encode [ξT(s) ξ̇
T

(s)]T with high-dimensional input s is

to use (2) with an extended matrix Θ(s) ∈ R
2BO×2O, i.e.,

Θ(s) = blockdiag(ϕ(s),ϕ(s), · · · ,ϕ(s)).

4.2 Time-scale Modulation of Time-driven

KMP

In the context of time-driven trajectories, new tasks may

demand to speed up or slow down the robot movement,

and hence the trajectory modulation on the time-scale

is required. Let us denote the movement duration of

demonstrations and the time length of the corresponding

reference trajectory as tN . To generate adapted trajectories

with new durations tD, we define a monotonic increasing

function τ : [0, tD] 7→ [0, tN ], which is a transformation of

time. This straightforward solution implies that for any query

t∗ ∈ [0, tD], we use τ(t∗) as the input for the prediction

through KMP, and thus trajectories can be modulated as

faster or slower (see also Ijspeert et al. (2013); Paraschos et

al. (2013) for the modulations in time-scale, where the time

modulation is called the phase transformation.).

5 Evaluations of the Approach

In this section, several examples are used to evaluate

KMP. We first consider the adaptation of trajectories with

via-points/end-points as well as the mixture of multiple

trajectories (Section 5.1), where comparisons with ProMP

are shown. Then, we evaluate the extrapolation capabilities

of local-KMPs (Section 5.2). Subsequently, we validate

the approach in two different scenarios using real robots.

First, we study a novel application of robot motion
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(a) Evaluation 1: trajectory modulations with one start-point and one via-point.

(b) Evaluation 2: trajectory modulations with one via-point and one end-point.

(c) Evaluation 3: Superposition of two probabilistic reference trajectories.

Figure 3. Different cases of trajectory modulation using KMP and ProMP. (a)–(b) show trajectories (red and green curves) that

are adapted to go through different desired positions and velocities (depicted by circles). The gray curves represent the mean

of probabilistic reference trajectories for KMP and ProMP, while the shaded areas depict the standard deviation. (c) shows the

superposition of various reference trajectories, where the dashed red and green curves correspond to the adapted trajectories in (a)

and (b), respectively. The resulting trajectory is displayed in solid pink curve.
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adaptation by adding via-points according to sensed forces

at the end-effector of the robot (Section 5.3). Second, we

focus on a human-robot collaboration scenario, namely,

the collaborative hand task, where a 6-dimensional input

is considered in the learning and adaptation problems

(Section 5.4).

5.1 Trajectory Modulation and Superposition

We first evaluate our approach using five trajectories of

the handwritten letter ‘G’‖, as shown in Figure 1(a)-(b).

These demonstrations are encoded by GMM with input

t and output ξ(t) being the 2-D position [x(t) y(t)]T.

Subsequently, a probabilistic reference trajectory is retrieved

through GMR, as depicted in Figure 1(c)–(d), where the

position values from the reference trajectory are shown.

This probabilistic reference trajectory along with the input

is used to initialize KMP as described in Section 4.1, which

uses a Gaussian kernel k(ti, tj) = exp(−ℓ(ti − tj)
2) with

hyperparameter ℓ > 0. The relevant parameters for KMP

are set as ℓ = 4, λ = 0.5 and λc = 60. The reproduction of

KMP is provided in Figure 1(d), showing that the resulting

distribution (pink color) resembles the GMR-based retrieved

distribution (green color).

For comparison purposes, ProMP is evaluated as well,

where 21 Gaussian basis functions chosen empirically are

used. For each demonstration, we employ the regularized

least squares method to estimate the weights w ∈ R
42 of the

corresponding basis functions. Subsequently, the probability

distribution P(µw,Σw) that is computed through maximum

likelihood estimation (Paraschos et al. 2015) is used to

initialize ProMP. Due to the number of demonstrations

being significantly lower than the dimension of w, a

diagonal regularized term is added to Σw to avoid singular

estimations as well as singularity of matrix inverse operation

in trajectory adaptations∗∗. For the sake of clear observation,

the reproduced trajectories through KMP and ProMP are

displayed in Figure 2.

Figure 3 displays different trajectory modulation cases

using KMP and ProMP. We test not only cases in which

new requirements arise in the form of via-points and start-

points/end-points, but also the scenario of mixing different

reference trajectories. It can be observed from Figure 3(a)–

(b) that both KMP and ProMP successfully generate

trajectories that fulfill the new requirements, however, KMP

generates smoother trajectories. A quantitative comparison

over smoothness is summarized in Table 2, where the

position smoothness cp is defined as cp = 1
N

∑N−1
t=1 (ξt+1 −

ξt)
T(ξt+1 − ξt), and velocity smoothness cv is computed

similarly. For the case of trajectory superposition in

Figure 3(c), we consider the adapted trajectories in

Figure 3(a) and (b) as candidate reference trajectories

and assign them with the priorities γt,1 = exp(−t) and

γt,2 = 1− exp(−t), respectively. Note that γt,1 and γt,2
correspond to monotonically decreasing and increasing

functions, respectively. As depicted in Figure 3(c), the mixed

trajectory (solid pink curve) indeed switches from the first to

the second reference trajectory.

Despite KMP and ProMP can adapt trajectories towards

various desired points, one key difference between them

lies on the determination of basis functions. In contrast to

Table 2. Cost Values of Trajectory Smoothness

KMP ProMP KMP ProMP

Evaluation 1 Evaluation 1 Evaluation 2 Evaluation 2

cp 0.019 0.025 0.019 0.026

cv 0.431 0.976 0.484 0.823

ProMP that requires explicit basis functions, KMP is a non-

parametric method that does not depend on explicit basis

functions, given that the probabilistic reference trajectory

is provided beforehand. This difference proves to be

substantially crucial for tasks where the robot actions are

driven by a high-dimensional input. We will show this

effect in the collaborative hand task (Section 5.4) which

is associated with a 6-D input, where the implementation

of ProMP becomes difficult since a large number of basis

functions need to be defined.

5.2 Extrapolation with Local-KMPs

We evaluate the extrapolation capabilities of local-KMPs

in an application with a new set of desired points (i.e.,

start-, via- and end-points) lying far away from the area

covered by the original demonstrations, in contrast to

the experiment reported in Section 5.1. Note that the

original ProMP (Paraschos et al. (2013)) has a limited

extrapolation capability (see Havoutis and Calinon (2017)

for a discussion). Thus, we only evaluate our approach here.

We study a collaborative object transportation task, where

the robot assists a human to carry an object from a starting

point to an ending location. Five demonstrations in the robot

base frame are used for the training of local-KMPs (see

Figure 4(a)). We consider time t as the input, and the 3-D

Cartesian position [x(t) y(t) z(t)]T of the robot end-effector

as the output ξ(t). For the implementation of local-KMPs,

we define two frames located at the initial and the final

locations of the transportation trajectories (as depicted in

Figure 4(b)–(c)), similarly to Rozo et al. (2015), which are

then used to extract the local motion patterns.

We consider two extrapolation tests, where the starting

and ending locations are different from the demonstrated

ones. In the first test, we study the transportation from

ps=[−0.2 0.2 0.2]T to pe=[−0.15 0.8 0.1]T. In the second

test, we evaluate the extrapolation with ps=[0.2 −0.3 0.1]T

and pe=[0.25 0.5 0.05]T. Note that all locations are

described with respect to the robot base frame. In addition to

the desired starting and ending locations in the transportation

task, we also introduce additional position constraints which

require the robot passing through two via-points (plotted by

circles in Figure 5). The extrapolation of local-KMPs for

these new situations is achieved according to Algorithm 2,

where the Gaussian kernel is used. For each test, the local

frames are set as A(1)=A(2)=I3, b(1) = ps and b
(2) =pe.

The related KMP parameters are ℓ = 0.5 and λ = λc = 10.

Figure 5 shows that local-KMPs successfully extrapolate

to new frame locations and lead the robot to go through

various new desired points while maintaining the shape of

the demonstrated trajectories.

‖These trajectories are obtained from Calinon and Lee (2017).
∗∗The importance of regularization is discussed in Paraschos et al. (2018).
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(a) (b) (c)

Figure 4. Demonstrations of the transportation task as well as GMM modeling of local trajectories. (a) shows the demonstrated

trajectories (plotted by purple curves), where gray curves correspond to the projection of demonstrated trajectories into the x–y

plane. ‘∗’ and ‘+’ denote the starting and ending points of trajectories, respectively. (b)-(c) depict GMM modeling of local trajectories,

where local trajectories are obtained by projecting demonstrations into two local frames, respectively.

Figure 5. Extrapolation evaluations of local-KMPs for new starting and ending locations in the transportation task. (a) shows various

trajectories in 3-D view, while (b) and (c) display projections of trajectories from (a) into x− z plane and y − z plane, respectively.

The purple curves represent demonstrated trajectories, while the red and yellow trajectories show the extrapolation cases. Circles

represent desired points describing additional task requirements. Squares denote desired starting and ending locations of the

transportation task.

Figure 6. Kinesthetic teaching of the reaching task on the KUKA

robot, where demonstrations comprising time and end-effector

Cartesian position are collected. The green arrow shows the

motion direction of the robot.

Note that the environment might drastically change from

demonstrations to final execution, so the capability of

modulating the demonstrated trajectories to go through new

points is important in many applications. In this sense, local-

KMPs prove superior to other local-frame approaches such

as those exploited in Rozo et al. (2015); Calinon (2016),

which do not consider trajectory modulation.

5.3 Force-based Trajectory Adaptation

Through kinesthetic teaching, humans are able to provide

the robot with initial feasible trajectories. However, this

procedure does not account for unpredicted situations.

Figure 7. GMM modeling of demonstrations for the force-based

adaptation task, where the green curves represent demonstrated

trajectories and ellipses depict Gaussian components.

For instance, when the robot is moving towards a target,

undesired circumstances such as obstacles occupying the

robot workspace might appear, which requires the robot

to avoid possible collisions. Since humans have reliable

reactions over dynamic environments, we here propose to
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Figure 8. Snapshots of the force-based trajectory adaptations, where the force exerted by the human is used to determine the

via-points for the robot, which ensures collision avoidance. (a) and (f) correspond to the initial and final states of the robot, where

circles depict the initial and final positions, respectively. Figures (b)–(e) show human interactions with the green arrows depicting the

directions of corrective force.

Figure 9. Top row : the desired trajectory (generated by KMP) and the real robot trajectory, where ‘∗’ represents the force-based

desired points and ‘+’ corresponds to the initial and final locations for the robot. For comparison, we also provide the desired trajectory

predicted by KMP without obstacles (i.e., without human intervention). The shaded areas show the regulation durations for various

human interventions. Bottom row : the force measured at the end-effector of the KUKA robot.

use the human supervision to adapt the robot trajectory when

the environment changes. In particular, we use a force sensor

installed at the end-effector of the robot in order to measure

corrective forces exerted by the human.

We treat the force-based adaptation problem under the

KMP framework by defining new via-points as a function

of the sensed forces. Whenever the robot is about to collide

with the obstacle, the user interacts physically with the end-

effector and applies a corrective force. This force is used

to determine a desired via-point which the robot needs to

pass through in order to avoid the obstacle. By updating

the reference database using this obtained via-point through

(34), KMP can generate an adapted trajectory that fulfills the

via-point constraint.

For the human interaction at time t, given the robot

Cartesian position pt and the sensed force Ft, the

first desired datapoint is defined as: t̄1 = t+ δt and

p̄1 = pt +KfFt, where δt > 0 controls the regulation time

and Kf > 0 determines the adaptation proportion for the

robot trajectory. In order to avoid undesired trajectory

modulations caused by the force sensor noise, we introduce

a force threshold Fthre and add the new force-based via-

point to the reference trajectory only when ||Ft|| > Fthre.

Note that the adapted trajectory might be far away from the

previous planned trajectory due to the new via-point, we

hence consider adding pt as the second desired point so as to

ensure a smooth trajectory for the robot. Doing so, for each

interaction, we define the second desired point as t̄2 = t and

p̄2 = pt.

In order to evaluate the adaptation capability of KMP,

we consider a reaching task where unpredicted obstacles

will intersect the robot movement path. First, we collect six

demonstrations (as depicted in Figure 6) comprising time

input t and output ξ(t) being the 3-D Cartesian position

[x(t) y(t) z(t)]T. Note that obstacles are not placed in the

training phase. The collected data is fitted using GMM

(plotted in Figure 7) so as to retrieve a reference database,

which is subsequently used to initialize KMP. Then, during

the evaluation phase, two obstacles whose locations intersect

the robot path are placed on the table, as shown in Figure 8.

In addition to the via-points that will be added through

physical interaction, we add the initial and target locations

for the robot as desired points beforehand, where the initial

location corresponds to the robot position before starting to

move. The relevant parameters are Kf=0.006I3, δt = 1s,

Fthre = 10N , ℓ = 0.15 and λ = λc = 0.3.

The trajectory that is generated by KMP according to

various desired points as well as the real robot trajectory
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Figure 10. The collaborative hand task in the soldering environment with the Barrett WAM robot. (a) shows the initial states of the

user hands and the robot end-effector (the collaborative hand in this experiment). 1©– 4© separately correspond to the circuit board

(held by the robot), magnifying glass, soldering iron and solder. (b) corresponds to the handover of the circuit board. (c) shows the

robot grasping of the magnifying glass. (d) depicts the final scenario of the soldering task using both of the user hands and the robot

end-effector. Red, blue and green arrows depict the movement directions of the user left hand, right hand and the robot end-effector,

respectively.

(a)

Figure 11. Demonstrations for the collaborative hand task,

where the red and blue curves respectively correspond to the

user left and right hands, while the green curves represent the

demonstrated trajectories for the robot. The ‘∗’ and ‘+’ mark the

starting and ending points of various trajectories, respectively.

are depicted in Figure 9. We can observe that for each

obstacle the robot trajectory is adapted twice. In the first

two adaptations (around 8s and 11s), the corrective force

is dominant along the z direction, while in the last two

adaptations (around 17s and 20s), the force has a larger

component along the x and y directions. For all cases, KMP

successfully adapts the end-effector trajectory according to

the measured forces.

Note that, even without human interaction, the proposed

scheme can also help the robot replan its trajectory when

it touches the obstacles, where the collision force takes

the role of the human correction and guides the robot

to move away from the obstacles. Thus, with KMP the

robot is capable of autonomously adapting its trajectory

through low-impact collisions, whose tolerated force can be

regulated using Fthre. Supplementary material includes a

video of experiments using the human corrective force and

the obstacle collision force.

5.4 Collaborative Hand Task

So far the reported experiments have shown the perfor-

mances of KMP by learning various time-driven trajectories.

We now consider a different task which requires a 6-D

input, in particular a robot-assisted soldering scenario. As

shown in Figure 10, the task proceeds as follows: (1) the

robot needs to hand over a circuit board to the user at the

handover location ph (Figure 10(b)), where the left hand of

the user is used. (2) the user moves his left hand to place the

circuit board at the soldering location ps and simultaneously

moves his right hand towards the soldering iron and then

grasps it. Meanwhile, the robot is required to move towards

the magnifying glass and grasp it at the magnifying glass

location pg (Figure 10(c)). (3) the user moves his right hand

to the soldering location so as to repair the circuit board.

Meanwhile, the robot, holding the magnifying glass, moves

towards the soldering place in order to allow the user to

take a better look at the small components of the board

(Figure 10(d)).

Let us denote pHl , pHr and pR as positions of the

user left hand, right hand and robot end-effector (i.e.,

the “collaborative hand”), respectively. Since the robot

is required to react properly according to the user hand

positions, we formulate the collaborative hand task as the

prediction of the robot end-effector position according to

the user hand positions. In other words, in the prediction

problem we consider s = {pHl ,pHr} as the input (6-D) and

ξ(s) = pR as the output (3-D) .

Following the procedure illustrated in Figure 10, we

collect five demonstrations comprising {pHl,pHr,pR} for

training KMP, as shown in Figure 11. Note that the

teacher only gets involved in the training phase. We fit

the collected data using GMM, and subsequently extract

a probabilistic reference trajectory using GMR, where the

input for the probabilistic reference trajectory is sampled

from the marginal probability distribution P(s), since in this

scenario the exact input is unknown (unlike time t in previous

experiments). The Gaussian kernel is also employed in KMP,

whose hyperparameters are set to ℓ = 0.5 and λ = λc = 2.

Two evaluations are carried out to evaluate KMP in this

scenario. First, we employ the learned reference database

without adaptation so as to verify the reproduction ability of

KMP, as shown in Figure 12 (top row). The user left- and

right-hand trajectories as well as the real robot trajectory,

depicted in Figure 12 (top row), are plotted in Figure 13

(dotted curves), where the desired trajectory for robot end-

effector is generated by KMP. We can observe that KMP

maintains the shape of the demonstrated trajectories for the

robot while accomplishing the soldering task. Second, we

evaluate the adaptation capability of KMP by adjusting the

handover location ph, the magnifying glass location pg as

well as the soldering location ps, as illustrated in Figure 12

(bottom row). Note that these new locations are unseen in the
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Figure 12. Snapshots of reproduction and adaptation using KMP. Top row shows the reproduction case using the learned reference

database without adaptation. Bottom row displays the adaptation case using the new reference database which is updated using

three new desired points: new handover, magnifying glass and soldering locations depicted as dashed circles (notice the difference

with respect to the top row).

(a)

Figure 13. The reproduction (dotted curves) and adaptation

(solid curves) capabilities of KMP in the collaborative hand task,

where the user left-hand and right-hand trajectories (red and

blue curves) are used to retrieve the robot end-effector trajectory

(green curves).

demonstrations, thus we consider them as new via-point/end-

point constraints within the KMP framework.

To take the handover as an example, we can define a

via-point (associated with input) as {p̄Hl

1 , p̄Hr

1 , p̄R
1 }, where

p̄
Hl

1 = ph, p̄Hr

1 = pHr

ini and p̄R
1 = ph, which implies that

the robot should reach the new handover location ph when

the user left hand arrives at ph and the user right hand

stays at its initial position pHr

ini . Similarly, we can define

additional via- and end-points to ensure that the robot grasps

the magnifying glass at a new location pg and assists the user

at a new location ps. Thus, two via-points and one end-point

are used to update the original reference database according

to (34) so as to address the three adaptation situations.

Figure 13 shows the adaptations of the robot trajectory (green

solid curve) in accordance with the user hand trajectories (red

and blue solid curves). It can be seen that the robot trajectory

is indeed modulated towards the new handover, magnifying

glass and soldering locations, showing the capability of KMP

to adapt trajectories associated with high-dimensional inputs.

It is worth pointing out that the entire soldering task

is accomplished by a single KMP without any trajectory

segmentation for different subtasks, thus allowing for a

straightforward learning of several sequential subtasks.

Moreover, KMP makes the adaptation of learned skills

associated with high-dimensional inputs feasible. Also,

KMP is driven by the user hand positions, which allows

for slower/faster hand movements since the prediction of

KMP does not depend on time, hence alleviating the

typical problem of time-alignment (Amor et al. 2014)

and phase estimation (Maeda et al. 2017) in human-

robot collaborations. For details on the collaborative hand

experiments, please refer to the video in the supplementary

material.

6 Related Work

In light of the reliable temporal and spatial generalization,

DMP (Ijspeert et al. 2013) has achieved remarkable success

in a vast range of applications. In addition, many variants of

DMP have been developed for specific circumstances, such

as stylistic DMP (Matsubara et al. 2010), task-parameterized

DMP (Pervez and Lee 2017), combined DMP (Pastor et al.

2009) and cooperative DMP (Gams et al. 2014). However,

due to the spring-damper dynamics, DMP converges to

the target position with zero velocity, which prevents its

application to cases with velocity requirements (e.g., the

striking/batting movement). Besides, DMP does not provide

a straightforward way to incorporate desired via-points.

By exploiting the properties of Gaussian distributions,

ProMP (Paraschos et al. 2013) allows for trajectory

adaptations with via-points and end-points simultaneously.

The similarities between DMP and ProMP lie on the fact that

both methods need the explicit definition of basis functions

and are aimed at learning time-driven trajectories. As a

consequence, when we encounter trajectories with high-

dimensional inputs (e.g., human hand position and posture in

human-robot collaboration scenarios), the selection of basis

functions in DMP and ProMP becomes difficult and thus

undesired.

Note that DMP (Amor et al. 2014) and ProMP (Maeda

et al. 2017; Ewerton et al. 2015) were applied in human-

robot collaboration scenarios, where human and robot

trajectories were encoded with time. When human actions

are adjusted with time, various algorithms are provided

to predict the corresponding robot motions with time.

Since human trajectories could be different (e.g., moving
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with faster/slower speeds) from the demonstrated ones,

additional time alignment or phase estimation is required

in order to synchronize human and robots. In contrast,

in our collaborative hand experiment, we explicitly take

the positions of the user’s two hands as the input, and,

subsequently, predict robot trajectories as the output, which

did not require any time-alignment process.

Differing from DMP and ProMP, GMM/GMR based

learning algorithms (Muhlig et al. 2009; Calinon et al.

2007) have been proven effective in encoding demonstrations

with high-dimensional inputs. However, the large number

of variables arising in GMM makes the re-optimization

of GMM expensive, which therefore prevents its use

in unstructured environments where robot adaptation

capabilities are imperative.

KMP provides several advantages compared to the afore-

mentioned works. Unlike GMM/GMR, KMP is capable of

adapting trajectories towards various via-points/end-points

without the optimization of high-dimensional hyperparam-

eters. Unlike DMP and ProMP, KMP alleviates the need

of explicit basis functions due to its kernel treatment, and

thus can be easily implemented for problems with high-

dimensional inputs and outputs.

It is noted that the training of DMP only needs a single

demonstration, while ProMP, GMM and KMP require a

set of trajectories. In contrast to the learning of a single

demonstration, the exploitation of multiple demonstrations

makes the extraction of probabilistic properties of human

skills possible. In this context, demonstrations have been

exploited using the covariance-weighted strategy, as in

trajectory-GMM (Calinon 2016), linear quadratic regulators

(LQR) (Rozo et al. 2015), movement similarity criterion

(Muhlig et al. 2009) and demonstration-guided trajectory

optimization (Osa et al. 2017). Note that the mean

minimization subproblem as formulated in (10) also uses the

covariance to weigh the cost, sharing the same spirit of the

aforementioned results.

Similarly to our approach, information theory has also

been exploited in different robot learning techniques. As

an effective way to measure the distance between two

probabilistic distributions, KL-divergence was exploited in

policy search (Peters et al. 2010; Kahn et al. 2017), trajectory

optimization (Levine and Abbeel 2014) and imitation

learning (Englert et al. 2013). In Englert et al. (2013) KL-

divergence was used to measure the difference between

the distributions of demonstrations and the predicted robot

trajectories (obtained from a control policy and a Gaussian

process forward model), and subsequently the probabilistic

inference for learning control (Deisenroth and Rasmussen

2011) was employed to iteratively minimize the KL-

divergence so as to find the optimal policy parameters.

It is noted that this KL-divergence formulation makes the

derivations of analytical solution intractable. In this article,

we formulate the trajectory matching problem as (5), which

allows us to separate the mean and covariance subproblems

and derive closed-form solutions for them separately.

Other related work is Gaussian process based probabilistic

inference (Dong et al. 2016; Rana et al. 2017). In Rana et al.

(2017), demonstrated trajectories were encoded by Gaussian

process as a prior, and subsequently additional constraints

(e.g., obstacle avoidance) were represented in the form of

likelihood. Through maximizing the posterior probability,

optimal trajectories were estimated. In comparison with

their work, we study imitation learning from an information

theory perspective. Specifically, we exploit the covariance

(i.e., variability) of demonstrations while in Dong et al.

(2016); Rana et al. (2017) the covariance relies on the input

distribution and thus the consistent or important features of

demonstrations are not exploited.

7 Discussion

While both KMP and ProMP (Paraschos et al. 2013)

learn the probabilistic properties of demonstrations, we

here discuss their similarities and possible shortcomings in

detail. For the KMP, imitation learning is formulated as

an optimization problem (Section 2.2.1), where the opti-

mal distribution N (µ∗
w,Σ

∗
w) of w is derived by mini-

mizing the information-loss between the parametric trajec-

tory and the demonstrations. Specifically, the mean mini-

mization subproblem (10) can be viewed as the problem

of maximizing the posterior
∏N

n=1 P(Θ(sn)
Tµw|µ̂n, Σ̂n).

In contrast, ProMP formulates the problem of imitation

learning as an estimation of the probability distribution

of movement pattern w (i.e., w ∼ N (µw,Σw)), which is

essentially equivalent to the maximization of the likeli-

hood
∏H

h=1

∏N
n=1 P(ξn,h|Θ(sn)

Tµw,Θ(sn)
TΣwΘ(sn)).

To solve this maximization problem, the regularized least-

squares is first used for each demonstration so as to estimate

its corresponding movement pattern vector (Paraschos et al.

2015), where basis functions are used to fit these demonstra-

tions. Subsequently, using the movement patterns extracted

from demonstrations, the distribution P(w) is determined by

using the maximum likelihood estimation.

A direct problem in ProMP is the estimation of P(w).
If the dimension of w (i.e., BO) is too high compared

to the number of demonstrations H , a singular covariance

Σw might appear. For this reason, learning movements with

ProMP typically requires a high number of demonstrations.

In contrast, KMP needs a probabilistic reference trajectory,

which is derived from the joint probability distribution

of {s, ξ} that is typically characterized by a lower

dimensionality (i.e., I +O). Another problem in ProMP

comes up with demonstrations with high dimensional input

s, where the number of basis functions increases with

the dimension of the input, which is the typical curse of

dimensionality (see also the discussion on the disadvantages

of fixed basis functions in Bishop (2006)). In contrast, KMP

is combined with a kernel function, alleviating the need

for basis functions, while inheriting all the potential and

expressiveness of kernel-based methods.

In this paper we mainly focus on robot skill learning at

the level of trajectory generation. From an implementation

perspective, we could employ various optimal controllers,

such as LQR and model predictive control (MPC), to

drive robots to execute the planned trajectories from

KMP. For instance, as KMP predicts mean and covariance

of trajectory points simultaneously, we may employ the

minimal intervention control scheme in Medina et al.

(2012) and set the mean and the inverse of covariance

as the desired reference trajectory and the weight matrix

for tracking errors in LQR, respectively. In this case, the
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tracking performance is governed by trajectory covariances.

Specifically, small covariances require small tracking errors

while large covariances allow for large errors.

There are several possible extensions for KMP. First,

similarly to most regression algorithms, the computation

complexity of KMP increases with the size of training

data (i.e., the reference database in our case). One possible

solution could be the use of partial training data so as to

build a sparse model (Bishop 2006). Second, even though we

have shown the capability of KMP on trajectory adaptation,

the choice of desired points is rather empirical. For more

complicated situations where we have no (or minor) prior

information, the search of optimal desired points could be

useful. To address this problem, RL algorithms could be

employed to find appropriate new via-points that fulfill the

relevant task requirements. Finally, the choice of kernel

in KMP is crucial. In our evaluations, the frequently

used Gaussian kernel was applied. Generally, it is non-

trivial to determine the optimal kernel beforehand. One

typical solution is to choose the kernel according to task

requirements at hand (in our case the kernel should depend

on the nature of demonstrations). Since various kernels have

been developed and many insights are provided (Hofmann

et al. 2008), it is promising to combine these results with

imitation learning so that an effective way to kernelize

movement trajectories can be derived.

8 Conclusions

We have proposed a novel formulation of robot movement

primitives that incorporates a kernel-based treatment into

the process of minimizing the information-loss in imitation

learning. Our approach KMP is capable of preserving the

probabilistic properties of human demonstrations, adapting

trajectories to different unseen situations described by

new temporal or spatial requirements and mixing different

trajectories. The proposed method was extended to deal

with local frames, which provides the robot with reliable

extrapolation capabilities. Since KMP is essentially a

kernel-based non-parametric approach given a probabilistic

reference trajectory, it overcomes several limitations of state-

of-the-art methods, being able to learn complex and high

dimensional trajectories. Through extensive evaluations in

simulations and real robotic systems, we showed that KMP

performs well in a wide range of applications such as time-

driven movements and human-robot collaboration scenarios.
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Appendices

A Gaussian Mixture Regression (GMR)

Let us write the joint probability distribution P(s, ξ) as[
s

ξ

]
∼
∑C

c=1 πcN (µc,Σc), and decompose the mean µc

and covariance Σc of the c-th Gaussian component as

µc =

[
µs

c

µξ
c

]
and Σc =

[
Σss

c Σsξ
c

Σξs
c Σξξ

c

]
, (51)

where the superscripts s and ξ correspond to the input and

output variables, respectively.

For a query input sn, the mean of its corresponding output

is computed by

µ̂n = E(ξ̂n|sn) =
C∑

c=1

hc(sn)µc(sn) (52)

with hc(sn) =
πcN (sn|µ

s
c,Σ

ss
c )∑

C
k=1

πkN (sn|µs
k
,Σss

k
)

and µc(sn) =

µξ
c +Σξs

c (Σss
c )−1(sn − µs

c). The corresponding

conditional covariance is

Σ̂n = D(ξ̂n|sn) = E(ξ̂nξ̂
T

n|sn)− E(ξ̂n|sn)E
T(ξ̂n|sn).

(53)

with E(ξ̂nξ̂
T

n|sn)=
∑C

c=1hc(sn)
(
Σ̄c+µc(sn)µc(sn)

T
)

and

Σ̄c = Σξξ
c −Σξs

c (Σss
c )−1Σsξ

c . Thus, the conditional distri-

bution ξ̂n|sn ∼ N (µ̂n, Σ̂n) is determined.
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B Interpretation of Mean Minimization

Problem

On the basis of the definition of multivariate Gaussian

distribution, we have

N∏

n=1

P(Θ(sn)
Tµw|µ̂n, Σ̂n) =

N∏

n=1

1

(2π)O/2|Σ̂n|1/2

exp

{
−
1

2
(Θ(sn)

Tµw − µ̂n)
TΣ̂

−1

n (Θ(sn)
Tµw − µ̂n)

}
,

(54)

which can be further simplified using the logarithmic

transformation, yielding

N∑

n=1

logP(Θ(sn)
Tµw|µ̂n, Σ̂n)=

N∑

n=1

−
1

2
(Θ(sn)

Tµw−µ̂n)
T

Σ̂
−1

n (Θ(sn)
Tµw − µ̂n) + constant.

(55)

Thus, the mean minimization problem described by (10) can

be interpreted as the maximization of the posterior defined in

(54),

C Proof of Weighted Mean Minimization

Subproblem

The derivative of (37) with respect to µw can be computed

as

∂JS
ini(µw)

∂µw

=
N∑

n=1

L∑

l=1

2

{
Θ(sn)

(
Σ̂n,l

γn,l

)−1

ΘT(sn)µw

−Θ(sn)

(
Σ̂n,l

γn,l

)−1

µ̂n,l

}

=

N∑

n=1

2Θ(sn)

{ L∑

l=1

(
Σ̂n,l

γn,l

)−1}
ΘT(sn)µw

−
N∑

n=1

2Θ(sn)

{ L∑

l=1

(
Σ̂n,l

γn,l

)−1

µ̂n,l

}
.

(56)

Using the definitions (41) and (42), we have

∂JS
ini(µw)

∂µw

=

N∑

n=1

2Θ(sn)Σ
S
n

−1
ΘT(sn)µw

−
N∑

n=1

2Θ(sn)Σ
S
n

−1
µS

n =
∂J̃S

ini(µw)

∂µw

.

(57)

Thus, we conclude that the minimization problem in (37) is

equivalent to the problem described by (39).

D Proof of Weighted Variance Minimization

Subproblem

The derivative of (38) with respect to Σw is

∂JS
ini(Σw)

∂Σw
=

N∑

n=1

L∑

l=1

{
−γn,lΣ

−1
w +γn,lΘ(sn)Σ̂

−1

n,lΘ(sn)
T

}

=

N∑

n=1

{
L∑

l=1

−γn,lΣ
−1
w

}
+

N∑

n=1

Θ(sn)

{ L∑

l=1

(
Σ̂n,l

γn,l

)−1}
Θ(sn)

T

=

N∑

n=1

{−Σ−1
w }+

N∑

n=1

Θ(sn)Σ
S
n

−1
Θ(sn)

T

=
∂J̃S

ini(Σw)

∂Σw
,

(58)

so we have proved that the minimization problem in (38) has

the same solution as the problem defined in (40).
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