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10 Precis 
11 
12 

A point-of-care oral cytology tool was developed for non-invasive detection and monitoring of potentially 

14 
malignant oral lesions. Distributions of cell phenotypes identified by machine learning and a cytology-on-a- 

15 
16 chip approach provide useful information in the assessment of oral lesions with improved interpretability, 
17 
18 calibration, and generalizability relative to conventional methods. 
19 
20 

21 Abstract 
22 
23 

24 BACKGROUND: Effective detection and monitoring of potentially malignant oral lesions (PMOL) are 

25 

26 critical to identifying early stage cancer and improving outcomes. In this study, the authors describe 

27 cytopathology tools including machine learning algorithms, clinical algorithms, and test reports developed 

29 
to assist pathologists and clinicians with PMOL evaluation. METHODS: Data were acquired from a multi- 

30 
31 

site clinical validation study of 999 subjects with PMOLs and oral squamous cell carcinoma (OSCC) using 
32 
33 a cytology-on-a-chip approach. A machine learning model was trained to recognize and quantify the 
34 
35 distributions of four cell phenotypes. A least absolute shrinkage and selection operator (lasso) logistic 
36 
37 regression model was trained to distinguish PMOLs and cancer across a spectrum of histopathologic 
38 
39 diagnoses ranging from benign, to increasing grades of oral epithelial dysplasia (OED), to OSCC using 
40 

41 demographics, lesion characteristics, and cell phenotypes. Cytopathology software was developed to assist 
42 

43 pathologists in reviewing brush cytology test results, including high-content cell analyses, data visualization 
44 

45 tools, and results reporting. RESULTS: Cell phenotypes were accurately determined through an automated 
46 

47 cytological assay and machine learning approach (99.3% accuracy). Significant differences in cell 

48 

49 phenotype distributions across diagnostic categories were found in three phenotypes (Type 1 ‘mature 

50 squamous’, Type 2 ‘small round’, and Type 3 ‘leukocytes’). The clinical algorithms resulted in acceptable 
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3 with the potential to facilitate screening and longitudinal monitoring in primary, secondary, and tertiary 
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5 clinical care settings. 
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Introduction 
5 
6 Cancers of the lip, oral cavity, and pharyngeal subsites are estimated to affect over 500,000 people 
7 
8 globally each year.1  The National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 
9 
10 program estimates 53,000 new cases and 10,860 deaths attributed to oral and pharyngeal cancer (OPC) 
11 
12 in 2019 in the US alone, of which approximately 50% involve oral cavity subsites. Collectively, OPCs 

13 

14 represent approximately 3% of all cancers.2 Approximately two-thirds of OPCs are diagnosed at Stage III 
15 

16 or IV when the 5-year survival rate is just 45% and 32%, respectively.3 For the remaining third of OPCs 
17 

18 detected at early stages,4 survival increases to 84%.2 Despite steady improvements in overall survival rates 

19 

20 for OPC over the last four decades, identifying OPCs at an early stage remains a challenge for oral health 

21 care providers.5 The current diagnostic paradigm of procuring a biopsy is based on remote lab services 

23 
which can take days/weeks to provide results, and this further prolongs anxiety for patients. A point-of-care 

25 
(POC) solution could provide immediate feedback within the same visit. Thus, there is a strong need for 

26 
27 technology-driven solutions that can precisely and rapidly diagnose the entire spectrum of oral epithelial 
28 
29 dysplasia (OED) and oral squamous cell carcinoma (OSCC) using minimally invasive sampling at the POC. 
30 
31 A successful diagnostic adjunctive test for primary care settings should be able to discriminate 
32 
33 potentially malignant oral lesions (PMOLs) that are at “risk” (i.e., malignant lesions or those with an elevated 
34 
35 risk for undergoing malignant transformation) from more common benign lesions with no malignant 

36 

37 potential, thus improving the referral efficiency to secondary or tertiary care (e.g., reducing over-referral of 
38 

39 patients with benign lesions and improving the early identification and prompt referral of malignant or high- 
40 

41 grade dysplastic PMOLs for oncologic care). Numerous adjunctive tests are available to assist in the 

42 

43 diagnosis of PMOLs. In a meta-analysis of oral cancer adjuncts, vital staining and visualization adjuncts 

44 (e.g., autofluorescence and tissue reflectance) demonstrated insufficient accuracy to be recommended for 

46 
use as lesion triage tools by general dentists.6 Cytology, however, has demonstrated greater sensitivity and 

48 
specificity  relative  to  the  other  adjuncts,  suggesting  its  potential  as  a  surrogate  for  gold-standard 

49 
50 histopathology. This evidence to support the accuracy of cytology is largely based on accuracy studies 
51 
52 performed in secondary and tertiary care settings. Although cytology is unable to replace histopathologic 
53 
54 diagnosis based on tissue architecture, this relatively inexpensive, easy to perform, and minimally-invasive 
55 
56 method may be useful for triaging lesions in any setting: primary care settings such as a dental office, low- 
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2 
3 resource/remote settings, and secondary/tertiary settings. Incisional biopsy followed by histopathologic 
4 
5 examination represents the current standard of care for diagnosing PMOLs. However, incisional biopsy of 
6 
7 PMOLs, particularly in those that are large non-homogeneous leukoplakias, leads to underestimation of the 
8 

9 severity of OED up to 30% of the time because the biopsy sample (typically 5 mm in diameter) may not be 
10 

11 representative of the variable pathology across the field of the entire PMOL.7 Brush cytology could enable 
12 

13 a wider sampling of PMOLs that encompass larger areas or are multifocal with the potential to reduce 

14 

15 sampling errors encountered with incisional biopsies. 

16 

17 Previously, we have demonstrated the conceptual basis and the efficacy of chip-based cell capture, 

18 multispectral fluorescence measurements, and single-cell analysis approaches yielding high content 

20 
diagnostic information related to oral lesions.8-10 This compact and integrated lesion diagnostic adjunct 

21 
22 approach has been studied previously through a multi-site clinical validation effort that has led to the 
23 
24 development of one of the largest oral cytology databases ever assembled for PMOLs.11,12 These efforts 
25 
26 included the development of an “enhanced gold standard” adjudication process12 that was used to correlate 
27 
28 brush cytology measurements with six levels of histopathological diagnosis, ranging from benign, to OED, 
29 
30 to OSCC. The same approach showed strong promise for OSCC surveillance in Fanconi Anemia patients13 

31 

32 and for the development of a cytology based numerical risk index for cancer progression.14 Overall, these 
33 

34 past efforts have revealed that microfluidic-based cell capture systems with integrated imaging and 
35 

36 embedded diagnostic algorithms can yield diagnostic accuracies that rival and exceed the capabilities of 

37 

38 previously developed adjunct devices. These tools were developed previously to serve as adjunctive aids 

39 

40 capable of distinguishing between high risk and low risk oral lesions with the goal of improving the pipeline 

41 of referrals from primary care settings to secondary and tertiary treatment centers. Thus, these models 

43 
were intended for assisting primary care providers in making binary referral decisions and considered 

44 
45 hundreds of complicated image-based cytomorphometric features with minimal clinical interpretability (i.e., 
46 
47 “black box”). 
48 
49 This manuscript targets the development of a Point of Care Oral Cytology Tool (POCOCT), the first 
50 
51 precision oncology technology capable of high content cell analysis for near patient testing. The POCOCT 
52 
53 platform comprises a minimally invasive brush cytology test kit, disposable assay cartridge, instrument, 
54 

55 clinical algorithms, and cloud-based software services that automate the quantification and analysis of 

56 
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1 

2 
3 cellular and molecular signatures of dysplasia with results available in a matter of minutes as compared to 
4 
5 days for traditional labor intensive lab-based pathology methods. This paper features the development of 
6 
7 new diagnostic models using the same database described above with the goal of greatly simplifying the 
8 

9 diagnostic  algorithms  and  their  interpretation  through  the  classification  and  quantification  of cellular 
10 

11 phenotypes, resulting in more informative and transparent models for cytopathologists. Likewise, this work 
12 

13 explores the utility of cell phenotype identification through machine learning, their implementation in 

14 

15 diagnostic models with interpretable predictors and responses, and the practical application of these 

16 

17 software tools in a cytopathology service. 

18 
19 Materials and Methods 
21 
22 Oral Cytology Data 
23 
24 Data used in this study originated from the 999-patient multisite prospective non-interventional 
25 

26 study evaluating the cytology-on-a-chip system for the measurement of cytological parameters on brush 
27 

28 cytology samples to assist in the diagnosis of PMOL.11,12 Briefly, both histopathological and brush 
29 

30 cytological samples for 714 subjects from three patient groups were measured: (1) subjects with PMOL 

31 

32 who underwent scalpel biopsy as part of the standard of care for microscopic diagnosis, (2) subjects with 

33 recently  diagnosed  malignant  lesions,  and  (3)  healthy  volunteers  without  lesions.  Histopathological 

35 
assessment of scalpel biopsy specimens classified lesions into six categories (benign, mild-, moderate- or 

37 
severe-dysplasia,  carcinoma-in-situ,  and  OSCC),  including  healthy  controls  without  lesions.  While 

38 
39 traditionally the grading of OED has been considered subjective and lacking intra- and inter-observer 
40 
41 reproducibility,15,16 this new study implemented an “enhanced gold standard” adjudication.12 Here, two 
42 
43 adjacent serial histologic sections were independently scored by two pathologists. In the event that the 
44 
45 pathologists disagreed, a third independent adjudicating pathologist reviewed both sections. If the 
46 
47 adjudicator did not agree with either of the initial two pathologists, a third stage consensus review was 
48 

49 conducted to attain a final diagnosis. This “enhanced gold standard” process was able to achieve 100% 
50 

51 consensus agreement compared to an initial pre-adjudication 69.9% agreement rate. 
52 

53 Brush cytology specimens were collected and processed using protocols published previously.11,12 

54 

55 Cytopathological assessment of brush cytology specimens implemented a cytology-on-a-chip approach 

56 

57 
58 8 

59 
60 
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1 

2 
3 which measured morphological and intensity-based cell metrics as well as the expression of six molecular 
4 
5 biomarkers (αvβ6, EGFR, CD147, McM2, Geminin, and Ki67), resulting in a total of 13 million cells analyzed 
6 
7 with over 150 image-based parameters. The molecular biomarkers were selected based on their capacity 
8 

9 to distinguish benign, dysplastic, and malignant oral epithelial cells through prior immunohistochemistry 
10 

11 studies.9,17,18 Specific details on the molecular biomarker selection, patient characteristics, sample 
12 

13 collection and processing, cytology assay, and cytological parameters were published previously11 and are 

14 

15 summarized in the Supplemental Methods. 

16 
17 

18 Cell Identification Model Training and Validation 

19 A cell phenotype classification model was explored for its ability to discriminate and quantitate the 

21 
frequency and distributions of four cell phenotypes: Type 1: cells presenting as polygonal in shape with a 

22 
23 low nuclear-cytoplasmic ratio (NC ratio) which represent mature squamous epithelial cells; Type 2: cells 
24 
25 presenting as small round cells representing immature parabasal cells; Type 3: cells presenting as 
26 
27 mononuclear leukocytes; Type 4: cells represented by lone (naked) nuclei without cell membrane and 
28 
29 cytoplasm. To recognize these cell types, a machine learning algorithm was trained on 144 cellular/nuclear 
30 
31 features from single-cell analyses, including morphological and intensity-based measurements. Prior to 
32 

33 model development, principal component analysis (PCA) was performed on the training set. The PCA 
34 

35 method is an unsupervised statistical learning technique for exploratory data analysis which improves data 
36 

37 visualization by reducing the dimensionality of complex datasets19 and has been used for phenotypic 

38 

39 identification in flow cytometric data.20 Detailed methods for the training and validation of the cell 

40 

41 identification model are provided in the Supplemental Methods. 

42 

43 
Numerical Index and Diagnostic Models for Assessing PMOL 

45 
A numerical index was developed for the purpose of discriminating benign vs. dysplasia/malignant 

46 
47 lesions (OED-spectrum model 2|3). Detailed methods for the training and validation of the numerical index 
48 
49 and detailed definition of predictors are provided in the Supplemental Methods. Briefly, subjects were 
50 
51 dichotomized into “case” and “non-case” outcomes according to their lesion determination (non-case for 
52 
53 benign lesions and case for [mild, moderate, severe] dysplasia and malignant lesions). Due to relatively 
54 
55 few numbers of moderate and severe dysplasia patients (total of 21), these lesion determinations were 

56 
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1 

2 
3 combined. Lasso logistic regression was selected for its ability to reduce the number of predictors in high- 
4 
5 dimensional datasets to improve prediction performance and generalizability.21-24 Non-zero lasso logistic 
6 
7 regression coefficients were retained for the following predictors: percentage of non-mature squamous 
8 

9 cells, percentage of small round cells, percentage of leukocytes, age, sex, smoking pack years, lesion major 
10 

11 axis diameter, clinical impression of lichen planus, and lesion color (red, white, or red/white). Diagnostic 
12 

13 performance was characterized by area under the curve (AUC), sensitivity, and specificity. Median 

14 

15 numerical indices were compared for each diagnostic classification using a two-sided Wilcoxon rank sum 

16 

17 test at a significance level of p = 0.05. Internal calibration was performed by sorting and grouping the 

18 predicted  responses  (i.e.,  numerical  index)  into  deciles  and  measuring  the  observed  proportions of 

20 
dysplasia/malignant lesions in each decile. The Hosmer-Lemeshow goodness of fit statistic was used to 

21 
22 assess the model fit.21 

23 
24 Following this same method, diagnostic algorithms for mild vs. moderate dysplasia (OED-spectrum 
25 
26 model 3|4), low vs. high risk (4|4), moderate vs. severe dysplasia (4|5), healthy control (no lesion) vs. 
27 
28 malignant (0|6), and benign vs. malignant (2|6) were also developed, and AUC, sensitivity, and specificity 
29 
30 were reported as mean and 95% confidence interval values for the cross-validated test set. 

31 
32 

33 Cytopathology Software 
34 

35 Measurements of individual cells, such as morphometric appearance and biomarker staining 
36 

37 intensity, were recorded using the open-source software CellProfiler.25 All model development and data 

38 

39 analyses were completed with MATLAB R2017b (MathWorks, Natick, MA, USA) software. A graphical user 

40 

41 interface for visualizing cytopathology results was developed in MATLAB R2017b. The results summary 

42 report tool was developed with Python 3.6.3. Figures of the cytopathology software interface and results 

44 
summary were compiled from a test on the integrated POCOCT instrument. 

45 
46 Level of Integration 
47 
48 Data originating from our 999-patient NIH Grand Opportunity (GO) study and used in the cell 
49 
50 identification and diagnostic models were collected using non-integrated cytology-on-a-chip flow cell 
51 
52 prototypes, syringe pumps, research microscope stations, and a collection of commercial and open-source 
53 
54 software packages (see Supplemental Methods for more details).11 More recently, we have integrated the 
55 

56 cytology-on-a-chip technology into a POC device comprising integrated instrument, microfluidic cartridges 
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nuclei’ represented by lone or naked nuclei without a cytoplasm appeared as brightly stained blue objects 

approximately 5-12 µm in diameter. 

The PCA scatter plot of the first two principal components revealed a glimpse of the internal data 

structure and variance (Figure 3A). Here, populations according to each cell type were clearly observed. 

Further, over 90% of the variance was explained by the first 20 principal components from a total of 144, 

with 30% and 14% variance explained in the first and second principal components, respectively. Despite 
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1 

2 
3 with on-board blister packs, and dedicated software. Likewise, sample processing steps have been 
4 
5 significantly reduced. Cell identification and diagnostic models developed on the non-integrated platform 
6 
7 were translated to the POC instrument, and software screenshots and results reports presented here were 
8 

9 completed with this integrated POC platform. 

10 
11 

Results 
13 

14 
15 

Cell Identification Model 
16 
17 A cell identification tool to assist in the accurate and precise estimation of histopathological 
18 
19 endpoints for the entire spectrum of OED and OSCC was developed. Figure 1 shows the diagnostic 
20 
21 categories and rates for oral cancer and dysplasia based on WHO classification26 found during mass 
22 
23 screening,27 showing 5-year malignant transformations28 and 5-year cancer recurrence.29 The literature 
24 
25 presents a range of 5-year transformation and recurrence rates, and the ones listed here are representative 
26 

27 of those reported previously.30
 

28 

29 The POCOCT platform (Figure 2) comprises a minimally invasive brush cytology test kit, disposable 
30 

31 assay cartridge, instrument, clinical algorithms, and cloud-based software services to automate the 

32 

33 quantification  and  analysis  of  cellular  and  molecular  signatures  of  dysplasia  and  OSCC.  The  cell 

34 identification  tool  automatically  classified  four  distinct  cell  phenotypes  (Figure  3A).  Type  1  ‘mature 

36 squamous’ or ‘mature keratinocytes’ were broad/flat cells, approximately 50-100 µm in diameter, had a low 

38 
NC ratio, and demonstrated a relatively low cytoplasm staining intensity (Phalloidin-Alexa Fluor® 647). 

39 
40 Type 2 ‘small round’ cells were small (12-30 µm in diameter) highly circular cells with high NC ratio and a 
41 
42 brightly stained cytoplasm representing immature basaloid keratinocytes. Type 3 ‘leukocytes’ appeared as 
43 
44 small, brightly stained pink objects 6-23 µm in diameter representing mononuclear leukocytes. Type 4 ‘lone 
45 
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representing discrimination performance of the multivariate model. The numerical index is a score between 

0 and 100 that can be interpreted literally as the probability of dysplasia/malignancy. The diagnostic 

accuracy of the model is defined by the cutoff score that maximizes its AUC (benign vs. dysplasia/malignant 

numerical index cutoff of 36). Predictors for the model were retained as follows: cell phenotype distributions 

(Types 1, 2, and 3), age, sex, smoking pack years (i.e., packs per day times years of smoking), lesion size 

(maximum diameter), clinical impression of lesion as lichen planus, and lesion color (white, red, or both) 

12 

 

19 

43 

Page 13 of 46 Cancer Cytopathology 

 

 

1 

2 
3 Types 2 and 3 having similar cytomorphology, the features with the largest association with the first principal 
4 
5 component were NC ratio and mean cytoplasm intensity, suggesting that cell size and cellular actin 
6 
7 content/distribution play a dominant role in explaining the variance among these cell phenotypes. 
8 

9 The cross-validated k-nearest neighbors (k-NN) algorithm resulted in overall accuracy of 96.9% 
10 

11 and accuracy of 100%, 90.1%, 96.0%, and 99.0% for Types 1 (mature), 2 (small), 3 (leukocytes), and 4 
12 

13 (lone nuclei), respectively. An additional label (‘unknown’) was added for cells that had four or less similar 

14 

15 neighbors. After accounting for this ‘unknown' cell type, the overall accuracy was 99.3%. When applied to 

16 

17 the study population, cell phenotype distributions showed significant differences across all diagnostic 

18 categories (Figure 3B). The proportion of Type 1 (mature) cells decreased with more advanced disease. In 

20 
contrast, the proportions of Type 2 (small) and Type 3 (leukocytes) cells increased with disease 

21 
22 progression. Median values for Type 1 (mature) and Type 2 (small) cells were significantly different between 
23 
24 all lesion determinations. For Type 3 (leukocytes), all lesion determinations had significantly different 
25 
26 median values except for benign vs. dysplasia (p = 0.0539). 
27 
28 The same cell identification model development process was completed on recently developed 
29 
30 integrated instrumentation, cartridges, and cloud-based analysis tools. Images from two samples, one each 
31 

32 from benign and malignant lesions, were collected with the POCOCT platform, and cell phenotype labels 
33 

34 were overlaid on each recognized cell object (Figure 3C). Here, the benign lesion sample contained mostly 
35 

36 Type 1 (mature) cells, while the malignant sample contained a mixture of primarily Type 2 (small), Type 3 

37 

38 (leukocytes), and Type 4 (lone nuclei). 

39 
40 

41 Numerical Index and Diagnostic Models for Assessing PMOL 

42 Expanding on this capability, a numerical index for discriminating benign and dysplasia/malignant 

44 
lesions was developed using the cell phenotypes as predictors. Figure 4A shows the ROC curve 
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51 

52 

53 
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phenotype distributions (Types 1, 2, and 3), and mean values for NC ratio, molecular biomarker 

fluorescence intensity, and cell circularity. The ability to assess cumulative data on this cloud-based 

cytopathology platform may improve pathologist decision making (e.g., through learning about their own 

histopathologic assessment vs. the POCOCT and, ultimately, the surgical pathology). 
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1 

2 
3 (Figure  4B).  Minimal  differences  were  observed  between  training  and  test  error  (28%  and  27% 
4 
5 misclassification rate on the training and test sets, respectively) which suggests no evidence of overfitting. 
6 
7 The numerical index showed significant differences between all lesion diagnostic categories studied (p < 
8 

9 0.01)  except  for  mild  vs.  moderate/severe  dysplasia  (p  =  0.1519)  (Figure  4C);  however, significant 
10 

11 differences were observed in a dichotomous model for mild vs. moderate dysplasia (i.e., 3|4) (p = 0.04). 
12 

13 Model calibration shows the numerical index relative to the observed proportions of dysplasia/malignant 

14 

15 subjects when sorted and grouped into deciles (Figure 4D). A non-significant result of the Hosmer- 

16 

17 Lemeshow goodness of fit test suggests that there is no evidence of a poor fit (p = 0.6259). 

18 Models were also developed for dichotomous classification across the OED spectrum, and Figure 

20 
5 summarizes the diagnostic performance of these models. The clinical algorithms resulted in AUCs ranging 

21 
22 0.81 (95% CI 0.76–0.86) for benign vs. mild dysplasia (3|4) to 0.97 (0.94–1.00) for healthy control (no 
23 
24 lesion) vs. malignancy (0|6). While previous work demonstrated AUCs of 0.836 for the binary low vs. high 
25 
26 risk (4|4) split and 0.883 for moderate vs. severe dysplasia (4|5),11 these new optimized models here 
27 
28 presented resulted in improved AUCs of 0.88 (0.84–0.93) and 0.92 (0.88–0.96) for the same diagnostic 
29 
30 splits, respectively. 

31 
32 

33 Cytopathology Software 
34 

35 A cytopathology interface tool was developed to assist pathologists in reviewing the brush cytology 
36 

37 test results, enabling rich content cellular analyses on single- and multi-cell levels (Figure 6 and 

38 

39 Supplemental Figures). This interface enables the pathologist users to access data stored and processed 

40 

41 on cloud-based services, view results summaries, explore cytology results through data visualization tools, 

42 and  generate  automated  oral  cytopathology  reports  (Figure  7)  which  provide  the  adjunctive referral 

44 
recommendations and summarize important information from cytology, including total cell count, cell 
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2 
3 

Discussion 
5 
6 This work demonstrates an evolution of the POCOCT technology towards a rapid and simple brush 
7 
8 cytology analysis for POC or in a remote laboratory setting. We have demonstrated that (1) cell phenotypes 
9 
10 can be accurately determined through the automated cytological assay and machine learning approach; 
11 
12 (2) significant differences in cell phenotype distributions across diagnostic categories are found in three 

13 

14 phenotypes (Types 1, 2, and 3); and (3) these cell phenotypes are valuable predictors for distinguishing 
15 

16 lesion diagnostic categories in a multivariate lasso logistic regression model. The compilation of these 
17 

18 results suggests that the observed cellular phenotypic variations within cytological samples are equated 

19 

20 with disease severity and, thus, may be useful in the evaluation of PMOLs. Although cell phenotyping can 

21 be completed by a pathologist by manually identifying cells in a cytological sample, this is a lengthy process 

23 
subject  to  human  errors.  Providing  a  means  to  automate  metrics,  such  as  the  distributions  of cell 

25 
phenotypes, may increase adoption of this POCOCT approach through a cytopathology service and allow 

26 
27 for pathologists to complete more efficient and more effective recommendations. 
28 
29 The optimized numerical index for evaluating PMOLs developed here represents a simple, 
30 
31 practical, and effective approach that is directly applicable to clinical implementation and interpretation. 
32 
33 While previous models relied on complicated high-dimensional cytological parameters, the classification 
34 
35 and quantitation of cell phenotypes greatly simplifies the predictive algorithm and its interpretation, 

36 

37 substantially improves performance for diagnostic splits relative to these earlier efforts,11,14 and supports 
38 

39 the translation of research methodologies from laboratory-based microscopy stations to an integrated POC 
40 

41 instrument. With a total of 9 predictors, the practical model developed here represents a sparse solution 

42 

43 (i.e., reduction of over 150 variables to 9) with greater potential generalizability without sacrificing any 

44 diagnostic  performance.  Further,  excellent  model  calibration  performance  and  significant differences 

46 
between the diagnostic endpoints demonstrates strong potential for the numerical index as a continuous 

48 
indicator of PMOL risk. While previous work was primarily focused on delivering binary results for referral 

49 
50 decisions,11 this new work involves a cytopathology interface tool, developed to assist pathologists in 
51 
52 reviewing the brush cytology test results, and a numerical index, enabling rich content cellular analyses on 
53 
54 single- and multi-cell levels. This interface enables the pathologist to access data stored on cloud-based 
55 
56 services, view results summaries, explore cytology data through data visualization tools, and generate a 
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1 

2 
3 report that provides recommendations. Accurate diagnostic models spanning the entire OED spectrum also 
4 
5 demonstrate the potential for the POCOCT to be used for multiple applications, such as screening PMOLs 
6 
7 in primary care and the surveillance of patients with a history of OED and OSCC in secondary or tertiary 
8 

9 care settings. 
10 

11 Although light-based adjuncts offer clinicians a new perspective to view a lesion at the POC, their 
12 

13 diagnostic utility remains unproven.5 Rashid and Warnakulasuriya reviewed the performance of light-based 

14 

15 adjuncts in discriminating low and high risk lesions (VELscope [sensitivity/specificity: 30–100 / 15–100], 

16 

17 ViziLite Plus [0–100 / 0–78], and Microlux DL [78 / 71]) and concluded that there is insufficient evidence to 

18 validate their efficacy as screening adjuncts.31 Despite the numerous adjunctive tests available to assist in 

20 
the diagnosis of PMOLs today, only cytology shows potential as a surrogate for gold standard 

21 
22 histopathology.32 Several commercial cytopathology services exist today including OralCDx (CDx 
23 
24 Diagnostics, Inc.), OralCyte (ClearCyte Diagnostics, Inc.), Cyt ID (Forward Science), and ClearPrep OC 
25 
26 (Resolution Biomedical). OralCDx, for example, provides an oral brush sample collection kit for their 
27 
28 BrushTest.33 Despite the ease of collection, samples need to be shipped to a commercial laboratory for 
29 
30 analysis, resulting in delays between sample collection and test results. Further, the test often returns an 
31 

32 ambiguous “atypical” result for which the positive predictive value for dysplasia or carcinoma has been 
33 

34 determined to be only 30-40%.34 Additionally, prior studies of cytology adjuncts demonstrated 
35 

36 methodological gaps by only performing matched gold-standard histopathology on a subset of lesions with 

37 

38 a higher index of suspicion for malignancy, and not for lesions with a lower index of suspicion which are 

39 

40 frequently encountered in primary care settings.35,36  A clinically validated POC cytology service capable of 

41 distinguishing the degree of OED in PMOL and stratifying the risk of malignant progression as a numerical 

43 
index in near real-time would fulfill a significant unmet need mitigating unnecessary referrals to experts, 

44 
45 leading to a more efficient process in surveillance clinics and reducing the patient distress related to waiting 
46 
47 for test results. 
48 
49 One limitation is that previous studies of the POCOCT, and cytology adjuncts in general, primarily 
50 
51 focused on PMOL evaluation in secondary care settings where the prevalence of dysplastic and malignant 
52 
53 lesions may be substantially higher than in the primary care. Additionally, while expert clinicians in 
54 

55 secondary and tertiary care settings have extensive training and experience in the recognition and risk 

56 
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1 

2 
3 stratification of PMOLs, primary care clinicians may have difficulty distinguishing PMOLs from normal/non- 
4 
5 neoplastic lesions. Thus, the POCOCT technology may potentially have a larger impact in primary care 
6 
7 settings where there is a strong need to accurately interrogate the PMOLs detected there and generate a 
8 

9 dichotomous outcome to indicate if referral of patients to higher care settings for expert evaluation and 
10 

11 possible biopsy is required and if such referral should be urgent. 
12 

13 This manuscript provides a key step towards the development of new tools that could pave the way 

14 

15 for new capabilities in the area of ‘precision lesion diagnostics’. Helping to push forward this theme, we 

16 

17 have demonstrated the utility of temporal changes in numerical index in a pilot study of Fanconi Anemia 

18 (FA) patients.13 These efforts showed strong potential for patient-specific temporal changes in the lesion 

20 
numerical index to track early signs of disease for this high risk population. Plans are now in place to (1) 

21 
22 evaluate the POCOCT’s precision lesion diagnostic capabilities through a prospective longitudinal study of 
23 
24 malignant transformation and cancer recurrence and (2) move the POCOCT into a clinical trial to assess 
25 
26 the POCOCT’s diagnostic performance vs. routine care in primary care clinics. 
27 
28 

29 Conclusion 
30 
31 

32 In summary, we have demonstrated the utility of a POC-amenable cytology platform that has the 

33 potential to screen and monitor oral lesions across the entire diagnostic spectrum of OED. Cell phenotype 

35 
distributions provided additional information in the assessment of PMOL. Further, a practical model 

37 
comprised of patient information, lesion characteristics, and cell types from cytology showed similar 

38 
39 performance characteristics to more complicated models previously developed. Cytopathology software 
40 
41 may assist expert pathologists and non-expert care providers in reviewing and understanding the brush 
42 
43 cytology test results. We developed data visualization tools to provide high content cellular analyses on 
44 
45 single- and multi-cell levels with full transparency of test results data for pathologists. Additionally, oral 
46 
47 cytopathology results summarize the test’s most important predictors through indications of potential lesion 
48 

49 progression for care providers and patients. Along with recently developed instrumentation and cartridges, 
50 

51 this simple and sensitive system could provide non-invasive triage for PMOLs detected in primary, 
52 

53 secondary, and tertiary care settings. 

54 
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1 

2 
3 Future work may expand the utilization of molecular biomarkers and explore the identification of 
4 
5 additional rare cell phenotypes to further improve performance. Future clinical studies may also be directed 
6 
7 to determine: whether brush cytology could enable a wider sampling of large/multifocal lesion areas relative 
8 

9 to incisional biopsies via multiple site-precise samplings; the effect of inflammation on the cytological 
10 

11 analysis; whether the system can identify candida and distinguish clinical leukoplakia from neoplastic vs. 
12 

13 non-neoplastic conditions; its placement in existing monitoring algorithms for PMOLs. Clinical trials are 

14 

15 needed to assess the POCOCT’s ability to identify early stage cancer relative to existing protocols and to 

16 

17 validate the POCOCT as a substitute for biopsy. Future publications will describe and validate the integrated 

18 POC hardware (i.e., instrument, cartridge, and assay). To accelerate the translation and expand the 

20 
adoption of the POCOCT platform, a cytopathology service for secondary and tertiary care oral cytology 

21 
22 applications is now in development. Scaling and distribution of this versatile cytology approach is now 
23 
24 underway with potential to serve diagnostic and surveillance applications in primary, secondary, and tertiary 
25 
26 care settings. 
27 
28 
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3 

Figure Legends 
5 
6 Figure 1. Diagnostic categories for oral cancer and dysplasia based on WHO classification with 5-year 
7 
8 malignant transformations and 5-year cancer recurrence rates. While 10% of US adults may present to 
9 
10 their dentist for a routine care visit with an abnormal oral cavity lesion, about 83% of these lesions are 
11 
12 diagnosed clinically as having no malignant potential, and 17% have unknown significance and meet the 

13 

14 clinical criteria for PMOL. About 17% of PMOLs are histopathologically diagnosed with OED or OSCC. OED 
15 

16 is about 15 times more common than OSCC, yet only a fraction of patients with dysplastic PMOLs undergo 
17 

18 malignant transformation. 

19 

20 
21 

Figure 2. The POCOCT assay platform allows for the analysis of cellular samples obtained from a minimally 

23 
invasive brush cytology sample. The cell suspension collected in this manner allow for the simultaneous 

25 
quantification of cell morphometric data and expression of molecular biomarkers of malignant potential  in 

26 
27 an automated manner using refined image analysis algorithms based on pattern recognition techniques 
28 
29 and advanced statistical methods. This novel approach turns around cytology results in a matter of minutes 
30 
31 as compared to days for traditional pathology methods, thereby making it amenable to POC settings. The 
32 
33 POC testing is expected to have tremendous implications for disease management by enabling dental 
34 
35 practitioners and primary care physicians to circumvent the need for multiple referrals and consultations 

36 

37 before obtaining assessment of molecular risk of PMOL. 
38 

39 
40 

41 Figure 3. A cell type identification model was developed to automatically classify cell Types 1-4. Panel A 

42 

43 (left) shows the four distinct cell phenotypes that were identified: Type 1 (‘mature squamous cells’), Type 2 

44 (‘small round cells’), Type 3 (‘leukocytes’), and Type 4 (‘lone nuclei’). Principal component analysis (right) 

46 
shows cell phenotypes clustered into distinct groups with substantial separation between cell phenotype 

48 
labels, demonstrating strong promise for an effective cell phenotype recognition algorithm. Boxplots in 

49 
50 Panel B show the study population distributions of mature squamous cells (left), small round cells (center), 
51 
52 and leukocytes (right), representing the predicted mean cell type percentages across six biomarker assays 
53 
54 (αvβ6, CD-147, EGFR, geminin, Ki-67, and MCM2) within each lesion class: normal (n=121), benign 
55 
56 (n=241), dysplasia (n=59), and malignant (n=65). The results shown include only patients with definitive 
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1 

2 
3 lesion determinations and patients with evaluable data for all six biomarkers. Panel C shows limited field of 
4 
5 view cytology pseudocolor images (fluorescence images acquired with a monochrome camera and digitally 
6 
7 assigned to red, green, and blue color channels) of benign (left) and malignant (right) lesions with the cell 
8 

9 phenotype model output labels overlaid as follows: “M” for mature squamous cells, “S” for small round cells, 
10 

11 “W” for leukocytes, and “L” for lone nuclei (Unknown type “U” not shown). Fluorescent staining shows the 
12 

13 cytoplasm (red), nuclei (blue), and Ki-67 biomarker (green). 

14 

15 
16 

17 Figure 4. Algorithm results of the dichotomous benign vs. dysplasia/malignant lesion model from 241 benign 

18 lesion and 124 dysplasia and malignant lesion subjects for six molecular biomarker assays on the POCOCT 

20 
system. Panel A shows the ROC curve for the model. The lasso logistic regression coefficients are provided 

21 
22 in Panel B. The predictors are as follows: “1-%TYPE 1” (percent of cells that are non-mature squamous 
23 
24 cells), “%TYPE 2” (percent of cells that are small round cells), “%TYPE 3” (percent of cells that are 
25 
26 leukocytes), “AGE”, “SEX”, “PACKYR” (pack years), “LSIZEMAX” (lesion diameter of the major axis), 
27 
28 “LICHENFN” (clinical impression of lichen planus), and “LESIONCOLOR” (red, white, or red/white). The 
29 
30 boxplot in Panel C shows cross-validated algorithm response (“numerical index”) for the lasso logistic 
31 

32 regression on the test set averaged over all biomarker assays. Distribution of scores are represented for 
33 

34 benign (n=241), mild dysplasia (n=38), moderate/severe dysplasia (n=21), and malignant lesions (n=65). 
35 

36 Panel D shows a model calibration plot of the predicted responses (numerical index) sorted and grouped 

37 

38 into deciles vs. the observed proportions of dysplasia and malignant lesions. 

39 

40 

41 
Figure 5. Diagnostic models for the OED spectrum. Results are shown for the cross-validated clinical 

43 
algorithms for benign vs. dysplasia (2|3), mild vs. moderate dysplasia (3|4), low vs. high risk (4|4), moderate 

44 
45 vs. severe dysplasia (4|5), healthy control (no lesion) vs. malignant (0|6), and benign dysplasia vs. 
46 
47 malignant (2|6) models. Model responses for each subject were averaged over all biomarker assays to 
48 
49 inform diagnostic performance. AUC, sensitivity, and specificity are mean and 95% confidence interval 
50 
51 values for the cross-validated test set. 
52 
53 
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1 

2 
3 Figure 6. Cytopathology interface tool provides pathologists with cloud access to test results summaries 
4 
5 and detailed data visualizations (A), scatter plots (B), and histograms (C) for over 150 different cytology 
6 
7 parameters. With this tool, pathologists can view all cells within the field of view, zoom in for more detail, 
8 

9 and isolate individual cells of interest. 
10 

11 
12 

13 Figure 7. Oral cytopathology test results. The algorithm result is a numerical index between 0 and 100 with 

14 

15 a cutoff of 36 that distinguishes benign and dysplasia/malignant (“atypical”) lesions (left). Other informative 

16 

17 cytopathology results are displayed on a reference range, including total cell counts, cell phenotype 

18 distributions, mean values for NC ratio, molecular biomarker fluorescence intensity, and cell circularity. 

20 
Images and outlines of the cells are provided for additional test context (right). 
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Figure S1. Screenshot of cytopathology interface showing BICR 56 cancer cells magnified view with all three fluorescent labels (red: phalloidin, green: 



41 

42 

43 

44 

45 

46 

47 
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36 Figure S2. Screenshot of cytopathology interface showing BICR 56 cancer cells magnified view with green (EGFR) and blue (DAPI) fluorescent labels. 
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36 Figure S3. Screenshot of cytopathology interface showing BICR 56 cancer cells with cell phenotype labels overlaid (M: mature squamous, S: small 
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36 Figure S5. Screenshot of cytopathology interface showing histogram of nuclear area measurements from a sample of BICR 56 cancer cells. 
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36 Figure S6. Screenshot of cytopathology interface showing brush biopsy sample of healthy control cells with cell phenotype labels overlaid (M: mature 
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26 Figure 1. Diagnostic categories for oral cancer and dysplasia based on WHO classification with 5-year 

27 malignant transformations and 5-year cancer recurrence rates. While 10% of US adults may present to their 
28 dentist for a routine care visit with an abnormal oral cavity lesion, about 83% of these lesions are diagnosed 

clinically as having no malignant potential, and 17% have unknown significance and meet the clinical criteria 
for PMOL. About 17% of PMOLs are histopathologically diagnosed with OED or OSCC. OED is about 15 times 

30 more common than OSCC, yet only a fraction of patients with dysplastic PMOLs undergo malignant 
31 transformation. 
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25 Figure 2. The POCOCT assay platform allows for the analysis of cellular samples obtained from a minimally 

26 invasive brush cytology sample. The cell suspension collected in this manner allow for the simultaneous 
27 quantification of cell morphometric data and expression of molecular biomarkers of malignant potential in an 

automated manner using refined image analysis algorithms based on pattern recognition techniques and 
advanced statistical methods. This novel approach turns around cytology results in a matter of minutes as 

29 compared to days for traditional pathology methods, thereby making it amenable to POC settings. The POC 
30 testing is expected to have tremendous implications for disease management by enabling dental 
31 practitioners and primary care physicians to circumvent the need for multiple referrals and consultations 
32 before obtaining assessment of molecular risk of PMOL. 
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39  Figure 3. A cell type identification model was developed to automatically classify cell Types 1-4. Panel A 
(left) shows the four distinct cell phenotypes that were identified: Type 1 (‘mature squamous cells’), Type 2 
(‘small round cells’), Type 3 (‘leukocytes’), and Type 4 (‘lone nuclei’). Principal component analysis (right) 

41 shows cell phenotypes clustered into distinct groups with substantial separation between cell phenotype 
42 labels, demonstrating strong promise for an effective cell phenotype recognition algorithm. Boxplots in Panel 
43 B show the study population distributions of mature squamous cells (left), small round cells (center), and 
44 leukocytes (right), representing the predicted mean cell type percentages across six biomarker assays 
45  (αvβ6, CD-147, EGFR, geminin, Ki-67, and MCM2) within each lesion class: normal (n=121), benign 

(n=241), dysplasia (n=59), and malignant (n=65). The results shown include only patients with definitive 
lesion determinations and patients with evaluable data for all six biomarkers. Panel C shows limited field of 

47 view cytology pseudocolor images (fluorescence images acquired with a monochrome camera and digitally 
48 assigned to red, green, and blue color channels) of benign (left) and malignant (right) lesions with the cell 
49 phenotype model output labels overlaid as follows: “M” for mature squamous cells, “S” for small round cells, 
50 “W” for leukocytes, and “L” for lone nuclei (Unknown type “U” not shown). Fluorescent staining shows the 
51 cytoplasm (red), nuclei (blue), and Ki-67 biomarker (green). 
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35 Figure 4. Algorithm results of the dichotomous benign vs. dysplasia/malignant lesion model from 241 benign 
36 lesion and 124 dysplasia and malignant lesion subjects for six molecular biomarker assays on the POCOCT 
37 system. Panel A shows the ROC curve for the model. The lasso logistic regression coefficients are provided 
38 in Panel B. The predictors are as follows: “1-%TYPE 1” (percent of cells that are non-mature squamous 
39  cells), “%TYPE 2” (percent of cells that are small round cells), “%TYPE 3” (percent of cells that are 

leukocytes), “AGE”, “SEX”, “PACKYR” (pack years), “LSIZEMAX” (lesion diameter of the major axis), 
“LICHENFN” (clinical impression of lichen planus), and “LESIONCOLOR” (red, white, or red/white). The 

41 boxplot in Panel C shows cross-validated algorithm response (“numerical index”) for the lasso logistic 
42 regression on the test set averaged over all biomarker assays. Distribution of scores are represented for 
43 benign (n=241), mild dysplasia (n=38), moderate/severe dysplasia (n=21), and malignant lesions (n=65). 
44 Panel D shows a model calibration plot of the predicted responses (numerical index) sorted and grouped into 
45 deciles vs. the observed proportions of dysplasia and malignant lesions. 
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Figure 5. Diagnostic models for the OED spectrum. Results are shown for the cross-validated clinical 
26 

algorithms for benign vs. dysplasia (2|3), mild vs. moderate dysplasia (3|4), low vs. high risk (4|4), 
27 

moderate vs. severe dysplasia (4|5), healthy control (no lesion) vs. malignant (0|6), and benign dysplasia 
28 

vs. malignant (2|6) models. Model responses for each subject were averaged over all biomarker assays to 
29 

inform diagnostic performance. AUC, sensitivity, and specificity are mean and 95% confidence interval 
30 

values for the cross-validated test set. 
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33 
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37 Figure 6. Cytopathology interface tool provides pathologists with cloud access to test results summaries and 
detailed data visualizations (A), scatter plots (B), and histograms (C) for over 150 different cytology 

parameters. With this tool, pathologists can view all cells within the field of view, zoom in for more detail, 
39 and isolate individual cells of interest. 
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27 Figure 7. Oral cytopathology test results. The algorithm result is a numerical index between 0 and 100 with 
28 a cutoff of 36 that distinguishes benign and dysplasia/malignant (“atypical”) lesions (left). Other informative 

cytopathology results are displayed on a reference range, including total cell counts, cell phenotype 
distributions, mean values for NC ratio, molecular biomarker fluorescence intensity, and cell circularity. 

30 Images and outlines of the cells are provided for additional test context (right). 
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1 

2 
3 
4 Supplemental Methods 
5 
6 
7 Biomarker Selection Rationale 
8 
9 Six molecular biomarkers were selected (αvβ6, CD147, EGFR, geminin, Ki67, and MCM2) 
10 
11 based on their capacity to distinguish benign, dysplastic, and malignant oral epithelial cells 
12 
13 

through prior immunohistochemistry studies.1-3 These markers fall into three groups based on 
14 
15 

their localization: cell membrane, cytoplasm, and nucleus. Table S1 summarizes the molecular 

17 

18 biomarkers used in the study. 

19 

20 Table S1. Summary of molecular biomarkers 
21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 
40 * CM: cell membrane; C: cytoplasm; N: nucleus 
41 
42 

Patient Recruitment 

44 
Data used in this study originated from the 999-patient multisite prospective non- 

46 

47 interventional study evaluating the cytology-on-a-chip system for the measurement of cytological 
48 

49 parameters on brush cytology samples to assist in the diagnosis of PMOL. Briefly, both 
50 

51 histopathological and brush cytological samples for 714 subjects from three patient groups were 
52 
53 measured: (1) subjects with PMOL who underwent scalpel biopsy as part of the standard of care 
54 
55 for microscopic diagnosis, (2) subjects with recently diagnosed malignant lesions, and (3) healthy 

Biomarker Localization Function 

αvβ6 CM 
an integrin receptor undetectable in normal oral epithelium, but 
highly expressed in dysplasia and OSCC4,5

 

CD147 CM 
a multifaceted molecule that facilitates tumor progression by 
several mechanisms6

 

EGFR CM + C 
a transmembrane glycoprotein whose overexpression may 
contribute to tumor progression7

 

Geminin N + C a marker of proliferation2
 

Ki67 N 
a marker of proliferation that is overexpressed at initial stages of 
oral carcinogenesis7

 

 
MCM2 

 
N 

an essential component for DNA replication associated with 
deregulated expression in dysplastic and malignant epithelial 
cells8,9
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1 

2 
3 volunteers without lesions. Only subjects with complete biomarker results were included in the 
4 
5 analysis (N = 486). Table S2 summarizes the patient characteristics of those subjects included in 
6 
7 

the analysis. 

9 
Table S2. Patient characteristics and histopathological diagnoses 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 
49 

Clinical Protocol 

51 

52 The clinical protocol for this study was published previously10 and is summarized as 

53 

54 follows. Patients in group 1 underwent brush sampling of the oral lesion and a brush sampling of 
55 

Characteristics and Histopathological Diagnoses N (%) 

Total 486 

Sex 
 

Male 211 (43.4) 

Female 275 (56.6) 

Age 
 

>60 165 (34.0) 

≤60 320 (65.8) 

Patient Group 
 

Healthy Volunteer 121 (24.9) 

Subjects with Previously Diagnosed Malignant Lesion 36 (7.4) 

Subject with a Potentially Malignant Lesion 329 (67.7) 

Histopathological Diagnosis 
 

Normal 121 (24.9) 

Benign 241 (49.6) 

Mild Dysplasia 38 (7.8) 

Moderate Dysplasia 12 (2.5) 

Severe Dysplasia 9 (1.9) 

Malignant 65 (13.4) 
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56 the contralateral, clinically normal mucosa. The brush cytology sample was taken immediately 
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1 

2 
3 before the same lesion underwent a scalpel biopsy. Patients in group 2 underwent brush biopsy 
4 
5 of the known cancerous lesion, as well as the contralateral, clinically normal mucosa. For healthy 
6 
7 

volunteers in group 3, a brush biopsy of normal appearing tissue on the lateral or ventral surface 

9 
of the tongue and a brush biopsy of normal appearing tissue on the left or right buccal mucosa 

11 

12 were taken. Brush biopsy samples were taken using a soft Rovers Orcellex oral cytology brush 

13 

14 (Rovers Medical Devices B.V., Oss, The Netherlands). The brush was applied directly to the 
15 

16 lesion or control oral mucosa using mild pressure and rotated 360 degrees approximately 10-15 
17 
18 times in the same direction to obtain the cytologic sample. 
19 
20 Cytology-on-a-Chip Protocol 
21 
22 

The following methods have been published previously11  and are summarized here for 

24 
convenience. Immediately after brush cytology samples were collected, cells were harvested by 

26 

27 vortexing the brush head in minimum essential medium (MEM) culture media, followed by a PBS 
28 

29 wash, re-suspension in FBS containing 10% of the cryo-preservative dimethyl-sulfoxide (DMSO), 
30 

31 frozen, and stored in a -80 degrees C freezer. 
32 
33 Prior to processing on the device, patient samples were thawed rapidly in a 37 degrees C 
34 
35 water bath, washed with PBS, and fixed for one hour in 0.5% formaldehyde prepared fresh from 
36 
37 a 16% stock solution (Polysciences, Warrington, PA, #18814-20). After fixation, cells were 
38 
39 washed twice in PBS, re-suspended in 150 µL 0.1% PBS with 0.1% BSA (PBSA), and stored at 
40 
41 

40 degrees C until ready to process. Before sample delivery, the cell suspension was diluted in a 

43 
20% glycerol/0.1% PBSA solution to improve cell distribution across the membrane and to reduce 

45 

46 cell clumping. 
47 

48 Using a custom built manifold connecting external fluidic tubing to the inlet and outlet ports 
49 

50 of the microfluidic device, the assembly was positioned on a robotically controlled microscope 
51 
52 stage (ProScan II, Prior Scientific, Cambridge, UK) and connected to a peristaltic pump (SciQ 
53 
54 400, Watson Marlow, Wilmington, MA) and manually controlled 6-position injector valve (Vici, 
55 
56 
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1 

2 
3 Valco Instruments, Houston, TX). Antibody stock solutions were vortexed for 30 seconds and 
4 
5 centrifuged at 14,000 rpm for 5 minutes before preparing working dilutions to avoid precipitates. 
6 
7 

All assays contained Phalloidin and DAPI in the secondary antibody cocktail, but each 

9 
was specific for a single molecular biomarker primary-secondary antibody pair. Working dilutions 

11 

12 of antibodies were prepared in 0.1% PBSA with 0.1% Tween-20 (EMD Millipore, Billerica, MA, # 

13 

14 655206). Primary monoclonal antibodies were raised from either mouse (EGFR [Life 
15 

16 Technologies, Carlsbad, CA, #MS-378-P, 10 µg/mL]), rabbit (αvβ6 [Abcam, Cambridge, MA, 
17 
18 #Ab124968, 6 µg/mL], Ki67 [Abcam #Ab15580, 29 µg/mL], and MCM2 [Abcam #Ab108935, 10 
19 
20 µg/mL]), or goat (CD-147 [EMMPRIN] [R&D Systems, Minneapolis, MN, #AF972, 20 µg/mL]. 
21 
22 AlexaFluor-488 conjugated secondary antibodies were specific for F (ab’)2 fragments of mouse 
23 
24 IgG (Life Technologies #A11017, 20 µg/mL for EFGR), rabbit IgG (Life Technologies #A11070, 
25 
26 

50 µg/mL for αvβ6, 64 µg/mL for Ki67, and 23.5 µg/mL for MCM2), or goat IgG (Life Technologies 
27 
28 

#A11078, 40 µg/mL for CD147). A working concentration of 0.33 µM was used for Phalloidin- 

30 

31 AlexaFluor-647 (Life Technologies #A22287) and 5 µM for DAPI (Life Technologies #D3571). 

32 

33 In summary, the lab-on-a-chip sample processing was comprised of the following steps: 
34 

35 1) the device was primed with PBS at a flow rate of 735 µL/min for 2 minutes, 2) the cell 
36 
37 suspension in 20% glycerol/0.1% PBSA was delivered at 1.5 mL/min for 2 minutes, 3) cells were 
38 
39 washed with PBS at 1 mL/min for 2.5 min, 4) the primary antibody solution was delivered through 
40 
41 a 0.2 µm PVDF syringe filter at 250 µL/min for 2.5 min, 5) a wash step similar to step 3 was 
42 
43 performed, 6) the secondary antibody solution was delivered under the same conditions as step 
44 
45 

4, 7) a final wash step was performed, and 8) automated image capture was performed. 
46 
47 

48 Sample Digitization 
49 

50 More complete details on cytology sample digitization and a complete list of intensity and 
51 
52 morphological parameters can be found in our previous publication.11 Images were recorded with 
53 
54 a motorized reflected fluorescence microscope (Olympus BX-RFAA) equipped with a CCD 
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1 

2 
3 camera (Hamamatsu ORCA-03G) through a 10x objective (10x/0.30NA UPlanFl, Olympus). A 
4 
5 total of 25 unique fields of view (FOVs) repeated for 3 different z-focal planes were automatically 
6 
7 

captured across a 20 mm2 area using a robotic x-y-z microscope stage. Due to the complex three- 

9 
dimensional morphology of oral squamous cells, multiple z-focal planes were captured and 

11 

12 subsequently combined into a single, enhanced depth-of-field image to simplify the multi-spectral 

13 

14 detection of the three fluorescent labels using ImageJ “stack focuser”. 
15 

16 Combinations of custom macros and the open-source image analysis tools ImageJ12 and 
17 
18 Cell Profiler13 were developed to automatically detect individual cells and define their nuclear and 
19 
20 cytoplasmic boundaries as individual regions of interest (ROI). These ROIs were used to obtain 
21 
22 intensity measurements associated with the three spectral channels and were used to define 
23 
24 morphometric parameters. The DAPI and Phalloidin molecular labels served primarily to assist in 
25 
26 

the automated segmentation of individual nuclei and cytoplasm, respectively. 
27 
28 

29 Cell Identification Model Training and Validation 
30 

31 A cell type classification model was explored for its ability to discriminate and quantitate 
32 
33 the frequency and distributions of four cell types: Type 1 (mature squamous cells), Type 2 (small 
34 
35 round cells), Type 3 (leukocytes), and Type 4 (lone nuclei). To recognize these phenotypes, a 
36 
37 machine learning algorithm was trained on 144 cellular/nuclear features from single-cell analyses, 
38 
39 including morphological and intensity-based measurements. A training set was manually 
40 
41 

compiled by randomly selecting and labeling cells, resulting in approximately 100-200 single-cell 

43 
objects for each of the four cell types. All features were log-normalized and standardized for zero 

45 

46 mean and unit variance. Principal component analysis (PCA) was performed on the training set, 
47 

48 and a scatterplot of the first two principal components was generated to visualize the internal data 
49 

50 structure and variance. A k-nearest neighbors (k-NN) classifier was trained on the standardized 
51 
52 features using 10-fold cross-validation and configured to find the nearest 7 neighbors in feature 
53 
54 space (Euclidean distance). Cross-validated predicted responses by the k-NN classifier were 
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1 

2 
3 recorded, and accuracy was reported for the overall cross-validation set and individually for each 
4 
5 of the four cell types. k-NN model responses with 4 or less out of 7 similar neighbors were labelled 
6 
7 “unknown” type, and cross-validated accuracy was reported for the overall training set after 

9 
accounting for unknown object types. 

11 

12 The cell type classification model was retrained on the entire training dataset, and this 

13 

14 final model was applied to the study population and averaged across each of the six molecular 
15 

16 biomarker assays. Results are presented for only subjects with evaluable data for all biomarker 
17 
18 measurements (N = 486). Boxplots were generated to show the distributions of cell phenotypes 
19 
20 across 4 diagnostic categories as follows: 121 normal/non-neoplastic, 241 benign, 59 dysplasia, 
21 
22 and 65 malignant. Median values of cell phenotypes were compared for all lesion determinations 
23 
24 using a two-sided Wilcoxon rank sum test at a significance level of p = 0.05. Cell phenotype 
25 
26 

frequencies and distributions for each subject were retained for use in clinical algorithm 
27 
28 

development. 

30 

31 The same cell type identification model development process was completed on recently 

32 

33 developed integrated instrument, cartridges, and cloud-based analysis tools. Images of benign 
34 

35 and malignant lesions were collected with this cloud POC cytology platform, and cell phenotype 
36 
37 labels were overlaid on each recognized cell object. 
38 
39 Numerical Index and Diagnostic Models for Assessing PMOL 
40 
41 The analysis of dichotomous outcomes with mutually exclusive levels is common in clinical 
42 
43 diagnostics, and logistic regression is regarded as the standard method of analysis for these 
44 
45 

situations attributed to its probabilistic interpretation and ability to function as a dichotomous 
46 
47 

classifier.  Clinical  data  are  often  challenged  by  high-dimensionality  and  highly  correlated 

49 
predictors that may generate model coefficients with high variance. For these situations, a size 

51 

52 penalty as implemented by the lasso technique may be applied to shrink the effect sizes and 
53 

54 reduce coefficient variability. Additionally, the lasso technique performs automatic parameter 
55 

56 selection by eliminating predictors with less importance. In high-dimensional data sets, reducing 
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1 

2 
3 the set of predictors often leads to better prediction performance and generalizability and has 
4 
5 shown improvements over manual stepwise selection methods. This lasso logistic regression 
6 
7 

model is suited to our platform because it is inherently more intuitive than previous methods which 

9 
consider hundreds of measurements from cytology that are difficult to interpret. 

11 

12 A lasso logistic regression approach was used to prevent overfitting, reduce coefficient 

13 

14 variability, and retain a sparse model with improved generalizability and interpretability. Subjects 
15 

16 were dichotomized into “case” and “non-case” outcomes according to their lesion determination 
17 
18 (non-case for benign lesions and case for [mild, moderate, severe] dysplasia and malignant 
19 
20 lesions). Only subjects with evaluable data for all biomarker measurements and PMOL status 
21 
22 were considered (N = 365). Algorithm results were recorded for 241 benign lesion and 124 
23 
24 dysplasia and malignant lesion subjects. Diagnostic performance was characterized by area 
25 
26 

under the curve (AUC), sensitivity, and specificity. The results from six molecular biomarker 
27 
28 

assays on the POCOCT system were pooled to obtain final estimates. A receiver operating 

30 

31 characteristic (ROC) curve was plotted for the cross-validated test set. Non-zero lasso logistic 

32 

33 regression coefficients were retained for the following predictors: percentage of non-mature 
34 

35 squamous cells, percentage of small round cells, percentage of leukocytes, age, sex, smoking 
36 
37 pack years, lesion major axis diameter, clinical impression of lichen planus, and lesion color (red, 
38 
39 white, or red/white) (see Table S3). Boxplots of cross-validated algorithm results were generated 
40 
41 for the test set responses for benign, mild dysplasia, moderate/severe dysplasia, and malignant 
42 
43 lesions. Median numerical indices were compared for each diagnostic classification using a two- 
44 
45 

sided Wilcoxon rank sum test at a significance level of p = 0.05. Internal calibration was performed 
46 
47 

by sorting and grouping the predicted responses (i.e., numerical index) into deciles and measuring 

49 
the observed proportions of dysplasia/malignant lesions in each decile. The Hosmer-Lemeshow 

51 

52 goodness of fit statistic was used to assess the model fit. 
53 

54 Following this same method, diagnostic algorithms for mild versus moderate dysplasia 
55 

56 (3|4), low versus high risk (4|4), moderate versus severe dysplasia (4|5), healthy control (no 
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1 

2 
3 lesion) versus malignant (0|6), and benign dysplasia versus malignant (2|6) were also developed. 
4 
5 Model responses for each subject were averaged over all biomarker assays to inform diagnostic 
6 
7 

performance. AUC, sensitivity, and specificity were reported as mean and 95% confidence 

9 
interval values for the cross-validated test set. 

11 

12 Table S3. Predictor definitions 
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1-%TYPE 1 
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