
This is a repository copy of Interval forecasts based on regression trees for streaming
data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/154594/

Version: Accepted Version

Article:

Zhao, X, Barber, S orcid.org/0000-0002-7611-7219, Taylor, CC orcid.org/0000-0003-0181-
1094 et al. (1 more author) (2021) Interval forecasts based on regression trees for
streaming data. Advances in Data Analysis and Classification, 15 (1). pp. 5-36. ISSN 1862-
5347

https://doi.org/10.1007/s11634-019-00382-7

© Springer-Verlag GmbH Germany, part of Springer Nature 2019. This is an author
produced version of a paper published in Advances in Data Analysis and Classification.
Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Advances in Data Analysis and Classification manuscript No.
(will be inserted by the editor)

Interval Forecasts based on Regression Trees for

Streaming Data

Xin Zhao1,2
· Stuart Barber2 · Charles

C Taylor2 · Zoka Milan3

Received: date / Accepted: date

Abstract In forecasting, we often require interval forecasts instead of just a
specific point forecast. To track streaming data effectively, this interval fore-
cast should reliably cover the observed data and yet be as narrow as possible.
To achieve this, we propose two methods based on regression trees: one ensem-
ble method and one method based on a single tree. For the ensemble method,
we use weighted results from the most recent models, and for the single-tree
method, we retain one model until it becomes necessary to train a new model.
We propose a novel method to update the interval forecast adaptively us-
ing root mean square prediction errors calculated from the latest data batch.
We use wavelet-transformed data to capture long time variable information
and conditional inference trees for the underlying regression tree model. Re-
sults show that both methods perform well, having good coverage without the
intervals being excessively wide. When the underlying data generation mecha-
nism changes, their performance is initially affected but can recover relatively
quickly as time proceeds. The method based on a single tree performs the
best in computational (CPU) time compared to the ensemble method. When
compared to ARIMA and GARCH modelling, our methods achieve better or
similar coverage and width but require considerably less CPU time.

Keywords Ctree · MODWT · wavelet · Liver Transplantation · data stream

Mathematics Subject Classification (2000) MSC 62M10

Xin Zhao
Tel.: +86-18753341710
E-mail: mmxinzhao@hotmail.com
1. School of Mathematics, Southeast University, Nanjing, 210096 China.
2. School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
3. King’s College Hospital Trust, London SE5 9RS, U.K.

2 Xin Zhao1,2 et al.

Acknowledgements

Xin Zhao is grateful for the financial support of the China Scholarship Council
(CSC) during this research, which was completed during her PhD studies at
the University of Leeds.

Advances in Data Analysis and Classification manuscript No.
(will be inserted by the editor)

Interval Forecasts based on Regression Trees for

Streaming Data

Received: date / Accepted: date

Abstract In forecasting, we often require interval forecasts instead of just a
specific point forecast. To track streaming data effectively, this interval fore-
cast should reliably cover the observed data and yet be as narrow as possible.
To achieve this, we propose two methods based on regression trees: one ensem-
ble method and one method based on a single tree. For the ensemble method,
we use weighted results from the most recent models, and for the single-tree
method, we retain one model until it becomes necessary to train a new model.
We propose a novel method to update the interval forecast adaptively us-
ing root mean square prediction errors calculated from the latest data batch.
We use wavelet-transformed data to capture long time variable information
and conditional inference trees for the underlying regression tree model. Re-
sults show that both methods perform well, having good coverage without the
intervals being excessively wide. When the underlying data generation mecha-
nism changes, their performance is initially affected but can recover relatively
quickly as time proceeds. The method based on a single tree performs the
best in computational (CPU) time compared to the ensemble method. When
compared to ARIMA and GARCH modelling, our methods achieve better or
similar coverage and width but require considerably less CPU time.

Keywords Ctree · MODWT · wavelet · Liver Transplantation · data stream

Mathematics Subject Classification (2000) MSC 62M10

2

1 Introduction

In data stream analysis, we build models to capture information hidden in
the data, either for description or prediction. Streaming regression trees have
been widely developed to capture such information. For many applications,
forecasting the response value at a given time in the future is the primary
task; usually this is done simply as a point forecast. However, sometimes an
interval forecast is also required and this is often more useful than the point
forecast as the interval includes some information about uncertainty. We use
the term “interval forecast” to refer to an interval that should usually include
the observed value of the streaming variable at the specified time. The interval
construction method we use is inspired by Appice and Ceci (2006), who use
count-based and normal distribution-based procedures. In this paper, we em-
ploy a count-based procedure using quantiles for interval construction, rather
than relying on any distributional assumption or approximation.

Our interest in this problem is motivated by a real data example. During
surgery, a patient’s heart rate is continuously monitored. If we can reliably
predict undesirable heart rates, even just a minute ahead, surgeons have some
time for preparation, which could potentially save lives. In this circumstance,
point prediction for an exact heart rate value is of limited use. Surgeons pay
more attention to the range of the heart rate (whether in the normal range or
not), and a method designed for interval forecast is more directly applicable
for range monitoring. We also apply our method to a financial time series.
Other potential applications include industrial process monitoring, exchange
rates, social media activity or customer behaviour data.

Forecasting can be based on statistical time series models like ARIMA or
GARCH, but these models require structural and distributional assumptions.
In reality, these assumptions may not be satisfied, and cannot be verified for
future data. Data mining methods like decision trees do not need such assump-
tions. Moreover, trees are often simpler to interpret than complex parametric
models and can provide simple decision rules to use when this is required.
Since trees are generally not based on an underlying statistical or probabilis-
tic model, there is no distributional means of constructing confidence intervals
based on regression trees. However, the set of observations in each terminal
node can then be used to construct an interval estimate. For these reasons, we
use a tree as our regression model. We compare our tree-based forecasts with
those produced by ARIMA and GARCH models.

We use the coverage rate (the proportion of test values falling into the
interval forecast) of the interval forecast as the main measure of how well our
methods are performing. If almost all the observed values are in the interval
forecasts, we regard the method as successful. We also consider interval width
as a secondary measure of performance (narrow intervals being more useful
than wider ones). Computational load is also of obvious practical importance.

The rest of this paper is arranged as follows. In Section 2, we review key
concepts in regression tree modelling of streaming data. We introduce our
methodology in Section 3, and apply it to simulated data in Section 4 with

Interval Forecasts based on Regression Trees for Streaming Data 3

model-based ARIMA and GARCH forecasting methods for comparison, as well
as exploring the effects of noise and drift. After that we apply it to medical
and financial data sets followed by comparisons with ARIMA and ARMA-
GARCH in Section 5 and Section 6 respectively. Some concluding comments
appear in Section 7. All computations were performed in R (R Core Team
2014), using the packages partykit (Hothorn and Zeileis 2015) for regression
trees, waveslim (Whitcher 2013) for wavelet decomposition, forecast (Hyndman
2017; Hyndman and Khandakar 2008) for ARIMA, rugarch (Ghalanos 2014)
and fGarch (Wuertz et al. 2019) for GARCH and ARMA-GARCH.

2 Related work

The first consideration is how to utilize long term variable information. Since
we are forecasting in the context of streaming data, current data can depend
on old data. Building models using only the most recent data seems unwise,
so storing old information in an efficient way is important. One way of do-
ing this is via a wavelet transform, which can pick out long term averages
and short term fluctuations. Instead of using the standard decimated discrete
wavelet transform (DWT), we use the maximal overlap discrete wavelet trans-
form (MODWT; see, for example, Percival and Walden 2000), as it is not
constrained by time series length Tn and each time point is represented at all
resolution levels of the MODWT. We have previously found that wavelet trans-
formed variables can give better classification performance than the original
untransformed data (Zhao et al. 2018).

The second issue is how to deal with streaming data. Various regression tree
models have been designed for streaming data, many of which are implemented
in the Massive Online Analysis (MOA) open source framework for data stream
mining (Bifet et al. 2010). In MOA, the Hoeffding Tree family (Domingos and
Hulten 2000; Jin and Agrawal 2003; Bifet et al. 2009; Pfahringer et al. 2007) is
implemented, along with some more recently developed methods (Duarte et al.
2016; Ikonomovska et al. 2015; 2011). However, performance of these methods
is assessed by accuracy of the predicted values as point estimates while we are
more interested in performance based on interval forecast coverage. Without
considering trees, there are other methods which use neural networks to obtain
prediction intervals such as Shrestha and Solomatine (2006) and Quan et al.
(2014). These methods can be applied to streaming data as well, but lack the
straightforward interpretation of tree-based models.

Thirdly, we must decide how to detect and respond to concept drift. The
data generation mechanism can be referred to as “concept”. This concept can
remain stable or change over time, for example, when the data generation back-
ground changes. If it is stable, models built now can still be used for prediction
indefinitely. If it is not stable, we say concept drift happens, either gradually
or abruptly. In this scenario, statistical properties of the target variable, which
the model is trying to predict, change over time in unforeseen ways. This leads

4

to poor prediction performance, as the model built based on the old concept
is no longer suitable for prediction of the target variable.

Concept drift detection tools are generally based on prediction accuracy.
The Drift Detection Method (DDM) (Gama et al. 2004) monitors the proba-
bility of error at time t, denoted as pt with standard deviation st. The Early
Drift Detection Methodology (EDDM Baena-Garćıa et al. 2006) was devel-
oped as an extension of DDM, and is more suitable for slow moving gradual
drifts, where DDM previously failed (Sethi and Kantardzic 2017). The Sta-
tistical Test of Equal Proportions (STEPD) (Nishida and Yamauchi 2007)
computes the accuracy of a batch of recent predictions and compares it with
the overall accuracy from the beginning of the stream, using a chi-squared
test to check for deviation. An incremental approach, Concept Drift Detection
(ECDD), was proposed by Ross et al. (2012). Some window based methods
like the Adaptive Windowing (ADWIN) algorithm (Bifet and Gavaldà 2007;
Yoshida et al. 2011) and SeqDrift2 (Sobhani and Beigy 2011) detect whether
sub-windows have significant differences in terms of predictive accuracy.

We wish to base our response to concept drift on the coverage of our in-
terval forecasts rather than the point prediction accuracy. An interval forecast
which covers most of the data suggests that the model in use is a good one
which should continue to be used as long as it remains effective. The three sim-
plest ways for a time series to change are to change mean value with variance
fixed; change variance with mean value fixed; or change both mean value and
variance. When variance alone changes, we can widen or shrink our interval
forecast to cover future data more efficiently. But when the mean value changes
with or without variance change, we need to consider building a new model.
For an interval forecast from a regression tree, we use the sample quantiles of
the observations falling into the relevant terminal node of the tree. So when
the mean of the data changes substantially, our tree will no longer be able to
produce suitable forecasts, being biased towards historical rather than current
values. Our criterion is that when too much test data falls outside our forecast
intervals, then we build a new model with the most recent batch of data to
update or replace the current model.

Finally, when concept drift has happened, how should we respond? There
are many ways to improve the model when concept drift is detected. Some
authors rebuild or update the model using the new batch of data (Gholipour
et al. 2013), while other remove some poorly performing nodes and grow new
ones with the latest batch (Domingos and Hulten 2000; Bifet and Gavaldà
2009). In ensemble methods, some drop the worst model and replace it with a
new model but with the other models unchanged. Inspired by these ideas, we
develop two methods, one ensemble method and one based on a single tree.

3 Methodology

In this section, we first introduce regression trees and the maximal overlap dis-
crete wavelet transform (MODWT). Next, we propose two methods to create

Interval Forecasts based on Regression Trees for Streaming Data 5

interval forecasts for streaming data: a single-tree and an ensemble approach.
We then describe an approach which adaptively adjusts the interval forecasts
according to the changing characteristics of the data, and discuss criteria for
model retraining. Finally, we define our measures of model performance.

3.1 Background

3.1.1 Outline

We use regression tree models for forecasting time series data {yt}, denoting
the predicted value h steps ahead at time t as

ŷt+h = f(yt, yt−1, . . . , yt−γ+1).

This prediction uses the last γ observations to predict yt+h. We assume that
we have initial training data consisting of observations up to time T , of which
the last h will not be used for prediction within the training set. A schematic
matrix representation is

A =

y1 y2 · · · yγ
y2 y3 · · · yγ+1

...
...

. . .
...

yT−h−γ+1 yT−h−γ+2 · · · yT−h

−→

yh+γ

yh+γ+1

...
yT

. (1)

One thing to note is we are not using all of the matrix A to predict each future
yt, but using each line to predict each time point. The matrix just represents a
batch of data. Since we wish to use the wavelet transform of the left matrix A,
we require a longer time range. So we use longer previous data for the wavelet
transform and then truncate the series of wavelet coefficients to have the same
time range as A; we refer to the matrix of wavelet coefficient series asW . Then
we can use each line in W to predict yh+γ , . . . , yT .

3.1.2 Regression trees

The regression tree model we use is the Conditional Inference Tree (ctree)
method (Hothorn et al. 2006b;a), although our approaches could be applied
to other regression tree methods. Ctree estimates a regression relationship
by binary recursive partitioning in a conditional inference framework. The
algorithm works as follows:

1. The association between each potential predictor and the response is quan-
tified by computing a p-value. The variable with the lowest p-value is se-
lected for splitting, unless the lowest p-value exceeds a pre-specified thresh-
old and splitting is stopped. The threshold used in this paper is 0.05.

2. Implement a binary split in the selected input variable. The split itself
can be established by any split criterion, including those used in CART,
CHAID and so on.

6

3. Recursively repeat steps 1) and 2) on each data subset formed by the splits
made so far until all nodes are sufficiently homogeneous that no further
splitting is indicated.

The method of computing the p-values used depends on the nature of the
response and potential predictor variables, and can include those used for the
Spearman correlation test, the Wilcoxon-Mann-Whitney test, the Kruskal-
Wallis test or permutation tests based on ANOVA statistics or correlation
coefficients (Hothorn et al. 2006b). These p-values are commonly modified
with a multiple testing correction, such as Bonferroni adjustment, which we
have used in our analyses.

3.1.3 Wavelet transform

Here, we give a brief introduction to the wavelet tools we use in our method.
For more details, see, for example, Percival and Walden (2000). Define the
Haar scaling function φ and wavelet function ψ as

φ(τ) =

{

1 τ ∈ [0, 1)
0 else,

and ψ(τ) =

1 τ ∈ [0, 1/2)
−1 τ ∈ [1/2, 1)
0 else.

By using dilation and translation, we obtain the non-decimated scaling func-
tion and wavelet at location l and resolution level j:

φj,l(τ) = 2j/2φ
(

2j(τ − l)
)

and ψj,l(τ) = 2j/2ψ
(

2j(τ − l)
)

,

where j = 0, 1, . . . , J , J = ⌊log2 T ⌋, and l = 1, 2, . . . , T . Note that φj,l and ψj,l

are compactly supported on Ij,l =
[

2−j l, 2−j(l + 1)
)

.
In the MODWT, the data are represented in terms of the functions φj,l

and ψj,l. We compute scaling coefficients sj,l of our time series y1, . . . , yT as

sj,l = 〈y·, φj,l〉 =

T
∑

t=1

ytφj,l(t/T) = 2j/2
∑

t/T∈Ij,l

yt,

and wavelet coefficients dj,l as

dj,l = 〈y·, ψj,l〉 = sj−1,l − sj,l.

Hence, coefficients of φj,l and ψj,l represent local averages and contrasts, re-
spectively, in the interval Ij,l. To interpret these coefficients, note that when
j is small the corresponding scaling and wavelet functions are highly localized
at that fine scale, representing brief transient effects. Conversely, when j is
large, they represent lower frequency activity at a coarse scale.

Many other wavelet functions exist, but we have found the Haar basis to
be effective in our analysis and their simplicity eases interpretation of the
results. Other wavelet basis functions have more complex shapes, and while
they may give better raw performance in particular data sets they lack the
simple interpretation of the Haar wavelet.

Interval Forecasts based on Regression Trees for Streaming Data 7

After applying the wavelet transform, the scaling coefficients s and wavelet
coefficients d are treated as variables which can be used for classification. We
then have the T × 2J wavelet transformed data matrix

W = MODWT(A) =

W d1

1 · · · W dJ

1 W s1
1 · · · W sJ

1

W d1

2 · · · W dJ

2 W s1
2 · · · W sJ

2
...

. . .
...

...
. . .

...

W d1

T · · · W dJ

T W s1
T · · · W sJ

T

,

and we use the columns of W as predictor variables in our regression trees.

3.2 Proposed Methods

We propose two forecasting methods: an ensemble model and a single-tree
model. Initially, at time t0, we set T = t0 in Equation (1) and obtain our
starting model. We then use data yt for t = t0−h+1, . . . , t0 to obtain predic-
tions for t = t0+1, . . . , t0+h. From then on, forecasting is done continuously,
but after each batch of data, we review and update our models.

We now describe the stages of our method. As some of the steps for the
ensemble model and single-tree model are the same, these steps are described
together, with only the differences stated separately. At Stage 1, we use the
initial t0 observations for initial training and forecasting. We regard each sub-
sequent batch of h observations afterwards as a new stage in the process, so
at Stage k, we have data yt, t = 1, 2, . . . , t0+kh. At each Stage k = 1, 2, 3, . . .,
we go through the following steps. (Some details of the model and forecast
updating process are deferred to the following section.)

1. (k + 1)st prediction
– (k + 1)st prediction (ensemble method)

For each new observation at Stage k, continuously use the ensemble to
get a weighted forecast for new data at Stage k + 1. Denote a predic-
tion by the vector P = (L, ŷ, U), including the predicted value ŷ and
forecast interval limits L,U . Let P(1) be the forecast from the first (old-
est) model (a single tree), P(2) the next oldest and so on. Hence our
ensemble is initiated by a single tree which is then joined by further
trees. Let s and m be the current and maximum number of trees in the
model, respectively. Then the combined forecast from an ensemble of
sm models is P̄(s), defined iteratively by

P̄(2) = k1P(1) + k2P(2),

P̄(3) = k1P̄(2) + k2P(3),
...

P̄(s) = k1P̄(s−1) + k2P(s),

where k1 + k2 = 1. Generally, k2 > k1 to ensure that the most recent
tree is given more weight than older ones.

8

– (k + 1)st prediction (single method)
For each new observation at Stage k, use the latest model to get a
prediction Pt for t ∈ Sk+1 = {t0 + kh+ 1, . . . , t0 + (k + 1)h} until time
reaches t0 + kh.

2. kth RMSE calculation
Calculate the root mean squared error (defined later in Equation (2)) be-
tween the observed data from Stage k and the point forecasts of these data
which were made in the previous Stage k − 1.

3. kth model updating
If a new model was created at Stage k−1, update this latest model trained
or updated from the last Stage k − 1 by using the kth RMSE as described
later in §3.3.

4. (k + 1)st model training
– (k + 1)st model training (ensemble method):

We use data at Stage k to train a new model. If the total amount of
data observed until now is greater than some upper limit TΩ , then we
use the latest TΩ observations to emphasize more recent information
and make the models more responsive to concept drift.

– (k + 1)st model training (single method):
The current model, possibly based only on the original data, may be-
come less relevant, showing bias or excess uncertainty due to concept
drift, so we choose to train a new model when necessary. However, a
new model is only trained when deemed necessary and otherwise we
continue with the existing model. The decision on whether to train a
new model is based on the coverage of our forecasts of the most recent
batch of data. For the latest h observations, let

py = max

{

1

h

∑

t∈Sk

I[ŷt > (yt + δ)],
1

h

∑

t∈Sk

I[ŷt < (yt − δ)]

}

,

which will increase if our predictions are systematically above or be-
low the observed values by a tolerance δ, or if the variance of either
the predictions or the data-generation process increases. If py exceeds
a threshold of, say, 90%, then we train a new model using these h
observations to replace the old model.

This outlines the ongoing process of model updating which will continue as
long as data are being observed. We now give more details of the construction
and updating of our forecast intervals, which is largely the same for both
ensemble and single-tree methods.

Interval Forecasts based on Regression Trees for Streaming Data 9

3.3 Construction and updating of interval forecasts

3.3.1 Forecast interval construction

For each terminal node, we use the 0.025 and 0.975 quantiles of the values
in that node as an initial interval [L′, U ′]. To make our forecast interval less
sensitive to overfitting the training data, we enlarge it to

[L,U] = [L′ − α(U ′ − L′), U ′ + α(U ′ − L′)].

The initial shrinkage of the intervals serves to protect against any outliers
in the original data leading to an unreasonably large interval. Subsequently
enlarging the interval serves to reduce the influence of minor change in the
distribution of future data. α can be used to trade off coverage and width.
Larger values of the tuning parameter α lead to wider intervals, usually with
correspondingly higher coverage but big width, while a much small alpha will
have little effect. In that case, a range around [1, 3] of α is suggested. This
tuning parameter is only applied to new models.

3.3.2 Updating forecast intervals

We adaptively adjust the width of our interval forecasts, depending on the
coverage of the most recent point forecasts. For a general Stage k, comprising
time points t ∈ Sk, the root mean squared error of the point forecasts of the
h observations is

RMSEk =

√

1

h

∑

t∈Sk

(ŷt − yt)2. (2)

Denote the forecast interval for observation yt by [Lt, Ut]. Let pU and pL be
the proportions of intervals with yt < Ut and yt > Lt respectively:

pU =
1

h

∑

t∈Sk

I{yt < Ut}, pL =
1

h

∑

t∈Sk

I{yt > Lt}.

We now use these empirical coverage rates to choose when to increase or
decrease L or U by β · RMSEk to adapt for the forecasting performance at
Stage k, since we assume that using the current data to adapt the existing
model will improve future prediction. Here, β is a tuning parameter; we have
found values of β ∈ [2, 3] to be effective. We set lower and upper target coverage
a and b and try to maintain coverage rate in the range (a, b). Typical values
would be a = 0.95, b = 0.99.

If pU < a, meaning that the proportion of observations where Ut > yt does
not even reach our minimum desired coverage, then we increase future values
of U by β · RMSEk. Similarly, if pL < a, we decrease L by β · RMSEk.

If pU > b, meaning that the observation is below the upper limit of the
forecast interval more often than we intended, we decrease future forecasts
U by β · RMSEk, constrained by Ut > ŷt. We also do not decrease Ut if the

10

pU < a pU > b

pL < a
U → U + β · RMSEk

L → L− β · RMSEk

U → U − β · RMSEk

L → L− β · RMSEk

pL > b
U → U + β · RMSEk

L → L+ β · RMSEk

U → U − β · RMSEk

L → L+ β · RMSEk

Table 1 Situations where [L,U] is adapted to recent forecasting performance, subject to
the constraints Lt < ŷt < Ut, pU > a, and pl > a.

adjusted pU would go below a while calibrating on Stage k data. Similarly,
if pL > b, we increase L by β · RMSEk subject to the constraint Lt < ŷt. In
total, there are four combinations of how [L,U] might be updated, which are
summarized in Table 1.

3.4 Performance measurement

To measure the performance of our interval forecasts, we use the coverage or
proportion of observations in [L,U]:

coverage =
1

T − t0

T−t0
∑

t=1

I{yt ∈ [Lt, Ut]}. (3)

However if two methods have similar coverage, then we use the one which has
lower mean forecast interval width:

width =
1

T − t0

T−t0
∑

t=1

(Ut − Lt). (4)

If one method has both higher coverage and lower width than its competitors,
then it is dominant. Often, no method is dominant and then the choice of
“best” method requires a judgement as to the trade-off between coverage and
width. Whether coverage or width is prioritized depends on the requirement of
the data analysis. Although there are methods which combine both coverage
and width in one criterion, such as the one proposed by Khosravi et al. (2011),
choosing the “best” combination still requires user choice of balance between
coverage and width.

4 Simulation study

In this section, we compare the performance of our tree-based models with
that of parametric models when forecasting simulated data. We use ARIMA
and GARCH models both for simulating data and forecasting. We then explore
how the performance of our tree-based methods behaves under different drift
types and noise levels.

Interval Forecasts based on Regression Trees for Streaming Data 11

4.1 ARIMA simulation

4.1.1 Method

Our first parametric model is the ARIMA model defined by
(

1−

p
∑

k=1

ϕkB
k

)

(1−B)dyt =

(

1 +

q
∑

k=1

ϑkB
k

)

ǫt, (5)

where B is the lag operator, the ϕk and ϑk are the parameters of the au-
toregressive and moving average parts of the model respectively, and the ǫt
are innovation terms assumed to be independently normally distributed with
mean zero and variance σ2

ǫ . We fix p = q = 1 and either fix d = 0 (no trend)
or randomly sample d ∈ {0, 1} (trend is possible). For each simulation, we
generate a time series composed of ten time series segments (each of length
3000), where each segment has independently generated parameters:

Y = {Y 1, Y 2, . . . , Y 10}, (6)

{Y i} ∼ ARIMA(ϕi, ϑi, σi, di), i = 1, 2, . . . , 10. (7)

The parameters ϕi, ϑi, σi, and d are sampled from distributions which we
index by case j; ϕi, ϑi ∼ U(aj , bj), σ

i ∼ U(cj , dj), and d
i ∼ U{0, 1} if trend is

possible or di = 0 if trend does not exist. By choosing one distribution j, we
generate parameters ϕi, ϑi, σi, and di ten times, so we get nine change points
in each time series.

In each replicate, we generate a time series Y of length 30000, and apply
all methods separately for forecasting. For each case, we conduct 20 replicate
simulations. The parameters we found to work well for tree-based methods are
α = β = 2, (a, b) = (0.95, 0.99), h = 100, t0 = 1311, γ = 12, δ = 2, TΩ = 1000,
and m = 3.

We employ a similar ARIMA forecasting approach to our regression tree
methods for comparison. Instead of using wavelet transformed variables, we
use the original untransformed variable in ARIMA (and, later, for our GARCH
simulation), as our ARIMA approach is univariate and employing the wavelet
transform converts the univariate predictor into a multivariate predictor with
variables at each resolution level. (Extension to multivariate models could be
considered in future work.) We use the function auto.arima in the R package
forecast (Hyndman 2017; Hyndman and Khandakar 2008) to find the best
ARIMA model according to AICc (small sample size corrected AIC). This
function conducts a search over possible models within the order constraints
provided: p, q ∈ {0, 1, . . . , 6} and d ∈ {0, 1, 2}. Allowing higher orders incurs
a higher computational load. The prediction interval levels we choose for sin-
gle ARIMA and ensemble ARIMA are set to be equal to the empirical coverage
results from single tree and ensemble tree methods, which we denote by c, to
obtain results comparable to those obtained by using regression trees. There
are circumstances when the coverage can not meet this specified prediction
interval level c, even though model updating is performed, especially when the

12

model order has been incorrectly identified. As in the regression tree methods,
we use the first t0 = 1311 observations to train our initial model. By using
data from t− γ + 1 to t, we can predict the value at time t+ 1

ŷt+1 = f(yt, yt−1, . . . , yt−γ+1),

where γ = 1000. Then we recursively use this predicted ŷt+1 to predict ŷt+2

ŷt+2 = f(ŷt+1, yt, yt−1, · · · , yt−γ+2),

and iterate to get the predicted value h = 100 observations ahead as ŷt+100.
We allow our ARIMA forecasts to respond to concept drift by updating

and retraining. For updating, we keep p, q, and d fixed and re-estimate the
parameters by using the most recent γ = 10h observations. Retraining allows
p, q and d to be re-estimated. There are two criteria for model retraining and
updating. The first is the empirical coverage; retraining if the method fails
to achieve lower coverage c − 0.3 and c − 0.15 for updating and retraining
respectively, or exceeds the upper coverage b = 0.99. The second criterion, to
avoid excessively frequent fitting, is that no updating or retraining will occur
for at least 100 new observations after an update or retraining.

When retraining, instead of using h observations as in the regression model,
we use 10h observations to make the ARIMA model robust to short-term
trends. So in the ensemble method, there is no need to train a new model
after every 100 observations unlike the ensemble tree method which uses only
100 observations to train a new model. We choose to train a new model so
as to leave out the oldest model or we update the most recent model. For
the ensemble model, we choose up to m = 3 most recent models and weight
predictions in the same way as that in the ensemble tree method. Larger values
of m may lead to better performance but at the cost of greater computation
time. In all applications we have considered, m = 3 has given a reasonable
balance between computational speed, performance and interpretability. Other
criteria are the same as in the tree methods.

4.1.2 Results

Results from 20 simulations are shown in Table 2 and details of one realization
from case 4 are shown in Figure 1.

Note that tree methods take around 1/3 of the computation time of ARIMA
in both single and ensemble methods, including the time taken to compute the
wavelet transform.

When comparing point estimation accuracy of tree methods with ARIMA,
the ARIMA methods have substantially larger RMSE in cases 6 and 8. The
other cases have similar RMSE values for tree-based and ARIMA methods.
Overall, we conclude that tree methods are better than ARIMA methods in
terms of point estimation accuracy.

When comparing tree methods with ARIMA in coverage and width, it is
clear that the ensemble tree method is better than or similar to single ARIMA

Interval Forecasts based on Regression Trees for Streaming Data 13

method and ensemble ARIMA method in most situations except cases 4, 6 and
8. But for these cases, methods with higher coverage are at the cost of bigger
width. If we allowed a wider interval for tree methods, they might achieve
the same coverages as that of ARIMA. For the tree methods, the single tree
method has equal performance to that of the ensemble tree method except in
cases 5 and 7 where the single tree method has similar coverage but noticeably
wider intervals.

For the widthsd (the standard deviation of width within each simulation),
tree methods are somewhat better than ARIMA. For a time series, when trend
disappears, ARIMA will still forecast with trend before retraining thus the
forecast intervals can be extremely wide. When there is no trend, but a trend
is falsely detected by ARIMA, intervals can be wide as well, but tree methods,
which consider trend in a different way, can avoid such situations.

When the data-generation distribution changes from one time series seg-
ment to the next, as shown in Equation (6), the forecast intervals from the
tree methods can react much more quickly than ARIMA. Examples of ARIMA
being slow to respond are shown in the circled areas of Figure 1; the ARIMA
interval forecasts are predictably ineffective when moving from a segment with
trend (d = 1) to one without (d = 0).

In conclusion, the ensemble tree method is better than the others when
there is no time efficiency requirement, although the extent to which it is bet-
ter depends on the situation. When time is critical, the single tree method
is suggested. When the ARIMA effect is strong and trend possible, the sin-
gle ARIMA method is suggested, but at the expense of wide intervals.

1
4

Table 2 The mean and standard deviation (sd) of coverage, width, widthsd and time for all methods across 20 simulations. Widthsd is the standard
deviation of width within each simulation. The sd in width(sd) is the standard deviation of mean width across 20 simulations.

ϕ, ϑ U(0.1, 0.2) U(0.8, 0.9)

σ white noise U(0.2, 0.5) U(4, 5) U(0.2, 0.5) U(4, 5)

trend possible no yes no yes no yes no yes

case 0 1 2 3 4 5 6 7 8

Single tree method

coverage(%) 99.39(0.2) 98.13(1.2) 76.39(8.5) 99.36(0.2) 73.56(7.4) 94.70(1.5) 69.16(10.5) 94.80(1.4) 64.04(9.0)
width 5.52(0.1) 3.21(0.4) 8.15(2.9) 12.24(0.4) 28.92(9.2) 11.87(1.4) 54.99(22.2) 43.11(3.5) 223.54(74.1)
widthsd 0.00(0.0) 0.28(0.2) 7.95(2.9) 0.06(0.1) 29.34(10.2) 3.30(0.8) 74.09(29.6) 11.43(2.0) 272.60(98.0)
time 60.11(2.4) 62.40(12.6) 67.66(15.6) 60.10(2.2) 65.85(10.2) 60.01(1.9) 66.19(2.8) 60.23(1.2) 67.92(2.4)
RMSE 1.00(0.0) 0.62(0.0) 7.30(2.1) 2.22(0.0) 28.36(6.6) 2.28(0.2) 69.30(19.6) 8.55(0.7) 271.36(71.0)

Ensemble tree method

coverage(%) 99.32(0.0) 99.22(0.1) 75.26(9.8) 99.31(0.1) 73.18(8.9) 94.34(0.6) 69.21(9.4) 93.96(0.8) 66.23(9.1)
width 5.45(0.0) 3.33(0.2) 8.19(2.5) 12.07(0.1) 30.12(6.7) 9.48(0.4) 52.46(18.0) 34.78(0.6) 227.17(65.7)
widthsd 0.16(0.0) 0.41(0.1) 7.67(2.3) 0.53(0.1) 27.21(5.5) 2.23(0.3) 69.00(17.7) 7.23(0.6) 280.70(67.1)
time 229.22(5.1) 239.27(45.4) 252.85(54.3) 229.08(6.1) 249.91(7.0) 258.50(60.1) 251.89(18.3) 238.74(5.9) 248.28(7.6)
RMSE 1.00(0.0) 0.62(0.0) 8.80(2.9) 2.22(0.0) 33.544(8.0) 2.21(0.1) 84.41(25.0) 8.18(0.3) 332.20(93.6)

Single ARIMA method

coverage(%) 99.00(0.0) 97.29(1.5) 76.57(7.4) 99.01(0.1) 74.73(6.1) 95.10(1.6) 74.07(7.3) 95.26(1.6) 71.31(6.6)
width 6.34(0.6) 3.04(0.3) 17.86(6.6) 12.88(1.0) 67.01(32.9) 11.85(1.9) 181.16(63.4) 43.06(5.8) 702.23(171.2)
widthsd 6.12(1.7) 1.87(0.9) 62.03(38.1) 10.18(4.0) 233.29(180.0) 10.47(2.0) 456.84(327.3) 36.96(6.1) 1481.35(686.4)
time 173.51(5.8) 176.09(45.3) 162.13(40.1) 174.69(5.7) 150.16(6.7) 189.73(34.1) 177.86(39.0) 179.23(12.1) 162.46(9.7)
RMSE 1.01(0.0) 0.62(0.0) 8.49(2.6) 2.23(0.0) 33.99(12.8) 2.15(0.1) 583.08(439.7) 7.91(0.3) 2755.65(2082.3)

Ensemble ARIMA method

coverage(%) 99.05(0.1) 98.19(0.8) 77.41(7.5) 99.05(0.1) 77.04(6.5) 95.56(0.7) 77.92(5.4) 95.26(0.9) 76.84(5.1)
width 6.34(0.6) 3.33(0.3) 17.34(6.0) 13.20(1.2) 67.40(33.9) 11.90(1.3) 174.41(57.5) 42.13(4.4) 718.73(155.0)
widthsd 5.26(1.6) 2.08(0.9) 52.64(32.0) 9.73(4.0) 202.60(160.7) 9.43(1.4) 370.22(257.9) 32.44(4.4) 1316.99(531.5)
time 680.86(31.9) 710.16(147.7) 668.94(169.9) 805.04(571.7) 636.70(62.5) 816.13(301.1) 669.54(38.2) 691.57(29.6) 662.62(23.2)
RMSE 1.01(0.0) 0.62(0.0) 8.25(2.5) 2.23(0.0) 35.06(14.9) 2.14(0.1) 462.14(378.3) 7.86(0.3) 2665.37(2029.0)

Interval Forecasts based on Regression Trees for Streaming Data 15

Fig. 1 Simulation results (from one realisation of case 4). Left and right columns show
single-model and ensemble results respectively. From top to bottom, results are for ctree,
ARIMA, and ARIMA with restricted vertical range. X-axis is time and Y-axis is the values
of the time series. In this plot, ϕ and ϑ both follow U(0.1, 0.2), σ follows U(4, 5) with trend
possible. Red dashed vertical lines represent the time when distribution changes. The time
when model is retrained is labeled as black circles, slightly above the purple line. The label
is the same for the rest of such figures. ARIMA has extremely wide intervals in some cases
and its intervals react slowly when the data distribution changes as shown in the circled
areas. Colours are displayed in the electronic ADAC version; the printed version is restricted
to black/white displays.

4.2 GARCH simulation

4.2.1 Method

We now simulate data from the GARCH model yt = σt|t−1ǫt, where ǫt is
Gaussian white noise with unit variance and

σt|t−1 = w +
r
∑

k=1

ξky
2
t−k +

s
∑

k=1

ζkσt−k|t−k−1.

In this simulation, we choose both r and s to be 1. However, when we identify
the GARCH model, we allow a maximum of 3 for both r and s. The data simu-

16

Table 3 The mean and standard deviation (sd) of coverage, width, widthsd and time for all
methods applied to GARCH data across 20 simulations. Widthsd is the standard deviation
of width within each simulation. The sd in width(sd) is the standard deviation of mean
width across 20 simulations. Here, w follows uniform distribution U(0, 2).

ξ 0 U(0, 0.2) U(0, 0.2) U(0.6, 0.8) U(0.3, 0.5)

ζ 0 U(0, 0.2) U(0.6, 0.8) U(0, 0.2) U(0.3, 0.5)

case 0 1 2 3 4

Single tree method

coverage(%) 97.02(1.5) 96.59(1.4) 95.71(0.8) 95.49(1.4) 99.56(0.2)
width 5.37(0.9) 11.08(1.9) 9.90(1.2) 10.48(2.2) 5.82(0.4)
widthsd 1.62(0.4) 4.19(1.2) 4.72(2.1) 4.93(3.1) 0.15(0.2)
time 36.06(5.1) 35.58(2.6) 34.27(0.4) 34.99(1.5) 37.73(6.3)
RMSE 1.14(0.1) 2.47(0.4) 2.35(0.3) 2.49(0.5) 1.00(0.0)

Ensemble tree method

coverage(%) 98.91(0.2) 98.71(0.2) 97.45(0.2) 97.92(0.2) 99.34(0.1)
width 6.00(0.5) 12.70(1.8) 10.93(1.1) 12.07(1.7) 5.46(0.0)
widthsd 1.74(0.3) 4.96(1.7) 4.28(1.2) 5.20(2.2) 0.16(0.0)
time 234.86(8.2) 235.40(11.7) 236.11(12.3) 236.91(12.8) 241.12(17.3)
RMSE 1.15(0.1) 2.47(0.4) 2.36(0.3) 2.49(0.5) 1.00(0.0)

Single GARCH method

coverage(%) 96.24(1.6) 95.72(1.2) 95.12(0.9) 94.36(1.1) 99.77(0.0)
width 4.88(0.8) 9.88(1.4) 9.74(1.3) 9.45(1.9) 6.18(0.0)
widthsd 1.48(0.2) 3.96(1.4) 6.10(2.3) 5.15(3.3) 0.31(0.0)
time 998.04(371.3) 962.33(314.4) 986.34(149.1) 841.51(131.8) 2456.56(648.7)
RMSE 1.15(0.1) 2.46(0.4) 2.36(0.3) 2.49(0.5) 1.00(0.0)

Ensemble GARCH method

coverage(%) 99.06(0.8) 98.40(0.9) 96.31(0.7) 96.22(0.7) 99.77(0.0)
width 6.50(0.9) 12.77(2.0) 11.10(1.4) 10.98(2.2) 6.18(0.0)
widthsd 1.97(0.3) 5.07(1.3) 6.99(2.7) 6.01(3.9) 0.30(0.0)
time 3080.11(1261.3) 2645.60(1168.9) 1764.12(110.1) 2099.51(988.5) 3049.03(340.8)
RMSE 1.15(0.1) 2.46(0.4) 2.36(0.3) 2.49(0.5) 1.00(0.0)

lation process is analogous to the earlier ARIMA simulation. The functions we
use include garchAuto, ugarchfit, ugarchforecast in the R packages rugarch (Gha-
lanos 2014) and fGarch (Wuertz et al. 2019). The criterion used for GARCH
model selection is AIC. As for our ARIMA simulation, model-based forecasts
use the original variable rather than wavelet-transformed variables.

4.2.2 Results

The results are shown in Table 3 and one specific example is shown in Figure 2.
In Table 3, we can see that the forecast intervals from the single tree and
single GARCH methods are slightly less responsive to concept drift than their
ensemble counterparts in terms of interval coverage. Generally, these methods
share similar performance with higher coverage at the cost of higher width.
For point estimation, all the methods considered have similar RMSE values.

Interval Forecasts based on Regression Trees for Streaming Data 17

Fig. 2 GARCH simulation results (from one realisation of case 4). In this plot, ξ and ζ both
follow U(0.3, 0.5). Red dashed vertical lines represent the time when distribution changes.
X-axis is time and Y-axis is the values of the time series.

4.3 Performance of tree methods under different noise levels and drift types

In order to explore how our tree methods perform under different noise levels
and drift types, we simulate AR(1) data undergoing different forms of concept
drift. As in Equation (5), the noise level is specified by the white noise variance
σ2
ǫ . We consider drift represented by changes in the autoregressive parameter ϕ

and different mean levels and use the four types of drift proposed by Krawczyk
and Cano (2018) describing severity and speed of changes. Specification of our
data structures and example realizations are shown in Table 4.

When our methods are applied to one simulated data realization of each
type, the results are shown in Figure 3. It shows that the single-tree method
retrains the model soon after concept drift happens for sudden, gradual and
recurring changes. For incremental change, where the concept does not change
sharply, the single-tree method finds only two change points, and is not as
responsive as for other change types. The ensemble tree method can generally
find the change point as it will always train a new model for the new data,
but it reacts to sudden changes a bit more slowly than the single-tree method
as the ensemble method remembers long term information and takes time to
forget old information.

When the simulations were conducted 50 times under each each type of
drift for σǫ = 1, 2, . . . , 5, the results are shown in Figures 4 and 5. The change
points are the same as in Figure 3. The point when change drift happens, is
also the point when coverage drops suddenly.

18

Fig. 3 The performance of single-tree and ensemble methods under different drift types
with σǫ = 1. The red vertical lines are the time points when concept drift happens.

When σǫ = 1, the single tree method can generally detect different types of
drift, in many cases responding to concept drift more quickly than the ensem-
ble method. The main exception is for the recurring concept drift, where the
ensemble method “remembers” a concept which has been seen previously when
it recurs. When drift happens, especially for sudden, gradual, and recurring
drifts, the coverage obviously drops but quickly recovers. The AR(1) process
with more pronounced autoregression (higher ϕ) usually has lower coverage
and wider intervals than weakly correlated data. When σǫ increases, the fre-
quency of model retraining increases even when drift does not occur (up to
σǫ = 4) but reduces again at σǫ = 5; qualitatively similar results were seen
when we increased the noise levels for different drift types.

In conclusion, in the presence of drift, the performance of tree methods
initially drops, but soon recovers. When the noise level increases, the coverage
performance decreases slightly, but good coverage is maintained at the cost of
much wider intervals.

Interval Forecasts based on Regression Trees for Streaming Data 19

Single tree performance with sudden change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e
 a

n
d
 r

e
tr

a
in

in
g

W
id

th

0

2

4

6

8

10

12

2000 4000 6000 8000 10000

Ensemble tree performance with sudden change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e

W
id

th

0

2

4

6

8

10

12

1000 3000 5000 7000 9000

Single tree performance with gradual change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e
 a

n
d
 r

e
tr

a
in

in
g

W
id

th

0

2

4

6

8

10

12

14

2000 4000 6000 8000 10000

Ensemble tree performance with gradual change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e

W
id

th

0

2

4

6

8

10

12

14

1000 3000 5000 7000 9000

Single tree performance with incremental change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e
 a

n
d
 r

e
tr

a
in

in
g

W
id

th

0

2

4

6

8

10

12

2000 4000 6000 8000 10000

Ensemble tree performance with incremental change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e

W
id

th

0

2

4

6

8

10

12

1000 3000 5000 7000 9000

Single tree performance with recurring change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e
 a

n
d
 r

e
tr

a
in

in
g

W
id

th

0
2
4
6
8
10
12
14

2000 4000 6000 8000 10000

Time

Ensemble tree performance with recurring change

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ve

ra
g
e

W
id

th

0
2
4
6
8
10
12
14

1000 3000 5000 7000 9000

Time

Fig. 4 The performance of single-tree and ensemble methods under different drift types
with σǫ = 1, averaged over 50 replications at each time point. Black and blue lines are
averaged coverage and width, respectively. Red lines are the proportion of replicates where
retraining occurred. As the ensemble method always trains a new model when a new data
batch arrives, there is no retraining line for the ensemble method.

20

Table 4 Four types of drift with simulated examples based on AR(1) processes with au-
toregressive parameter ϕ. All AR processes have white noise variance σ2

ǫ ; in these examples,
σ2
ǫ = 1.

Drift type and example Specification

Sudden drift

y = [y1, y2],
y1: ϕ = 0.1, mean 0, length 5000,
y2: ϕ = 0.9, mean 5, length 5000.

Gradual drift
y = [y1, y2, y3, y4, y5, y6],
y1, y3, y5: ϕ = 0.1, mean 0,

lengths 3000, 1500, 500,
y2, y4, y6: ϕ = 0.9, mean 5,

lengths 500, 1000, 3500.

Incremental drift

y = [y1, y2, . . . , y9],
yi,: ϕ = i/10, mean i− 1,

lengths 3000, 500, . . . , 500, 3500.

Recurring drift

y = [y1, y2, y3, y4, y5, y6],
y1, y3, y5: ϕ = 0.1; y2, y4, y6: ϕ = 0.9,
all with mean 5,
lengths 2000, 1500, . . . , 1500, 2000.

5 Forecasting heart rate in surgery

The data we use comes from 325 patients undergoing Liver Transplantation
(LT) operation, a high-risk treatment for patients with end-stage liver disease.
The data, which was recorded using a LIDCO monitor on patients undergoing
LT between September 2004 and December 2011, is provided by St James’s
University Hospital, Leeds, UK. For details, refer to Milan et al. (2016). The
variable we use is the heart rate (beats/min), as it is one of the most important
variables to be monitored on an ongoing basis during surgery. We aim to
predict heart rate h = 100 heart beats ahead (in our data, each heart beat
takes around 0.5 to 1 seconds), so that the operating team can have enough
time for preparation if heart rate is forecast to go out of a normal range, when
the patient might be in danger. In our illustration, we use previously cleaned
data (Zhao et al. 2018).

5.1 Tree-based forecasting

When we forecast heart rate using our ensemble and single tree methods, we
found parameter values α = β = 2, (a, b) = (0.95, 0.99), h = 100, t0 = 1311

Interval Forecasts based on Regression Trees for Streaming Data 21

Fig. 5 The performance of single-tree and ensemble methods on data subject to gradual
drift under different noise levels σǫ = 1 (top) to σǫ = 5 (bottom), averaged over 50 replica-
tions. Black, blue and red lines have the same meaning as in Figure 4. Change in performance
as noise increases is similar with other types of drift.

and γ = 12, δ = 2, TΩ = 8000, and m = 3 to work well across all patients.
We use two patients’ data as examples in Figure 6. Ensemble and single tree
methods have coverage (77.7%, 85.9%), widths (7.6, 6.8), and computing times
(134, 12) for patient 1 and coverage (86.6%, 83.6%), widths (10.0, 7.3), and
computing times (491, 41) for patient 2. From the results, we can see that
both methods have good performance. Generally the forecast intervals cover
the observed values without being excessively wide, only failing to include the
observed data when there are episodes of high volatility.

22

Fig. 6 Data and monitoring forecasts using regression trees for liver transplantation pa-
tients 1 and 2.

Fig. 7 Summary results of forecasts for all 325 patients. Each point represents mean cov-
erage and width for one patient. The inset plot is a zoom in of the larger plot.

Interval Forecasts based on Regression Trees for Streaming Data 23

Fig. 8 Kernel density plots of coverage (left) and mean width (right) for the full set of 325
patients.

Table 5 The relative performances of ensemble and single tree methods as percentages of
the 325 patients.

Narrower intervals
ensemble single

Higher coverage
ensemble 5.23% 44.62%
single 17.54% 32.62%

Summary results for all 325 patients are shown in Table 6 and Figures 7
and 8, including a detailed view of those patients whose mean interval width
was below 20. We can see the results of single and ensemble tree methods are
generally similar, with the ensemble tree method being a little higher in cover-
age but having wider intervals and being substantially more computationally
expensive. The ensemble tree method has a lower density for width around 10
and the coverage density is a little higher when coverage is around 0.88.

Coverage and width are closely related and inspecting them separately does
not tell the entire story, so we now consider them together. Results of some
selected patients are shown in Figure 9, with the results of the ensemble and
single tree methods for a single patient joined by a dashed line for clarity. For
example, for patient 34, the ensemble tree method has better coverage at the
cost of wider intervals. But for patients 45 and 46, the single tree method has
better coverage with narrower intervals. For patient 26, they share nearly the
same coverage, but the ensemble tree method has a smaller width.

We consider each method in terms of coverage and width. One method
is superior if it gives higher coverage and narrower intervals, inferior if it has
lower coverage and wider intervals, and the two methods represent a trade-off if
one has higher coverage and the other has narrower intervals. To compare our
methods, we show the proportion of patients in each category in Table 5. It is
clear that the single-tree method is better as it has substantially more patients
where there is both higher coverage and narrower intervals (32.62%). The
ensemble tree method is only superior in about 5% of patients. When neither

24

Fig. 9 Coverage and mean interval width of ensemble and single tree methods for selected
patients 26, 34, 45 and 46.

Fig. 10 The computational time (in seconds) for ensemble and single tree methods for
all 325 patients. The fitted linear regression slope coefficients are 0.016 and 0.001 for ensemble
and single tree respectively.

method is clearly better, the ensemble tree method is more likely to have higher
coverage, while the single tree method is more likely to have narrower intervals.
Ignoring the interval width, each method has better coverage in about 50% of
cases.

As shown in Figure 10, the computation time has a roughly linear rela-
tionship with time series length Tn. The fitted regression slope coefficients of
0.016 (ensemble tree method) and 0.001 (single-tree method) indicate that
ensemble method takes around 16 times as long as the single-tree method.

Interval Forecasts based on Regression Trees for Streaming Data 25

Fig. 11 Data and monitoring forecasts using ARIMA models for liver transplantation pa-
tients 1 and 2.

However, since new observations arrive at intervals of about 0.5–1 second, the
computation can easily be done online in real time for these data.

The variables used in the trees include both scaling coefficients and wavelet
coefficients at high and low resolution levels using both short and long lag in-
formation. That means heart rate prediction needs both averages and contrasts
with long and short time interval information. In our case, averages were taken
over time spans between 2 and 256 heartbeats. Prediction by only using short
term information may not have a good performance.

5.2 Comparison to ARIMA

We use the ARIMA model to forecast heart rate to compare its performance
with that from trees. The parameters are the same as those in the simula-
tion. Results are shown in Figure 11 and Table 6. Ensemble ARIMA and
single ARIMA methods have coverage (86.82%, 90.46%), widths (9.98, 10.56),
and computing times (240, 65) for patient 1 and coverage (90.12%, 91.19%),
widths (10.94, 9.93), and computing times (814, 269) for patient 2.

26

Table 6 Tree and ARIMA results: mean and standard deviation (sd) of coverage, width
and time for each Method over 325 patients.

Method coverage width time
mean sd mean sd mean sd

Tree

single 0.8837 0.0447 11.05 11.72 35.25 16.81
ensemble 0.8861 0.0405 12.53 12.08 553.71 267.53

ARIMA

single 0.8853 0.0286 10.93 8.32 466.07 256.33
ensemble 0.8732 0.0300 10.38 7.956 1032.20 525.58

Table 7 The relative performances of ARIMA methods as percentages of the 325 patients.

Narrower intervals
ensemble single

Higher coverage
ensemble 5.03% 7.38 %
single 79.87% 7.71%

For ARIMA, we can not distinguish whether the ensemble or single method
is better in terms of coverage and width. The single method is a little bit higher
in both coverage and width, but clearly less computationally demanding. But
they all face a problem: when concept drift in the trend occurs, the old model
cannot predict accurately (especially when d is not 0), as shown in the results
for patient 2. But for tree-based models, such situations do not occur as these
models do not consider trend in the same way. The results of a pairwise are
shown in Table 7.

The single-model method (7.71%) is superior slightly more often than the
ensemble method (5.03%). When neither method is clearly better, the ensem-
ble method is more likely to have narrower intervals, while the single-model
method is more likely to have higher coverage. In practice, we would choose the
single-model method as the performances are comparable but the single-model
approach is less computationally demanding.

Table 8 The relative performances of single-forecast approaches for regression trees and
ARIMA as percentages of the 325 patients.

Narrower intervals
ARIMA Ctree

Higher coverage
ARIMA 12.62% 38.77 %
Ctree 33.85% 14.77%

Interval Forecasts based on Regression Trees for Streaming Data 27

Fig. 12 The relative performances of single-forecast approaches for regression trees and
ARIMA across all 325 patients.

Now we compare the single regression tree and single-model ARIMA ap-
proaches in Table 8 and Figure 12. The Ctree-based approach is superior
slightly more often than the ARIMA method (14.77% vs. 12.62%). So roughly,
their performance is similar in coverage and width although the regression tree
method is somewhat higher in standard deviation as shown in Table 6. How-
ever, in terms of computational time, the regression tree method obviously
outperforms ARIMA. In conclusion, we choose the single tree-based method.

6 Forecasting stock price

In order to compare tree-based methods with more sophisticated time series
models, in this section, we compare tree-based model with ARMA-GARCH
in stock price forecasting. The stock we choose is Shanghai Stock Exchange
Composite Stock Price Index (SSE Index), which is an index of all stocks
traded at the Shanghai Stock Exchange. It is a relatively long time series with
both stationary and non-stationary phases as well as many distribution change
points. The time series dates from 19th, December, 1990 to 1st, June, 2018,
making a total of 6713 closing price observations excluding non-trading days
like weekends and holidays. Since the time series xt is not stationary, we do
first order differencing and take logs to reduce variance fluctuation, so the
variable we use is

yt = log(xt+1)− log(xt).

The parameters we choose for trees are α = β = 2, (a, b) = (0.95, 0.99),
h = 100, t0 = 1311, γ = 12, δ = 2, TΩ = 1000, and m = 3. For ARMA-
GARCH, the maximum value for p, q, r and s are all 2, with γ = 300. Results
are shown in Table 9 and Figure 13 and ensemble ARMA-GARCH is better
than single-tree method with slightly higher coverage and lower width. For

28

Fig. 13 The performances of single and ensemble methods for regression trees and ARMA-
GARCH on SSE Index data.

the other methods, the higher coverage of the ensemble-tree method is at the
cost of wider intervals. But in terms of computational time, the ensemble tree
method is suggested.

Table 9 The performance of tree methods and ARMA-GARCH methods on SSE Index
data.

Method coverage (%) width (×100) widthsd (×100) time

Tree

single 93.58% 9.84 3.4 6.06
ensemble 96.70% 11.15 4.7 38.45

ARMA-GARCH

single 90.93% 7.25 3.1 302.36
ensemble 93.94% 8.40 3.1 598.86

7 Conclusion

We have proposed two tree-based methods to deal with forecasting in a stream-
ing data context. In contrast to many alternative methods, we pay more at-
tention to forecast intervals than point forecasts, although the point forecasts
are essential to adaptively adjust our forecast intervals for the current model’s
accuracy. This adaptation is accomplished by updating the forecast interval
by using root mean square prediction error calculated from the most recent
batch of data, so as to update the model for future prediction. The interval is

Interval Forecasts based on Regression Trees for Streaming Data 29

not necessarily symmetric, being initially based on quantiles but then adapted
to allow for the performance of both point and interval forecasts, constrained
to ensure that the interval forecast will always include the point forecast. An
interesting possibility for future research would be to move the entire inter-
val in the direction of the overall mean of the newly-observed data. Another
possible topic for future investigation is effective choice of the ensemble size
m.

Rather than fixing a time interval of historical data to use in forecasting,
we use a wavelet transform to capture long term variable information. The
maximal overlap wavelet transform decomposes the original time series into
different resolution levels to capture averages and fluctuations over a range
of time scales. This means that the tree construction algorithms can select
whichever aspects of the information in the data are most useful. Moreover,
we gain the benefit of allowing long time spans of historical data to be used
in the models without requiring they all be present as separate explanatory
variables, so that the information we use will not be constrained to the most
recent batch. If variables from coarser resolution levels are used, it means the
time series has long term correlation, and vice versa. For example, if variable
heart rate on resolution level 4 is used in the tree building process, then it
means the heart rate time series has a lag effect of length 24 = 16.

When applied to real and simulated data, tree-based methods generally
perform similarly or better than those based on ARIMA, GARCH or ARMA-
GARCH except when the ARIMA effect is strong and trends may be present.
For ARIMA model-based forecasts, when a trend disappears, forecasts will still
assume the trend is present before retraining thus the forecast intervals can be
extremely wide. When there is no trend, but a trend is falsely detected by the
ARIMA model, intervals can be wide. But tree methods, which consider trend
in a different way, can avoid such situations. Because of this risk of incorrectly
estimating model structure, it is suggested that we use tree methods even
when the ARIMA effect appears to be strong.

When the ARIMA effect is strong without trend, the ensemble tree method
is generally slightly better than the single-tree method in terms of the balance
of coverage and interval width. When time efficiency is required, the single tree
method is suggested, otherwise the ensemble tree method is preferred.

The R code implementations of our methods ctreeensemble.R and ctreeone.R
are contained in the ‘Supplementary Material’ sections of the electronic journal
version on the ADAC website.

References

A. Appice and M. Ceci. Mining tolerance regions with model trees. In Interna-
tional Symposium on Methodologies for Intelligent Systems, pages 560–569.
Springer, 2006.

30

M. Baena-Garćıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and
R. Morales-Bueno. Early drift detection method. In Fourth International
Workshop on Knowledge Discovery from Data Streams, 2006.

A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference on
Data Mining, pages 443–448. SIAM, 2007.

A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams.
In International Symposium on Intelligent Data Analysis, pages 249–260.
Springer, 2009.

A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensem-
ble methods for evolving data streams. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Aata Min-
ing, pages 139–148. ACM, 2009.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive online
analysis. Journal of Machine Learning Research, 11:1601–1604, 2010.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of
the sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 71–80. ACM, 2000.

J. Duarte, J. Gama, and A. Bifet. Adaptive model rules from high-speed data
streams. ACM Transactions on Knowledge Discovery from Data (TKDD),
10(3):30, 2016.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift de-
tection. In Brazilian Symposium on Artificial Intelligence, pages 286–295.
Springer, 2004.

A. Ghalanos. rugarch: Univariate GARCH models., 2014. R package version
1.3-5.

A. Gholipour, M. J. Hosseini, and H. Beigy. An adaptive regression tree
for non-stationary data streams. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 815–817. ACM, 2013.

T. Hothorn and A. Zeileis. partykit: A modular toolkit for recursive party-
tioning in R. Journal of Machine Learning Research, 16:3905–3909, 2015.
URL http://jmlr.org/papers/v16/hothorn15a.html.

T. Hothorn, K. Hornik, M. A. Van De Wiel, and A. Zeileis. A lego system for
conditional inference. The American Statistician, 60(3):257–263, 2006a.

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical
Statistics, 15(3):651–674, 2006b.

R. J. Hyndman. forecast: Forecasting functions for time series and linear
models, 2017. URL http://pkg.robjhyndman.com/forecast. R package
version 8.2.

R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: the
forecast package for R. Journal of Statistical Software, 26(3):1–22, 2008.
URL http://www.jstatsoft.org/article/view/v027i03.

E. Ikonomovska, J. Gama, and S. Džeroski. Learning model trees from evolving
data streams. Data Mining and Knowledge Discovery, 23(1):128–168, 2011.

Interval Forecasts based on Regression Trees for Streaming Data 31

E. Ikonomovska, J. Gama, and S. Džeroski. Online tree-based ensembles and
option trees for regression on evolving data streams. Neurocomputing, 150:
458–470, 2015.

R. Jin and G. Agrawal. Efficient decision tree construction on streaming data.
In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, pages 571–576, New York,
NY, USA, 2003. ACM. ISBN 1-58113-737-0. doi: 10.1145/956750.956821.
URL http://doi.acm.org/10.1145/956750.956821.

A. Khosravi, S. Nahavandi, and D. Creighton. Prediction interval construction
and optimization for adaptive neurofuzzy inference systems. IEEE Trans-
actions on Fuzzy Systems, 19(5):983–988, 2011.

B. Krawczyk and A. Cano. Online ensemble learning with abstaining classifiers
for drifting and noisy data streams. Applied Soft Computing, 68:677–692,
07 2018. doi: 10.1016/j.asoc.2017.12.008.

Z. Milan, C. Taylor, D. Armstrong, P. Davies, S. Roberts, B. Rupnik, and
A. Suddle. Does preoperative beta-blocker use influence intraoperative
hemodynamic profile and post-operative course of liver transplantation?
Transplantation Proceedings, 48(1):111–115, 2016.

K. Nishida and K. Yamauchi. Detecting concept drift using statistical testing.
In International Conference on Discovery Science, pages 264–269. Springer,
2007.

D. B. Percival and A. T. Walden. Wavelet Methods for Time Series Analysis,
volume 4. Cambridge University Press, Cambridge, 2000.

B. Pfahringer, G. Holmes, and R. Kirkby. New options for Hoeffding trees.
In Australasian Joint Conference on Artificial Intelligence, pages 90–99.
Springer, 2007.

H. Quan, D. Srinivasan, and A. Khosravi. Short-term load and wind power
forecasting using neural network-based prediction intervals. IEEE Transac-
tions on Neural Networks and Learning Systems, 25(2):303–315, 2014.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014. URL http:

//www.R-project.org/.
G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand. Exponentially
weighted moving average charts for detecting concept drift. Pattern Recog-
nition Letters, 33(2):191–198, 2012.

T. S. Sethi and M. Kantardzic. On the reliable detection of concept drift from
streaming unlabeled data. Expert Systems with Applications, 82:77–99, 2017.

D. L. Shrestha and D. P. Solomatine. Machine learning approaches for esti-
mation of prediction interval for the model output. Neural Networks, 19(2):
225–235, 2006.

P. Sobhani and H. Beigy. New drift detection method for data streams. Adap-
tive and Intelligent Systems, 6943:88–97, 2011.

B. Whitcher. waveslim: Basic wavelet routines for one-, two- and three-
dimensional signal processing, 2013. URL http://CRAN.R-project.org/

package=waveslim. R package version 1.7.3.

32

D. Wuertz, T. Setz, Y. Chalabi, C. Boudt, P. Chausse, and M. Miklovac.
fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling,
2019. URL https://CRAN.R-project.org/package=fGarch. R package
version 3042.83.1.

S.-I. Yoshida, K. Hatano, E. Takimoto, and M. Takeda. Adaptive online predic-
tion using weighted windows. IEICE Transactions, 94-D:1917–1923, 2011.

X. Zhao, S. Barber, C. C. Taylor, and Z. Milan. Classification tree methods for
panel data using wavelet-transformed time series. Computational Statistics
& Data Analysis, 127:204–216, 2018.

	Introduction
	Related work
	Methodology
	Simulation study
	Forecasting heart rate in surgery
	Forecasting stock price
	Conclusion

