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Societal Impact Statement
Production and heavy application of chemical-based fertilizers to maintain crop 

yields is unsustainable due to pollution from run-off, high CO2 emissions, and di-

minishing yield returns. Access to fertilizers will be limited in the future due to rising 

energy costs and dwindling rock phosphate resources. A growing number of com-

panies produce and sell arbuscular mycorrhizal fungal (AMF) inoculants, intended to 

help reduce fertilizer usage by facilitating crop nutrient uptake through arbuscular 

mycorrhizas. However, their success has been variable. Here, we present informa-

tion about the efficacy of a commercially available AMF inoculant in increasing AMF 

root colonization and fungal contribution to plant nutrient uptake, which are critical 

considerations within the growing AMF inoculant industry.

Summary
• Arable agriculture needs sustainable solutions to reduce reliance on large inputs 

of nutrient fertilizers while continuing to improve crop yields. By harnessing ar-

buscular mycorrhizal symbiosis, there is potential to improve crop nutrient assimi-

lation and growth without additional inputs, although the efficacy of commercially 

available mycorrhizal inocula in agricultural systems remains controversial.

• Using stable and radioisotope tracing, carbon-for-nutrient exchange between ar-

buscular mycorrhizal fungi and three modern cultivars of wheat was quantified in 

a non-sterile, agricultural soil, with or without the addition of a commercial mycor-

rhizal inoculant.

• While there was no effect of inoculum addition on above-ground plant bio-

mass, there was increased root colonization by arbuscular mycorrhizal fungi and 

changes in community structure. Inoculation increased phosphorus uptake across 
all wheat cultivars by up to 30%, although this increase was not directly attribut-

able to mycorrhizal fungi. Carbon-for-nutrient exchange between symbionts var-

ied substantially between the wheat cultivars.

• Plant tissue phosphorus increased in inoculated plants potentially because of 

changes induced by inoculation in microbial community composition and/or 
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1  | INTRODUC TION

In the last 50 years, rising food demand has driven a near-doubling of 
grain yields (Food & Agriculture Organization of the United Nations, 
2017). This has been achieved by the breeding of high yielding crop 

cultivars, development of chemical fertilizers and pesticides, and 

irrigation (Foley, 2005). However, agricultural fertilizer application 
now releases as much nitrogen (N) and phosphorus (P) into the en-

vironment as all natural processes combined (Tilman et al., 2001). 

In addition, depletion of the natural resources required for fertil-
izer manufacture (e.g., rock phosphate; Cordell, Drangert, & White, 
2009), environmental damage via leaching and run-off, and high CO2 

emissions during production and application (Robertson & Vitousek, 

2009; Goucher, Bruce, Cameron, Koh, & Horton, 2017) mean contin-

ued usage of fertilizers at current rates of application is unsustain-

able. As a result, future food security is far from assured, especially 

when considering the growing human population and changing cli-

mate. To ensure future food systems remain sustainably productive 

and meet United Nations Sustainable Development Goals for Zero 
Hunger, Life on Land and Climate Action (UN, 2015), agricultural fer-
tilizer dependence must be reduced.

>70% of vascular plants, including most crops, form symbioses 

with arbuscular mycorrhizal fungi (AMF) (Brundrett & Tedersoo, 

2018). Through extensive networks of extra-radical mycelium (ERM), 

AMF access soil mineral nutrients inaccessible to their host plant, 

including nutrient pools beyond the root depletion zone (Smith & 

Read, 2008) and may also mineralize organic P sources (Koide & 

Kabir, 2000). However, it is possible that outside of axenic systems, 

organic nutrient mineralization by AMF may be limited in relative 

importance, or driven by other soil microorganisms (Joner, Aarle, & 

Vosatka, 2000). There is a general consensus that arbuscular mycor-

rhizas (AMs) contribute to N uptake although the amount may be 

quantitatively insignificant, at least in comparison to P acquisition 

(Smith & Read, 2008), particularly in agricultural systems with in-

organic N applications, although this may be attributable to other 

symbiotic soil fungi (Hoysted et al., 2019). AMs may be more benefi-

cial for plant P uptake because inorganic N sources are far more mo-

bile in the soil than P and consequently do not become depleted in 

the rhizosphere, meaning root access is less limited (Smith & Smith, 

2011). Plant-available P generally occurs as negatively charged or-

thophosphate (Smith, Jakobsen, Gronlund, & Smith, 2011) which is 

highly reactive with aluminum, iron and calcium, forming inorganic 

structures with low solubility and thus, mobility. AMF-acquired 

nutrients are exchanged with the host plant for photosynthetically 

fixed carbon (C) compounds such as sugars and lipids (Helber et al., 

2011; Keymer et al., 2017). There is growing interest in application of 

AMF within sustainable food production systems (Rillig et al., 2016; 

Igiehon & Babalola, 2017; Thirkell, Charters, Elliott, Sait, & Field, 
2017) to help increase crop nutrient capture, thereby reducing the 

need for excessive application of chemical fertilizers (Püschel et al., 

2017).

AMF diversity in agricultural soils has been decimated by con-

ventional agricultural practices (Helgason, Daniell, Husband, Fitter, 
& Young, 1998), including overuse of fertilizers, tillage, long fallow 

periods, and crop rotations. These practices disturb extra-radical hy-

phal network development, creating long periods where AMF have 

limited access to host plants and thus, a C supply (Helgason et al., 

1998; Daniell, Husband, Fitter, & Young, 2001; Jansa et al., 2002). 
AMF diversity and abundance in agricultural soils could be improved 

by changing management practices which promote native AMF 

abundance, or by reintroducing AM fungal spores and propagules 

through inoculation (Lekberg & Koide, 2005).
Commercial AMF products are readily available and targeted at 

the general public and agricultural industry (Vosátka, Látr, Gianinazzi, 

& Albrechtová, 2012; Igiehon & Babalola, 2017). Inoculants aim to 
boost AMF spore density in soils and act as “biofertilizers,” with the 

intention of promoting the effective use of existing soil nutrient 

pools by crops (Vosátka et al., 2012; Faye et al., 2013). In order for 
inoculants to become widely integrated into sustainable agricultural 

practices, they must prove to be effective both in increasing root 

colonization and nutrient capture. Critically, inoculum application 

must compete with chemical fertilizers in terms of both cost and by 

improving crop yields, ensuring financial viability for farmers. While 

it has been shown that AMF inoculants can be applied to, and in-

crease yields in, agricultural fields in a commercially viable way 

(Ceballos et al., 2013; Hijri, 2016; Zhang, Feng, & Declerck, 2018), 
crop yield improvements following inoculation remain unreliable, 

with yield reductions reported in 14.6% of trials (Hijri, 2016). This 
suggests AMF inocula may not be advantageous in all agricultural 

scenarios and case-by-case assessment is required (Ceballos et al., 

2013; Hijri, 2016); where inoculation takes place, changing manage-

ment practices will also be essential.

Plant responses to AMF colonization can vary dramatically be-

tween and within species (Klironomos, 2003; Hoeksema et al., 2010), 

ranging from increased plant nutrient assimilation and growth, to 

neutral or negative responses where fungal partners offer little or no 

nutrient cycling within the rhizosphere. Our data contribute to the growing con-

sensus that mycorrhizal inoculants could play a role in sustainable food production 

systems of the future.

K E Y W O R D S

arbuscular mycorrhiza, carbon, inoculant, nitrogen, phosphorus, sustainable agriculture, 

symbiosis, wheat
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measurable benefit (Ellouze et al., 2016; Sawers et al., 2017; Watts-

Williams, Cavagnaro, & Tyerman, 2019). There is also considerable 

variation between AMF species and genotypes (Munkvold, Kjøller, 

Vestberg, Rosendahl, & Jakobsen, 2004; Angelard, Colard, Niculita-
Hirzel, Croll, & Sanders, 2010) in tolerance to agriculturally relevant 

environmental variables, such as disturbance (Schnoor, Lekberg, 

Rosendahl, & Olsson, 2011) and high soil nutrient concentrations 
(Oehl et al., 2010). As such, it is possible AMF within a commercial 
inoculum could fail to establish (Vosátka et al., 2012) if they are not 

compatible with the host plants, environment, cannot compete with 

the soil's native AMF communities, or cannot survive standard ag-

ronomic practices (Berruti, Lumini, Balestrini, & Bianciotto, 2016). 

Despite this, field experiments suggest AMF from inocula can sur-
vive and persist in plant roots for at least 2 years after introduction 

and can occur alongside plant productivity increases (Pellegrino et 

al., 2012). Conflicting datasets and data shortages from field trials 

or field-relevant pot-based experiments have resulted in no clear 

consensus on the application of AMF inocula in sustainable food 

systems, underlining the urgent need for more detailed investiga-

tions (Ryan & Graham, 2018; Rillig et al., 2019).

Using a commercially available AMF inoculum (Rhizophagus ir-

regularis) and non-sterile, agricultural field soil, we addressed the 

following questions: (a) Does commercial AMF inoculum applica-

tion result in greater wheat (Triticum aestivum L.) root colonization 

and alter the AMF community structure? (b) Does inoculation with 
commercial AMF result in greater fungal-acquired nutrient gain 

(with correspondingly greater C allocation to fungal symbionts) 

and crop growth than native AMF populations within agricultural 

field soil? (c) Are there any differences in response to AMF inoc-

ulation between wheat cultivars? We hypothesized that applying 

a commercially available inoculum containing a generalist AMF 

species to agricultural field soil will result in greater root coloni-

zation and increased fungal-acquired nutrient assimilation by host 

plants. We expect inoculated plants to allocate more plant-fixed 

C to their AMF symbionts, thereby mycorrhizal nutrient gains will 

be offset by a greater C cost to the plants hosting a larger AMF 

population. Based on previous research showing cultivar-specific 

differences in mycorrhizal receptivity and function (Ellouze et al., 

2016; Sawers et al., 2017; Thirkell, Pastok, & Field, 2019; Watts-

Williams et al., 2019), we expect differences between the cultivars 

tested here in the degree of AM colonization, AM-mediated nutri-

ent assimilation and C allocation to AMF.

2  | MATERIAL S AND METHODS

2.1 | Biological material and growth conditions

Wheat (Triticum aestivum L.—cvs: Skyfall, Avalon and Cadenza) was 

grown in an agricultural soil (Leeds University Farm, Tadcaster, 

UK) and sand mixture (1:1) in 1.1 L pots and inoculated with ei-

ther a commercially available R. irregularis inoculum (20 g per pot) 

(PlantWorks Limited, Kent; n = 12), or a control inoculum, sterilized 

by autoclaving (n = 12). Analysis of the soil characteristics showed 

the soil had a pH of 7.5, soil organic C content represented ~ 2% 
of soil dry weight and soil solute concentrations of PO4

-, NO3
-, 

and NH4
+ were 0.08 mg/L, 6 mg/L, and 0.04 mg/L, respectively 

(Holden et al., 2019). Plants were grown for 8 weeks, in glass-

house conditions (see SI). Two plastic cores, 20 mm diameter and 
100 mm long, with 35 µm pore nylon mesh windows (Figure S1), 
were inserted into each pot (Figure S2). A 1 mm internal diameter 

perforated capillary tube (Portex, Smiths Medical) was installed 

centrally in each core. A third core was filled with glass wool and 

sealed with a SubaSeal (Sigma-Aldrich) to allow below-ground soil 

respiration sampling throughout the 14C labeling period (Field et 

al., 2012). Plants were harvested immediately after completion of 
33P- and 15N-for-14C tracing at 9 weeks of age (Zadok growth stage 
GS30-39), this stage was chosen for isotope tracing as it repre-

sented a period of rapid growth and high nutrient demand where 

the crops may rely more heavily on AM-mediated nutrient uptake.

2.2 | Quantifying 33P- and 15N for C exchange 
between wheat and fungi

Forty five days after planting, 150 μl of 33P-Orthophosphate (1MBq; 
Hartmann Analytic, Braunschweig, Germany; Specific activity: 

cv. Skyfall 174.9 TBq/mmol, Cadenza 179.4 TBq/mmol, Avalon 
180.6 TBq/mmol) and 15N ammonium chloride (1.5 mg/ml) (MP 
Biomedicals, Santa Ana, USA) in aqueous solution was supplied to 

one mesh core within each pot through the perforated capillary 

tube. In half of the pots (n = 6), labeled cores were left static, in the 

remaining pots fungal access to isotope tracers was removed by ro-

tating cores every other day to sever hyphal connections between 

the plants and core soil (Figure S2). The rotated control treatment 

distinguishes between fungal contributions to plant nutrient uptake 

versus isotope diffusion outside the cores or other microbial nutri-

ent cycling.

After 8 weeks, soil cores were sealed with anhydrous lanolin, and 

pots enclosed within airtight chambers; shoots were supplied with 
14CO2 for a 16-hr photoperiod via liberating 110 μl sodium bicar-

bonate [14C] 1 MBq (specific activity: all cultivars—2.13 GBq/mmol; 

Hartmann Analytic) using 2 ml of 10% lactic acid.

2.3 | Plant harvest and tissue analysis

Upon detection of maximum below-ground 14C flux (approx. 16 hr 

after labeling), the soil cores were removed from the pots and plant 

and soil materials were separated. Root subsamples were cleared 

with 10% KOH at 80°C for 60 min and stained with acidified ink 
(5% Pelikan black ink, 5% acetic acid, 90% distilled water) for 20 min 
(Vierheilig, Coughlan, Wyss, & Piché, 1998). Mycorrhizal colonization 

was assessed using the gridline-intersect method with at least 100 

intersects measured per sample (McGonigle, Miller, Evans, Fairchild, 

& Swan, 1990). All plant and soil materials were freeze-dried and 
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weighed. The AMF hyphal network within each pot was meas-

ured using a gridline-intersect method over 50 fields of view (see 
Supporting Information) (Tennant, 1975).

2.4 | PCR and T-RFLP

Fungal DNA was extracted from freeze-dried homogenized root 
material (10–20 mg), following the Plant DNeasy mini kit protocol 
(Qiagen). A region of the small subunit rRNA was amplified using a 

FAM labeled general eukaryotic forward primer NS31 (5′-TTG GAG 
GGC AAG TCT GGT GCC-3′) (Simon, Lalonde, & Bruns, 1992) and 
AMF-specific reverse primer AML2 (5′-GAA CCC AAA CAC TTT GGT 
TTC C-3′) (Lee, Lee, & Young, 2008) (see Supporting Information for 
details). PCR products were triple-digested with the restriction en-

zymes HpyCHIV, MboII, and Sau96I (New England Biolabs, Inc) (see 
Supporting Information for details). Genotyping was carried out on 
an ABI 3730 PRISM® capillary DNA analyser (Applied Biosystems). 
T-RFLP data was analyzed using Genemapper software v. 5 (Applied 
Biosystems). The SSU sequences of AMF species commonly asso-

ciated with agricultural soils were downloaded from GenBank and 

virtually digested with RestrictionMapper v. 3, to associate T-RF’s 

with potential AMF species.

2.5 | Mycorrhiza-acquired 33P and total plant 
P analyses

Freeze-dried plant material was homogenized by grinding to a fine 

powder (A10 basic, IKA mills, Oxford). 33P transfer from fungus-to-

plant was quantified by digesting samples in concentrated H2SO4 

(SI) and liquid scintillation on a Packard Tri-carb 3100TR (Isotech). 
33P transfer between symbionts was corrected for radioactive decay 

and measured using equations in Cameron, Johnson, Leake, and 

Read (2007; see SI for details). Total shoot and root P content was 
measured with the same digest solution using the molybdate blue 

method on a Jenway 6300 Visible Spectrophotometer (Murphy & 

Ripely, 1962).

2.6 | Transfer of carbon from plant to fungus

14C content of plant and soil material was measured via sample oxi-

dation (Model 307 Packard Sample Oxidiser; Isotech) and liquid scin-

tillation (Packard Tri-carb 3100TR, Isotech). 14C mass was quantified 

using the following equation (Cameron, Leake, & Read, 2006; see 

Supporting Information for details). Total C (12C + 14C) transferred 

from the plants to their AMF partners was calculated by quantifying 

the CO2 content mass in the labeling chamber and the proportion of 

the supplied 14CO2 which was fixed by the plants using equations 

from Cameron, Johnson, Read, and Leake (2008). The difference 

in total C between the static and rotated core represents plant-to-

fungus C transfer.

2.7 | 15N tissue analysis

To quantify fungus-to-plant 15N transfer within the shoot, tissue ho-

mogenized material was weighed (2–4 mg) into 6 × 4 mm2 tin capsules 

(Sercon Ltd.). The samples were analyzed using a continuous flow IRMS 
(PDZ 2020 IRMS, Sercon Ltd), with air used as the reference standard. 
Percentage N and atom percentage 15N was measured. 15N transferred 

from fungus-to-plant was calculated using the following equation:

where MEx is the isotope mass (excess) (g); Atlab is the atom percentage 

of the isotope in labeled microcosm; Atcont is the atom percentage of 

the isotope in paired control microcosm, M is the sample biomass (g), 

and %N is the nitrogen percentage (Cameron et al., 2006).

2.8 | Statistical analysis

The impact of AMF inoculum and wheat cultivar on measured pa-

rameters was assessed by two-way ANOVA followed by Tukey HSD 
tests using Minitab (Version 17). Before statistical analysis, data 

were checked for conformation to normality and equal variance as-

sumptions using normal probability plots and residuals versus fits 

plots. Data which did not conform to assumptions were transformed 
using the optimal lambda function in Minitab (Version 17). The het-

eroscedasticity of the concentration and total 33P data could not be 

made to fit ANOVA assumptions through transformation. Therefore, 
Student's t tests were performed between AMF treatments within 

each wheat cultivar on Minitab (Version 17).

AMF community fingerprint data collected from T-RFLP analysis 

was analyzed using the Vegan: Community Ecology Package (R pack-

age version 2.5-6). A permutational multivariate analysis of variance 
(PERMANOVA) was conducted using the “adonis” function in vegan, 
to assess whether communities differed significantly between in-

oculated and uninoculated plants or different wheat cultivars. The 

homogeneity of group dispersions assumption was assessed by the 

“betadisper” function, which is a multivariate equivalent of Levene's 

test for homogeneity of variances. Differences were evaluated vi-
sually by boxplots and by ANOVA, and no significant differences in 
dispersion were detected.

3  | RESULTS

3.1 | AMF colonization and community composition 
changes

Root length colonization by AMF varied between a mean of 31%, 

34%, and 48% in cv. Avalon, Skyfall, and Cadenza, respectively, 
grown in non-inoculated agricultural soil. Inoculating plants re-

sulted in significantly greater mycorrhizal colonization within the 

MEx=

(

Atlab−Atcont

100

)(

M

[

%N

100

])

.
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roots (F = 257.2, df = 1.66, p < .001; two-way ANOVA; Figure 1a). 
However, the extent of colonization increase varied between wheat 

cultivars (Interaction: F = 22.17, df = 2,66, p < .001; two-way ANOVA; 
Figure 1a). cv. Skyfall displayed the smallest increase in root coloni-

zation of the wheat varieties tested (54.4%), followed by cv. Cadenza 
(68.9%) with cv. Avalon increasing the most (177.9%). AMF struc-

tures (arbuscules and vesicles) were more abundant within the root 

systems of inoculated than non-inoculated wheat plants (arbuscules: 

F = 136.5, df = 1.66, p < .001; two-way ANOVA; Figure 1b; vesicles: 
F = 72.0, df = 1.66, p < .001; two-way ANOVA; Figure 1c).

Adding AMF inoculum resulted in significantly increased hyphal 

density within the soil, when compared to plants grown in agri-

cultural soil alone (F = 10.24, df = 1.66, p < .01; two-way ANOVA; 
Figure 1d). There were also differences in soil hyphal lengths be-

tween cultivars (F = 22.18, df = 2.66, p < .001; two-way ANOVA), 
regardless of inoculation treatment (Tukey: p > .05).

Inoculation had a significant impact on community composition 
(F = 60.0, df = 1.42, p < .001; PERMANOVA), and AMF communi-
ties were unchanged by wheat cultivar (F = 1.3, df = 2.42, p > .05; 
PERMANOVA). The commercially inoculated plants had a substantial 
increase in T-RFs at 273 bp. Sequences of R. irregularis were down-

loaded from GenBank and virtually digested with restriction enzymes; 

HpyCHIV produced a T-RF of 273 ± 1 bp, suggesting R. irregularis, 

which was present only sporadically in non-inoculated plants, became 

much more frequent in roots after R. irregularis inoculum was added.

3.2 | The effect of AMF inoculation on plant 
nutrient uptake

Inoculated plants contained more P in above-ground tissues than 
those grown in non-inoculated agricultural soil in terms of both 

absolute quantity and concentration. P in the shoots was greater 

by 14.3%, 32.4%, and 18.2%, in inoculated cv. Skyfall, Avalon, and 
Cadenza, respectively, than their counterparts grown in agricultural 

soil alone (Interaction: F = 5.54, df = 2.66, p < .01; two-way ANOVA; 
Figure 2a).

Inoculation did not increase N concentrations (F = 0.13, df = 1.54, 
p = .718; two-way ANOVA; Figure 2b) or total N within above-ground 
plant tissues (F = 0.91, df = 1.54, p = .344; two-way ANOVA) in any 
cultivars tested. The increase in P, but not N, in the shoot material 

when plants were inoculated with R. irregularis resulted in lower N:P 

ratios of plants grown in inoculated compared to non-inoculated soil 

(F = 31.6, df = 1.54, p < .001; two-way ANOVA; Figure 2c).

3.3 | Bi-directional exchange of 33P and 15N for C 
between wheat and AMF

The functionality of the fungal hyphal networks was determined 

by quantifying the 33P and 15N in the above-ground plant tissues in 

pots where the isotopes were introduced into static cores after val-

ues from plant tissue where 33P and 15N was introduced to rotated 

cores was subtracted. There was no increase in above-ground [33P] 

in any wheat cultivars as a result of AMF inoculation (Figure 3a). cv. 

Avalon assimilated significantly more 33P from its fungal partner(s) 

when grown in non-inoculated agricultural soil with only the native 

AMF community present than when the soil was supplemented with 

commercial R. irregularis inoculum (t = 3.34, df = 8, p = .01; Student's 

t test). In contrast, there was no significant difference in 33P acquired 

from AMF partners when cv. Skyfall (t = 0.45, df = 9, p = .66; Student's 

t test) and cv. Cadenza (t = 0.25, df = 7, p = .81; Student's t test) were 

inoculated compared to when they were grown in non-inoculated 

agricultural soil. Overall, there were cultivar-specific differences in 

F I G U R E  1   Root colonization by 

arbuscular mycorrhizal fungi: (a) total 

colonization, (b) arbuscules, (c) vesicles, 

and (d) extra-radical hyphal lengths for 

three wheat cultivars, Skyfall (black 

bars), Avalon (grey bars), and Cadenza 

(white bars). Plants were grown in 

agricultural, non-sterile soil inoculated 

with commercially obtained arbuscular 

mycorrhizal fungi inoculum containing 

Rhizophagus irregularis (+) or a sterilized 

control (−). Error bars represent the 
standard error of the mean. Different 
letters refer to significant differences 

(n = 12, p < .05, two-way ANOVA, 
TukeyHSD post-test) between treatments
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mycorrhiza-acquired 33P with cv. Skyfall assimilating more 33P via 

AMs than the other wheat cultivars tested.

Adding AMF inoculum to an agricultural soil significantly af-

fected 15N assimilation in wheat with differences driven by wheat 

cultivar (Interaction: F = 51.0, df = 2.30, p < .001; two-way ANOVA; 
Figure 3b). In non-inoculated agricultural soil, cv. Skyfall assimilated 

no mycorrhiza-acquired 15N. However, when the soil was inoculated, 

mycorrhiza-acquired 15N increased to 6.8 μg/g, the highest of all 

treatments. In contrast, there was a significant decrease in mycor-
rhiza-acquired 15N when cv. Avalon was inoculated, compared to 

plants grown in agricultural soil only, from 4.1 μg/g to 1.6 μg/g. cv. 

Cadenza had the lowest mycorrhiza-acquired 15N concentration in 

F I G U R E  2   (a) Plant shoot tissue 

concentration of P, n = 12. (b) Plant 

shoot tissue concentration of N, n = 10. 

(c) N:P of above-ground plant tissues, 

n = 10. Plants were grown in a non-sterile 

agricultural soil with (+) or without (−) 
active AMF inoculation with R. irregularis. 

Experiments were conducted in three 

wheat cultivars, Skyfall (black bars), 

Avalon (grey bars), and Cadenza (white 

bars). Error bars represent the standard 

error of the mean. Different letters 
refer to significant differences between 

treatments. p < .05, two-way ANOVA, 
TukeyHSD posthoc test
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F I G U R E  3   (a) Plant shoot tissue concentration of 33P assimilated via fungal symbionts, n = 6. (b) The concentration of fungal-assimilated 
15N in plant shoot tissues, n = 6. (c) Percentage allocation of plant-derived C to fungi within cores, n = 12. (d) Concentration of C allocation to 
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fungi inoculum containing Rhizophagus irregularis (+) or a sterilized control (−). (a) Student's t tests, p < .05, (b–d) data transformation by 
optimal lambda to fit the assumptions of ANOVA, p < .05, two-way ANOVA, TukeyHSD posthoc test. Different letters refer to significant 
differences between treatments. * refers to significant differences between treatments. ns refers to no significant differences
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the shoot material and was not significantly affected by adding R. 

irregularis inoculum.

Despite there being greater root colonization by AMF when soil 
was supplemented with the commercial AMF inoculum, C allocated 

to fungal symbionts was not altered in any of the wheat cultivars 

(F = 1.0, df = 1.66, p = .35; two-way ANOVA; Figure 3c,d). However, 
cultivar-specific differences were observed in the amount of C allo-

cated to extra-radical hyphae, with cv. Avalon allocating more than 

double the amount of C to its fungal partner than cv. Skyfall or cv. 

Cadenza (F = 4.9, df = 2.66, p = .01; two-way ANOVA).

3.4 | Plant biomass

The use of AMF inoculum in agricultural soil had no impact on 

above-ground biomass in wheat, across all cultivars tested (F = 1.15, 
df = 1.66, p > .05; two-way ANOVA; Figure 4a). In two wheat culti-
vars (Avalon, Cadenza), inoculation with AMF resulted in a smaller 

root system compared to the control plants, but this was not the 

case in cv. Skyfall (Interaction: F = 7.38, df = 2.66, p = .001; two-way 

ANOVA; Figure 4b).

4  | DISCUSSION

Supplementing agricultural soil with a commercial AMF inoculant 

dramatically increased wheat root colonization by AMF and signifi-

cantly changed the fungal community colonizing the roots. While soil 

processing (sieving) in preparation for the experiment may have had 

an additional disturbance effect, our findings strengthen evidence 

that the inoculum potential of agricultural soil has become impaired 

by conventional farming practices (Lekberg & Koide, 2005) which 
reduce AMF propagule abundance and diversity (Jansa et al., 2002; 

Bowles, Jackson, Loeher, & Cavagnaro, 2017). Although increased 

root colonization following inoculation with AMF products has pre-

viously been recorded (Lekberg & Koide, 2005; Köhl, Lukasiewicz, & 

van der Heijden, 2016), this is the first evidence that inoculation with 

commercial R. irregularis inoculum has a similar effect across several 

wheat cultivars. However, in order for mycorrhizal inoculation to be 

considered “successful,” and form part of a sustainable food produc-

tion system, it must impart a measurable benefit on the host plant(s), 

such as increased nutrient assimilation.

Few investigations have focused on effectiveness of mycor-

rhizal inocula in increasing mycorrhiza-acquired nutrients in the 

target plants. We found adding AMF inoculum not only resulted 

in higher root colonization but also enhanced the total P content 

of above-ground plant tissues across all wheat cultivars tested. 

Substantially higher plant P uptake of up to 32% in inoculated 

wheat, plus evidence of higher plant P concentrations in field 

studies of inoculated wheat (Mohammad, Mitra, & Khan, 2004), 
suggests that there is potential for AMF inoculants to reduce de-

mand for P fertilizers in agricultural systems. However, AMs are 

rarely responsible for the entirety of plant P assimilation; plants 

engage in their own direct P uptake via the root epidermis and 

root hairs, in addition to the indirect mycorrhizal P pathway (Smith 

et al., 2011). We quantified 33P assimilation via the mycorrhizal 

pathway in wheat, grown in non-sterile agricultural soil, inoculated 

with AMF or sterilized carrier only. We found no increase in the 

amount of mycorrhiza-acquired 33P in plants inoculated with ac-

tive AMF compared to those inoculated with the sterilized carrier. 

Thus, despite greater total P in plant tissues of AMF-inoculated 

plants, it is not directly attributable to the increased root colo-

nization by AMF. While this finding seems counterintuitive, it is 

important to note that total P quantification represents P accu-

mulation over the lifetime of the plant, whereas 33P uptake was 

measured only for the last ten days of the experiment. It is possi-
ble that AMs contribute most to plant P assimilation in the earlier 

stages of plant development, which were not measured during this 

experiment (van der Heijden, 2004; Kobae, 2019). However, given 
that our isotope tracing experiments were conducted during shoot 

elongation and rapid growth, the direct contributions of AMs to 

wheat P assimilation remain unclear.

F I G U R E  4   (a) Above- and (b) below-ground plant biomass. Experiments were conducted in three wheat cultivars, Skyfall (black bars), 

Avalon (grey bars), and Cadenza (white bars). Plants were inoculated with arbuscular mycorrhizal fungi inoculum containing Rhizophagus 

irregularis (+) or a sterilized control (−). Error bars represent the standard error of the mean. Different letters refer to significant differences 
between treatments (n = 12, p < .05, two-way ANOVA, TukeyHSD post-test, above-ground tissue biomass data transformed by optimal 
lambda
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AM symbiosis can alter a plant's physiology and environment 

in ways which may enhance nutrient uptake, without direct P con-

tribution through the fungal hyphae. It has been shown that plant 
P transporter gene expression can change in response to AMF 

colonization (Paszkowski, Kroken, Roux, & Briggs, 2002; Glassop, 

Smith, & Smith, 2005), potentially altering plant P uptake, although 
changes in P transporter expression and changes in P uptake have 

seldom been linked (Grønlund et al., 2013). Additionally, AMF 

have a profound effect on the wider soil microbial community, as 

a sink for plant photosynthates (Johnson, Leake, Ostle, Ineson, & 
Read, 2002) they provide a soil C source through hyphal turnover 

and energy-rich exudates (Zhang, Lehmann, Zheng, You, & Rillig, 
2018). This C supply may stimulate soil bacteria, including those 

shown to increase plant P uptake such as P solubilizing bacteria 

(Toljander, Lindahl, Paul, Elfstrand, & Finlay, 2007; Zhang et al., 
2018). Given that we used non-sterilized agricultural field soil, it is 

likely a combination of these factors resulted in the greater tissue 

P accumulation in inoculated plants. Additionally, there is evidence 

that non-sterile soil can suppress extra-radical hyphal develop-

ment and P uptake through a combination of abiotic and biotic fac-

tors, such as certain bacteria and fungi, which can be mitigated by 

pasteurization and to a lesser extent liming to increase the soil pH 

(Svenningsen et al., 2018; Cruz-Paredes et al., 2019). Suppression 

by certain soil bacterial and fungal species could partially explain 

why mycorrhiza-acquired 33P uptake by the plants represented a 

small proportion of 33P added to the cores in our experiments. 

Alternatively, the wheat cultivars tested may simply be relatively 

unresponsive to AMs due to generations of commercial breeding 

selecting for root systems that are effective at assimilating nutri-

ents from mineral fertilizers (Tawaraya, 2003), leading to modern 

crop cultivars that are less reliant on AMs (Hetrick, Wilson, & Cox, 

1993; Zhu, Smith, Barritt, & Smith, 2001).
Our data provide no evidence that AMF inoculation could in-

crease N uptake in wheat hosts, although there appears to be a 

small amount of AM transfer of 15N to host plants (Govindarajulu et 

al., 2005; Jin et al., 2005). Our results are in line with the long-held 
view that while plant hosts may assimilate N via AMs, it is quan-

titatively insignificant in comparison to P acquisition. AMF may be 

more beneficial for plant P uptake because inorganic N sources are 

more mobile in the soil and consequently do not become depleted in 

the rhizosphere limiting root access (Smith & Smith, 2011). Notably, 

many studies which show an improvement in AMF-associated N 

assimilation have not analyzed the root system fungal community. 

Evidence is emerging that Mucoromycotina fine-root endophytic 

(MFRE) fungi are widely associated with land plants and often found 

in dual association with Glomeromycotina fungi (Field et al., 2019; 

Hoysted et al., 2019). Mucoromycotina fine-root endophytic (MFRE) 

fungi may be important for N assimilation, and co-exist with AMF 

due to the functional complementarity of their nutritional symbioses 

(Field et al., 2019; Hoysted et al., 2019).

Even though there were no gains in overall N concentrations in 

plant tissue in our experiments, the amount of mycorrhiza-acquired 
15N varied considerably depending on inoculation and wheat cultivar. 

For example, cv. Skyfall 15N uptake increased substantially when in-

oculated with R. irregularis, potentially due to community changes in 

the roots or to the rhizosphere community around the roots to more 

favorable symbiotic partners. In contrast, when cv. Avalon was inoc-

ulated with R. irregularis mycorrhiza-acquired 15N decreased signifi-

cantly, suggestive of cultivar specificity in AMF symbiotic function. 

AMF community composition did not differ between the cultivars 

after inoculation, and a T-RF likely representing R. irregularis dom-

inated the root community. Therefore, the cultivar differences may 

be due to a cultivar-specific compatibility with the R. irregularis iso-

late used in this experiment, with cv. Avalon responding negatively 

with both 33P and 15N assimilation lower after inoculation. The 

cultivar differences demonstrated in this experiment reinforce the 

importance of adequate testing before inoculant implementation in 

the field. Inoculants will not be beneficial in all cases and synergistic 
consortia of AMF tailored to different crops and environments may 

be needed.

Plants often allocate large amounts of photosynthate to 

their fungal partners (Johnson, Graham, & Smith, 1997), and this 

“drain” on C resources could be responsible for negative growth 

responses to AMs (Graham & Abbott, 2000; Li, Smith, Dickson, 
Holloway, & Smith, 2008). In our experiments, wheat did not allo-

cate substantial amounts of photosynthetically fixed C to fungal 

symbionts across all cultivars tested. When C allocated to fungi 

within the static core was scaled up to the entire pot, the percent-

age of plant-fixed C allocated to AMF was negligible and wheat 

cultivar dependent, with the highest being in cv. Avalon at 2%. 

The amounts of ERM in the soil also differed between wheat cul-

tivars but could not be explained by the wheat cultivar-dependent 

C allocation to the fungi. C allocation was lower than general es-

timates that between 4% and 20% of photosynthate is allocated 
by plant hosts to fungal partners (Smith & Read, 2008), again sug-

gesting that AMF functional compatibility has been all but lost 

from modern wheat cultivars, potentially via selection for above-

ground traits. However, recent evidence suggests plant carbon 

allocation to AMF may be lower than previously estimated and 

frequently falls below 10% of the plant C budget (Konvalinková, 

Püschel, Řezáčová, Gryndlerová, & Jansa, 2017).
Despite finding near-negligible plant C allocation and a higher 

P uptake (through AMs, roots or alternative microbial cycling pro-

cesses) with inoculation, we recorded no increase in above- or 

below-ground biomass. One possibility for the lack of growth re-

sponse, despite increases in tissue P, is that the plants were N, 

rather than P, limited. This is supported by low N:P and low N con-

centrations in plant tissues. Therefore, AMF inoculants may have 

potential to improve plant biomass in P limited conditions, which 

could be common in future agricultural systems. Unfortunately, 

plants in our experiments were not grown to yield due to the 

necessity of conducting isotope tracing during a period of rapid 

growth and nutrient uptake. Therefore, future research should 

have a strong focus on the yield benefits commercial inoculants 

could achieve under these conditions, including the nutritional 

quality of the grain which is a key parameter of food security 
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(Myers et al., 2014). A recent meta-analysis shows AMF inoculants 
improved yields in many crop varieties, including wheat, by an av-

erage of 17% (Zhang et al., 2018). Uptake of micronutrients such 
as zinc, copper, and iron can also be enhanced by AMs (Lehmann, 

Veresoglou, Leifheit, & Rillig, 2014; Lehmann & Rillig, 2015) and 
could have important implications for crop production and human 

health.

Our results show that the AMF inoculum tested has potential 
to form a useful component of a sustainable agricultural man-

agement system, to boost wheat root colonization by AMF and 

reduce crop dependence on P-fertilizer inputs, the raw materials 

for which are a vital but non-renewable resource (Cordell et al., 

2009). Cultivar differences in AM-acquired nutrients demonstrate 

that genetic variation within wheat germplasm may determine 

AM-acquired benefits, with many studies reporting significant 

differences among crop varieties in their response to mycorrhi-

zal associations, suggesting breeding programs could capitalize 

on these genetic differences (Fester & Sawers, 2011). The poten-

tial genetic basis for AMF colonization (Lehnert, Serfling, Enders, 

Friedt, & Ordon, 2017) and AM effects on drought tolerance in 
wheat (Lehnert, Serfling, Friedt, & Ordon, 2018) have recently 
been reported which, together with our findings and future re-

search in the area, could form the basis of such breeding programs. 

The inclusion of markers for AMF responsiveness (i.e., colonization 

potential, response to abiotic change, and nutritional function) in 

these programs will lead to development of new crop varieties 

which could be successfully combined with commercial inoculum, 

thereby reducing the risk of P limitation and going some way to 

reducing agricultural reliance on chemical fertilizers.
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