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A comparison of four protein model-building pipelines (ARP/wARP,

Buccaneer, PHENIX AutoBuild and SHELXE) was performed using data sets

from 202 experimentally phased cases, both with the data as observed and

truncated to simulate lower resolutions. All pipelines were run using default

parameters. Additionally, an ARP/wARP run was completed using models from

Buccaneer. All pipelines achieved nearly complete protein structures and low

Rwork/Rfree at resolutions between 1.2 and 1.9 Å, with PHENIX AutoBuild and

ARP/wARP producing slightly lower R factors. At lower resolutions, Buccaneer

leads to significantly more complete models.

1. Introduction

The automation of protein model building began with the

release of ARP/wARP in the late 1990s (Perrakis et al., 1999;

Lamzin &Wilson, 1993; Morris et al., 2003; Langer et al., 2013),

and has rapidly advanced through the development of addi-

tional protein model-building pipelines. These pipelines

include Buccaneer (Cowtan, 2006, 2008), PHENIX AutoBuild

(Terwilliger et al., 2008), SHELXE (Sheldrick, 2008, 2010;

Thorn & Sheldrick, 2013; Usón & Sheldrick, 2018) and a major

new version of ARP/wARP (Langer et al., 2008). Judging by

the numbers of Web of Science citations during 2017 and 2018,

ARP/wARP (286 citations), Buccaneer (304 citations) and

PHENIX AutoBuild (217 citations) are all widely used;

SHELXE was cited 9548 times within the same time period

(with all citation counts being based on the papers listed

above).

Complex optimization problems such as building protein

structures can be tackled using multiple approaches. As such,

different protein-building pipelines employ different steps

and algorithms, may refine their intermediate structures

using difference refinement programs such as REFMAC

(Murshudov et al., 2011) or phenix.refine (Afonine et al., 2012)

and yield different results for the same data. The comparison

detailed here sheds light on some of these differences by

examining the completeness of protein structures, Rwork/Rfree

values and execution times using ARP/wARP, Buccaneer,

PHENIX AutoBuild and SHELXE. Performed for data sets

with resolutions ranging from 1.2 to 4.0 Å, this comparison

provides insights into the strengths and weaknesses of the

different pipelines, which may be of use to users seeking to

address specific problem data sets, as well as to developers

seeking to improve their own algorithms or to build new meta-

pipelines which exploit the complementary strengths of the

different algorithms.
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As scientists are inevitably affected by cognitive biases,

including self-serving biases, this study would ideally have

been conducted by an independent party, similar to the study

of van den Bedem et al. (2011). However, independent

researchers often lack the motivation to perform detailed tool

comparisons. For us, further development of the Buccaneer

methods required a better understanding of their limitations,

and thus we conducted our own comparison. We acknowledge

that its results may have been impacted by biases in our study,

and we make those sources of bias that we are aware of

explicit in the discussion.

2. Pipelines and methods

2.1. ARP/wARP

ARP/wARP was the first fully automated pipeline for

building protein models from electron-density maps. Initially

limited to high resolutions of better than 2.3 Å (Perrakis et al.,

1999), ARP/wARP was subsequently extended to resolutions

of 2.7 or 2.8 Å (Langer et al., 2008). More recent versions have

further enlarged the useful range of resolutions (Chojnowski,

2019). ARP/wARP is integrated with CCP4, and therefore can

be used from the CCP4 graphical user interfaces (GUIs).

Additionally, ARP/wARP has a web service interface for

remote running, which enables access to resources beyond

those available on the users’ local machines.

The ARP/wARP approach starts by placing free atoms in

the electron-density map. Free atoms are atoms that do not

have a chemical identity but are likely to develop one during

model building and refinement. The approach then traces the

main protein chain via an algorithm (Morris et al., 2002) that

uses modified depth-first search techniques. Next,ARP/wARP

uses a rotamer library and a downhill simplex algorithm to fit

the side chains into the map density. Finally, the missing parts

of the protein model are completed by matching C� segments

from known models and choosing those that best fit the

density of the working model. Following the building stage,

the model is refined with REFMAC and the calculated map is

used for further ARP/wARP building cycles.

2.2. Buccaneer

Buccaneer is a command-line protein model-building tool

developed by Cowtan (2006). Its subsequent integration with

the Collaborative Computational Project Number 4’s CCP4

software suite (Winn et al., 2011) provided Buccaneer with a

graphical user interface through the CCP4i (Potterton et al.,

2003) and CCP4i2 (Potterton et al., 2018) GUIs.

The Buccaneer algorithm is built around a likelihood target

function for the identification of likely C� positions. This

function is used to find a small set of ‘seed’ residues and then

to grow these seeds into chain fragments using Ramachandran

restraints. Overlapping chain fragments are merged and are

docked into the sequence on the basis of a further application

of the likelihood target function to the identification of the

side-chain type (Cowtan, 2006, 2008). Model building is iter-

ated with refinement in REFMAC (Murshudov et al., 2011).

2.3. PHENIX AutoBuild

PHENIX AutoBuild is part of the PHENIX software suite

for the automated modelling of molecular structures. Using a

GUI based on the main PHENIX GUI, PHENIX AutoBuild

facilitates the interactive specification of protein model-

building parameters, with default values automatically

provided for most parameters. Additionally, command-line

access is available to enable the integration of PHENIX

AutoBuild with other tools.

PHENIX AutoBuild accepts several types of input,

experimental phases, an existing model and a model whose

sequence differs by less than 5% from that of the target model,

and performs different procedures for each input type. The

steps in its fully automated pipeline include density modifi-

cation, model building and refinement (Terwilliger, 2000, 2002,

2003; Liebschner et al., 2019). These PHENIX AutoBuild steps

are not executed sequentially, as the density modification is

repeated after refinement to exploit information from the

built model.

Early in the structure-determination procedure, PHENIX

AutoBuild scores models using a metric based on the number

of residues built, the number of residues that match the

protein sequence and the number of chains (Terwilliger et al.,

2008). Later, when their Rwork value drops below a pre-set

value, the models are scored mainly using Rwork. Refinement

of the built structures is performed using phenix.refine

(Afonine et al., 2012), a refinement tool from the PHENIX

suite.

2.4. SHELXE

SHELXE is a program for main-chain tracing and density

modification from experimental phases and molecular

replacement (Sheldrick, 2010; Thorn & Sheldrick, 2013).

Backbone tracing begins by finding seven-residue �-helices

and extending them in both directions whenever possible. The

latest version of SHELXE has been extended to find up to 14

residues (Usón & Sheldrick, 2018). The traced chains are then

cut at their closest points of contact and the N-termini and

C-termini are joined together. Finally, new estimated phases

are calculated from the traced residues and combined with the

initial phases for use in the next cycle of density modification

and tracing (Sheldrick, 2010).

SHELXE scores a built structure using a correlation

coefficient (CC) calculated from structure factors from the

trace against native data. A CC of above 25% at 2.5 Å reso-

lution indicates that SHELXE may have found a correct

solution (Usón & Sheldrick, 2018).

2.5. Data sets

We used 202 real data sets (van den Bedem et al., 2011) with

resolutions between 1.2 and 3.2 Å (Fig. 1), as well as synthetic

data sets obtained through simulating each of the original data

sets at resolutions of 3.2, 3.4, 3.6, 3.8 and 4.0 Å. The 202 data

sets used are a subset of the 770 data sets from van den Bedem

et al. (2011). A total of 230 structures were available to the

authors, of which 229 had one or more data sets from
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experimental phasing. A single data set, with the highest

r.m.s.d. of local map r.m.s.d., was chosen for each structure.

There is no guarantee that the chosen data set is the same one

as used for the final deposited structure, but in order to check

this the deposited coordinates were refined against the chosen

data set using REFMAC v.5.8.0158 in CCP4 v.7.0.045

(Murshudov et al., 2011). 11 structures failed owing to large

differences between cells and one structure failed owing to a

serine residue being labelled UNK. A further 15 structures

were removed as they had very high R factors after refine-

ment. Five of the deposited structures (PDB entries 2a9v, 2ash,

2awa, 2o5r and 2pnk) have their structure-determination

method listed as a combination of MAD and molecular

replacement, and one (PDB entry 2fcl) has only molecular

replacement. In these cases the deposited structure may

contain some model bias from the search model used by the

original author. This simulation involved inflating the B

factors of the structure-factor amplitudes and removing the

reflections with resolutions higher than the target resolution.

Inflation of B factors was carried out by first downloading a list

of all structures in the PDB, each with a resolution and an

average B factor. A linear fit was then performed, which gave

a gradient of 32.8 Å that was used to inflate the B factors by

the difference in resolution. This modification resulted in the

reduction of the resolution of the electron-density map to that

of the simulated resolution. This process produced 1009

synthetic data sets: five synthetic data sets at the lower reso-

lutions mentioned above for each original data set, except for

a single data set in which the original resolution was already

3.2 Å. This gave 1211 data sets in total. The 52 data sets that

had previously been used in the development of Buccaneer1

were excluded, along with the synthetic data sets obtained

from them.

The density of both the original and synthetic data sets was

then modified using Parrot (Cowtan, 2010) for three density-

modification types: heavy-atom NCS (HA-NCS) determined

using S-atom or Se-atom positions from the deposited model,

molecular-replacement NCS (MR-NCS) determined using all

atoms of the deposited model and no NCS (NO-NCS). The

three groups of 1211 data sets (i.e. 3633 data sets in total)

created in this way were used in the comparison.

The following PDB entries were used in the comparison

(the omitted data sets are marked with asterisks): 1o6a*, 1vjf*,

1vjn*, 1vjr*, 1vjv*, 1vjx*, 1vjz*, 1vk2*, 1vk3*, 1vk4*, 1vk8*,

1vk9*, 1vkb*, 1vkd*, 1vkh*, 1vkm*, 1vkn*, 1vku*, 1vky*,

1vkz*, 1vl0*, 1vl4*, 1vl5*, 1vl6*, 1vlc*, 1vli*, 1vll*, 1vlm*,

1vlo*, 1vlu*, 1vm8, 1vme*, 1vmf*, 1vmg*, 1vmi*, 1vp4*,

1vp7*, 1vp8*, 1vpb*, 1vpm*, 1vpy*, 1vpz*, 1vqr*, 1vqs*,

1vqy*, 1vqz*, 1vr0*, 1vr3*, 1vr5*, 1vr8*, 1vra, 1vrb*, 1z82*,

1z85*, 1zbt, 1zkg, 1zko, 1ztc, 1zy9, 1zyb, 2a2m, 2a3n, 2a6a,

2a6b, 2a9v, 2aam, 2afb, 2aj6, 2aj7, 2ajr, 2aml, 2anu, 2ash, 2avn,

2awa, 2b8m, 2ess, 2etd, 2eth, 2etj, 2ets, 2f4l, 2f4p, 2fcl, 2fea,

2ffj, 2fg0, 2fg9, 2fna, 2fno, 2fqp, 2fur, 2fzt, 2g0t, 2gb5, 2gfg,

2ghr, 2ghs, 2gjg, 2glz, 2gm6, 2gno, 2gnr, 2go7, 2gpj, 2gvh, 2gvk,

2h1q, 2hag, 2hcf, 2hdo, 2hh6, 2hhz, 2hi0, 2hoe, 2hq7, 2hr2,

2hsb, 2hti, 2huh, 2huj, 2hx1, 2hxv, 2hyt, 2i51, 2i5i, 2i8d, 2i9w,

2ia7, 2ich, 2ifx, 2ig6, 2ii1, 2iiu, 2ilb, 2inb, 2isb, 2it9, 2itb, 2nlv,

2nuj, 2nwv, 2nyh, 2o08, 2o1q, 2o2g, 2o2x, 2o3l, 2o5r, 2o62,

2o7t, 2o8q, 2obn, 2obp, 2oc5, 2oc6, 2od4, 2od5, 2od6, 2ogi,

2oh1, 2oh3, 2okc, 2okf, 2ooc, 2ooj, 2op5, 2opk, 2opl, 2ord,

2osd, 2otm, 2ou6, 2ouw, 2owp, 2oyo, 2ozg, 2ozj, 2p10, 2p1a,

2p4g, 2p4o, 2p7i, 2p8j, 2p97, 2pbl, 2pc1, 2pg3, 2pg4, 2pgc, 2pim,

2pke, 2pn1, 2pn2, 2pnk, 2ppv, 2pr7, 2prr, 2prv, 2prx, 2pv4 and

2pw4.

2.6. Method of comparison

A comparison was conducted of the following versions of

the four protein-building pipelines described in Sections 2.1–

2.4: PHENIX AutoBuild v.1.14, Buccaneer in CCP4i, ARP/

wARP v.8 and SHELXE v.2019/1. All binary files were

obtained from CCP4 v.7.0.066 and were run with the default

parameters set by the developers of the pipeline. ARP/wARP

was run without the Rfree flag, in line with the tool’s docu-

mentation, and automatically includes a secondary-structure

building step in cases where the resolution is worse than 2.7 Å.

PHENIX AutoBuild by default builds three models at each

step, leading to improved results at the cost of computing time.

Additionally, the comparison considered several pipeline

variants with nondefault parameters as listed below.

(i) ARP/wARP with the Rfree flag set and using as initial

models the models built by Buccaneer in CCP4i, as one known

limitation of Buccaneer is its use of fewer model-finalization

steps.

(ii) PHENIX AutoBuild with density-modified phases

(using Parrot; Cowtan, 2010).

(iii) SHELXE with density-modified phases (using Parrot;

Cowtan, 2010).

(iv) SHELXE (with and without density-modified phases)

variants with the -t flag set to 20 as a higher value is

recommended in the tool’s documentation.

Table 1 shows the short names used for these pipeline variants

in the rest of the paper.
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Figure 1
Resolutions of the 202 original data sets.

1 These 52 data sets were analysed for a secondary study in which we assessed
the efficiency of choosing training data sets for pipeline development
(supporting information Sections S3 and S4).



Each execution of a pipeline received two inputs: a reflec-

tion data file comprising the result of an experimental phasing

calculation and the sequence file of the relevant protein.

SHELXE did not receive the sequence file because it is not

required. The model-building task was then submitted as a job

to a 173-node high-performance cluster with 7024 Intel Xeon

Gold/Platinum cores and a total memory of 42 TB. Each job

involved building one protein model and was stopped if it did

not complete within 48 h. There was no resource sharing

between jobs.

Following model building, a ‘zero-cycle’ REFMAC run was

used to calculate Rwork/Rfree in order to avoid the confounding

effects of different scaling and solvent parameterizations in

different refinement programs. REFMAC was run with default

parameters. The quality of the starting phases was assessed

using the weighted F-map correlation between the initial map

and the phases from the refined deposited model. A structure

completeness measure was obtained for the final model by

calculating the percentage of residues in the processed

deposited model from the PDB whose C� atoms have the same

residue type as, and coordinates within 1.0 Å of, the corre-

sponding residue in the built model. SHELXE completeness

was only calculated for C� atoms in correct positions within

1.0 Å because SHELXE only builds the main chain.

A tool was developed to automate the execution of the

pipelines and the analysis of their results. To ensure the

reproducibility of the study, the execution of all pipeline

variants was repeated for a sample of 30 structures. The results

(provided as supporting information) did not vary significantly

when the pipelines were rerun with the same inputs. Addi-

tionally, a series of tests searching for errors that might have

occurred during the running or analysis stages were

performed; for example, the running parameters from log files

were verified for possible errors in the parameter settings.

Three measures were used to compare the protein models

built by different pipelines: structure completeness, Rwork/Rfree

and pipeline-execution time. Rwork/Rfree values were rounded

to two decimal places and completeness was rounded to the

nearest whole number.

For both completeness and Rwork/Rfree, and for each pair of

pipelines, we report the percentage of data sets for which one

pipeline yields better models than the other and the percen-

tage of data sets for which one pipeline yields models which

are at least 5% better than the models produced by the other

pipeline. (Cases in which the results are equivalent or better

by between 1% and 4% are reported in the supporting

information.) The results obtained for the real data sets used

in the comparison and for the data sets truncated to simulate

lower resolutions are reported separately. For execution time,

we report the mean pipeline-execution times partitioned into

classes based on their structure sizes.

3. Results

3.1. Overview

The results described here were obtained by comparing the

protein structures successfully built by each of the pipeline

variants in Table 1. For the first four pipeline variants in the

table we used all 3633 data sets obtained as described in the

previous section. For PHENIX AutoBuild and SHELXE no

prior density modification was run and the results were

compared with the NO-NCS results from the other pipelines.

SHELXE variants were not run on synthetic data sets because

this is not recommended, and therefore SHELXE is omitted

from the synthetic data sets comparison.

All pipeline variants successfully completed the analysis of

over 99% of both the original and synthetic data sets. The

remaining runs did not complete within 48 h (a time limit that

we set in our experiments), failed owing to insufficient

memory or crashed. In all of these cases the pipeline variant

was rerun with its memory quota and time limit increased until

it either succeeded or a limit of 20 GB of allocated memory

and 48 h were reached. As shown in Tables 2 and 3, only very

few runs did not complete (even after this memory increase),

and most of these produced intermediate protein models that

we used in our comparison. The data sets marked ‘Failed’ in

the tables were excluded from the comparison (for all pipeline

variants). The numbers of different types of ‘complete’ and

‘intermediate’ models used in the comparison are reported

above each table.

Including noncrystallographic averaging improves the

starting phases for structures where NCS is present, but it does

not significantly affect the conclusions of this work because

the completeness is not significantly affected. Given that the

differences between NCS and NO-NCS cases are small, the

poorer-phased NO-NCS data sets will be considered in the

remainder of the comparison.

Using the correct solvent fraction in SHELXE improves its

results, but does not significantly affect the results when

compared with other pipeline variants. A default fraction of

solvent of 0.45 is used in the comparison.

3.2. Structure completeness

Tables 4 and 5 report the percentages of models for which

each pipeline variant achieved a structure completeness that is

higher and at least 5% higher, respectively, than the other

pipeline variants. Note that the two figures associated with a

pair of pipeline variants in Table 4 do not always add up to

100% because some of the models are generated with the

same structure completeness (rounded to the next integer) by

the two pipeline variants. For example, the structure
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Table 1
Pipeline variants used in the comparison.

Short name Long name

ARP ARP/wARP
ARP(B 5I) ARP/wARP after Buccaneer in CCP4i using the default five

iterations
i1(5I) Buccaneer in CCP4i using five iterations
PHENIX/Parrot PHENIX AutoBuild runs after Parrot (density-modified

phases)
SHELXE/Parrot SHELXE runs after Parrot (density-modified phases)
PHENIX PHENIX AutoBuild fed by density-unmodified phases
SHELXE SHELXE fed by density-unmodified phases



completeness of 23% of the ARP models was higher than that

of the corresponding ARP(B 5I) models, and 45% of the

ARP(B 5I) models had a higher structure completeness than

that of the ARP models; thus, the remaining 32% of the

models built by ARP and ARP(B 5I) had the same structure

completeness, after rounding.

As shown in the first of these tables,

ARP/wARP built 37% of the data sets

better than PHENIX AutoBuild, while

PHENIX AutoBuild did better for 48%

of the data sets, which means that 15%

of the data sets are equal in their

completeness. Buccaneer in CCP4i built

more than half of the data sets with

higher completeness compared with

ARP/wARP. The default five-cycle

Buccaneer runs typically produce less

complete models than PHENIX Auto-

Build.

Table 5 shows the number of cases in

which one pipeline variant achieved 5%

or higher structural completeness than

another. By this measure, for every

pipeline variant there are at least 3% of

cases in which that pipeline produces a

significantly more complete model than

another pipeline; however, a similar

general pattern is shown to the previous

comparison.

Running ARP/wARP after Bucca-

neer can impact the results. Comparing

ARP/wARP after Buccaneer in CCP4i

(five iterations) with ARP/wARP alone showed a 5%

improvement in completeness in a quarter of cases, with only a

few cases of a comparable decrease in completeness. Using

PHENIX AutoBuild after Parrot showed a small benefit of the

additional density-modification step; 14% of the data sets

were built better, compared with 7% that were built worse.
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Table 2
Complete and intermediate models produced by the seven pipeline variants for the original data sets, where ‘(T)’ and ‘(C)’ denote intermediate models
produced by pipeline executions that timed out and crashed, respectively.

Models used in the comparison: 149 HA-NCS, 149 MR-NCS and 148 NO-NCS.

HA-NCS MR-NCS NO-NCS

Pipeline variant Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 201 1(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0
ARP(B 5I) 202 0(T) 0(C) 0 201 1(T) 0(C) 0 202 0(T) 0(C) 0
i1(5I) 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0
PHENIX/Parrot 198 2(T) 1(C) 1 200 0(T) 1(C) 1 199 1(T) 1(C) 1
SHELXE/Parrot 202 0(T) 0(C) 0 201 1(T) 0(C) 0 200 2(T) 0(C) 0
PHENIX — — — — — — 199 1(T) 0(C) 2
SHELXE — — — — — — 200 2(T) 0(C) 0

Table 3
Complete and intermediate models produced by the five pipeline variants for the synthetic resolution data sets, where ‘(T)’ and ’(C)’ denote intermediate
models produced by pipeline executions that timed out and crashed, respectively.

Models used in the comparison: 750 HA-NCS, 750 MR-NCS and 750 NO-NCS.

HA-NCS MR-NCS NO-NCS

Pipeline variant Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 1008 1(T) 0(C) 0 1007 2(T) 0(C) 0 1008 1(T) 0(C) 0
ARP(B 5I) 1005 4(T) 0(C) 0 1006 3(T) 0(C) 0 1003 6(T) 0(C) 0
i1(5I) 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0
PHENIX/Parrot 1002 7(T) 0(C) 0 1004 5(T) 0(C) 0 1001 8(T) 0(C) 0
PHENIX — — — — — — 1001 7(T) 0(C) 1

Table 4
Structure completeness comparison for the models generated from the original NO-NCS data sets.

Each row corresponds to a pipeline variant and shows the percentage (rounded to the nearest integer) of
models that the pipeline variant built with higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 23 33 39 37 68 61
ARP(B 5I) 45 0 40 43 43 76 73
i1(5I) 57 45 0 46 49 77 72
PHENIX/Parrot 49 44 45 0 46 80 77
PHENIX 48 39 41 32 0 78 72
SHELXE 26 15 20 16 16 0 34
SHELXE/Parrot 32 22 24 17 22 57 0

Table 5
Structure completeness comparison for the models generated from the original NO-NCS data sets.

Each row corresponds to a pipeline variant, and shows the percentage (rounded to the nearest integer) of
models that the pipeline variant built with at least 5% higher structure completeness than each of the other
pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 6 15 11 14 45 40
ARP(B 5I) 24 0 20 16 16 53 53
i1(5I) 28 17 0 16 16 56 48
PHENIX/Parrot 28 20 26 0 14 61 55
PHENIX 28 18 23 7 0 57 51
SHELXE 17 7 11 7 7 0 9
SHELXE/Parrot 21 12 17 5 10 32 0



Comparison of SHELXE with the other pipeline variants

shows that over half of the data sets are typically built better

by other pipeline variants even when the 5% improvement

comparison level is considered. SHELXE built 16% of the

data sets better than PHENIX AutoBuild, but this number

decreased to 7% for the 5% improvement comparison level.

SHELXE after Parrot showed some improvements when

compared with the other pipeline variants; however, for the

5% improvement comparison level these variants built over

40% of the data sets better than SHELXE after Parrot.

Fig. 2 shows the mean structure completeness for different

ranges of data-set resolutions across both the original and

synthetic data sets. As expected, the pipeline variants achieved

the best results at 1.2–1.9 Å, and the completeness of the

models was significantly poorer at 4.0 Å.ARP/wARP dropped

rapidly at 3.2 Å (synthetic data sets) and decreased to nearly

zero completeness at 4.0 Å. In contrast, for Buccaneer in

CCP4i the completeness degrades only slowly as the resolu-

tion drops below 3.1 Å. PHENIX AutoBuild produces the

most complete models when using the original data resolution;

however, its completeness falls between those of Buccaneer

and ARP/wARP for the resolution-truncated data sets. The

pipelines were affected by F-map correlation, with lower

completeness at an F-map correlation of 0.53 or lower (Fig. 3).

Fig. 4 shows the mean numbers of residues which were built

incorrectly grouped into bins based on the data-set resolution.

Achieving high structure completeness leads to the generation

of a large number of incorrect residues. For example, Bucca-

neer in CCP4i built more residues incorrectly than other

pipeline variants; for example, a fraction of 0.50 of the residues

were incorrect at 4.0 Å, while PHENIX AutoBuild only

reached a fraction of 0.20 of incorrect residues at the same

resolution. ARP/wARP and PHENIX AutoBuild built almost

no incorrect residues between 1.2 and 1.9 Å.

3.3. Rwork and Rfree

Tables 6 and 7 show the Rwork/Rfree results for the pipeline

variants at the two levels of comparison (i.e. better and at least

5% better). If Rfree was not used, no results are reported.

ARP/wARP and PHENIX AutoBuild gave results which

better explain the X-ray observations than Buccaneer.

Buccaneer in CCP4i built less than 10% of the data sets with

lower Rwork/Rfree compared with PHENIX AutoBuild, which

built 93% of the models with lower Rwork/Rfree than the

Buccaneer pipeline. The performance of ARP/wARP and

SHELXE can only be compared with the other pipelines in

terms of Rwork owing to Rfree not being used, and the results of
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Figure 2
Mean completeness for the protein models built for all NO-NCS data sets.
The data sets are grouped into bins based on their resolution, with the
number of data sets in each bin shown in parentheses under the graph.

Figure 3
Mean completeness for the models built for the original NO-NCS data
sets, grouped into bins based on their initial map correlation (F-map
correlation); the number of data sets in each bin is reported in
parentheses under the graph.

Figure 4
Mean residues incorrectly built for the protein models built for all NO-
NCS data sets. The data sets are grouped into bins based on their
resolution, with the number of data sets in each bin shown in parentheses
under the graph. The number of residues incorrectly built was normalized
by dividing by the number of residues in the deposited model.



ARP/wARP were closer to those

achieved by PHENIX AutoBuild

than to those with Buccaneer.

ARP/wARP built 94% of the

models with lower Rwork, while

Buccaneer only built 5% of the

models with lower Rwork (Table

6). When considering only cases

in which Rwork or Rfree change by

more than 5% (Table 7), there are

comparatively few differences

between ARP/wARP and

PHENIX AutoBuild, but both

outperform the Buccaneer pipe-

line in a significant proportion of

cases. All pipeline variants built at

least 97% of the models with

lower Rwork/Rfree compared with

SHELXE variants, which built

3% of the models with lower

Rwork in the best scenario. These

results remain almost the same

when the 5% improvement

comparison level is considered.

Using SHELXE after Parrot

improved Rwork, but it did not

significantly improve the results

when compared with other pipe-

line variants.

Figs. 5 and 6 show the Rwork and

Rfree obtained for different

resolution ranges. As shown in

the tables, PHENIX AutoBuild

achieved the best values at 1.2–

1.9 Å, with the results degrading

significantly over 3.2 Å. The

results of Buccaneer degrade

more gradually to 4.0 Å. Rfree increased in the same manner as

Rwork. ARP/wARP produces very good Rwork values at all

resolutions, although the authors caution that overfitting is a

problem in the dummy-atom model. Nonetheless, Rfree (for

the hybrid Buccaneer +ARP/wARP runs, where it is available)

is also better than for the other pipelines at lower resolutions,

in contrast to the completeness results. This suggests that the

dummy-atom model has significant predictive power in

explaining the X-ray observations, even when it cannot be

interpreted in terms of sequenced protein chain.

3.4. Pipeline-execution time

Fig. 7 shows the mean execution times that the pipeline

variants required to build the protein models for the original

NO-NCS data sets from our comparison. Buccaneer in CCP4i

was the fastest pipeline over all structure sizes. ARP/wARP

averaged less than 50 min to build a small structure, making it

the second fastest pipeline after Buccaneer. Using Buccaneer

in CCP4i models as initial models for ARP/wARP slowed the

building of the models compared with the normal run of ARP/

wARP, with averages slightly higher than for normal ARP/

wARP. PHENIX AutoBuild, after Parrot and without Parrot,

was the slowest pipeline, with averages of around 200 min to

build small structures and more than 1600 min for large

structures. SHELXE required execution times between those

of ARP/wARP and PHENIX AutoBuild, achieving the smal-

lest average when building small structures, but with execution

times that increased to over 200 min when building large

structures.

4. Discussion

Comparisons of the different model-building pipelines against

a range of observed data sets, both at the original resolution

and after simulated resolution reduction, highlight different

strengths and weaknesses of the different software. These may

be used to guide users in choosing the most appropriate

software for their problem and developers in the improvement
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Table 7
Comparison of Rwork/Rfree (rounded to two decimal places) for the models generated from the original NO-
NCS data sets.

Each row shows the percentage of models that a pipeline variant built with Rwork or Rfree at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP Rwork 0 3 52 5 7 100 100
ARP Rfree — — — — — — —
ARP(B 5I) Rwork 5 0 60 6 6 100 100
ARP(B 5I) Rfree — 0 60 12 16 — —
i1(5I) Rwork 0 0 0 0 1 95 94
i1(5I) Rfree — 1 0 0 1 — —
PHENIX/Parrot Rwork 5 3 54 0 2 99 99
PHENIX/Parrot Rfree — 13 57 0 2 — —
PHENIX Rwork 4 2 55 1 0 99 98
PHENIX Rfree — 11 57 1 0 — —
SHELXE Rwork 0 0 1 1 1 0 0
SHELXE Rfree — — — — — — —
SHELXE/Parrot Rwork 0 0 1 0 1 1 0
SHELXE/Parrot Rfree — — — — — — —

Table 6
Comparison of Rwork/Rfree (rounded to two decimal places) for the models generated from the original NO-
NCS data sets.

Each row shows the percentage of models that a pipeline variant built with lower Rwork or Rfree than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP Rwork 0 22 94 34 37 100 100
ARP Rfree — — — — — — —
ARP(B 5I) Rwork 45 0 99 44 45 100 100
ARP(B 5I) Rfree — 0 85 52 50 — —
i1(5I)Rwork 5 0 0 3 3 97 97
i1(5I) Rfree — 11 0 3 5 — —
PHENIX/Parrot Rwork 47 31 95 0 27 99 99
PHENIX/Parrot Rfree — 43 93 0 31 — —
PHENIX Rwork 43 32 93 22 0 99 99
PHENIX Rfree — 45 93 31 0 — —
SHELXE Rwork 0 0 3 1 1 0 19
SHELXE Rfree — — — — — — —
SHELXE/Parrot Rwork 0 0 3 1 1 42 0
SHELXE/Parrot Rfree — — — — — — —



of their software or the construction of hybrid pipelines using

multiple tools.

Comparison of the model completeness, as assessed by the

fraction of the model � carbons built to within 1.0 Å of the

correct location and assigned the correct residue type, suggests

that at better than 3.1 Å resolution PHENIX AutoBuild

achieves the most complete models, with Buccaneer and ARP/

wARP producing successively less complete models. PHENIX

AutoBuild was developed mainly against data at better than

3.0 Å resolution (Bunkóczi et al., 2015).

At worse than 3.1 Å resolution Buccaneer substantially

outperforms the other pipelines, with PHENIX AutoBuild

giving an intermediate performance and ARP/wARP only

building a small proportion of residues when averaged across

many structures. This is consistent with expectations given that

the original design criterion for Buccaneer was that it should

be more robust against reduced resolution. Running ARP/

wARP after Buccaneer leads to results which are worse than

those from Buccaneer, suggesting that the residues success-

fully sequenced by Buccaneer are not being retained by ARP/

wARP.

When comparing model completeness against initial map

quality for the original resolution data sets, all of the pipelines

perform well when the initial phases are good (correlation of

>0.64). The best results are obtained using PHENIX Auto-

Build, especially after initial phase improvement using Parrot

(Cowtan, 2010). This suggests that phase improvement in

Parrot is in some way complementary to the statistical phase

improvement which is incorporated in the PHENIX Auto-

Build pipeline (Terwilliger et al., 2008). SHELXE also showed

improved model building when starting from phases improved

by Parrot.

When comparing R factors the conclusions are somewhat

different. ARP/wARP produces the lowest R factors across all

resolution ranges, and produces dramatically lower R factors

at worse than 3.1 Å resolution. PHENIX AutoBuild comes

close toARP/wARP at better than 3.2 Å resolution. SHELXE

produced the highest Rwork because it only built the main

chain. Sequence assignment and side-chain modelling are

likely to significantly reduce the R factors as long as the chains

built by SHELXE do not contain too many tracing errors.

When comparing Rfree a similar pattern emerges, although

at worse than 3.1 Å resolution the free R factors from the

Buccaneer + ARP/wARP pipeline show a more modest gain

over the other pipelines. [On the basis of developer recom-

mendations and our tests, no free set is used when running

ARP/wARP on its own (ARP/wARP 8.0 User Guide; https://

www.embl-hamburg.de/ARP/Manual/UserGuide8.0.html)].

research papers

1126 Alharbi et al. � Comparison of automated model-building pipelines

Figure 7
Mean pipeline-execution times for the original NO-NCS data sets
partitioned into classes based on their structure sizes. The number of data
sets in each class is indicated in parentheses under the graph.

Figure 6
Mean protein model Rfree for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is
indicated in parentheses under the graph.

Figure 5
Mean protein model Rwork for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is
indicated in parentheses under the graph.



The differing conclusions concerning the effectiveness of

ARP/wARP from the three metrics are connected to the

methodology. The use of dummy atoms in the ARP/wARP

calculation allows the observations to be fitted very well and

potentially overfitted (Cohen et al., 2008); however, the

portion of the model represented by dummy atoms does not

contribute to the completeness score used here. The good Rfree

values obtained from ARP/wARP show that the dummy-atom

model has significant explanatory power at lower resolutions

even when the dummy atoms cannot be explained in terms of

sequenced main chain. This suggests that improved results

may be possible either by using ARP/wARP as a preliminary

step for another method or by further development of the

methods for interpreting the dummy-atom model.

The performance of a model-building algorithm is deter-

mined by multiple factors: the ability of the method to inter-

pret an initial map, the ability of the pipeline to improve this

map in the light of the model built so far and the amount of

finalization (for example waters, cis-peptides and so on) which

is performed by the pipeline. The results presented here

suggest that Buccaneer may be the most effective tool for

classifying features in the initial map, especially at lower

resolution, but lacks the finalization tools which are present in

ARP/wARP and PHENIX AutoBuild, and therefore leads to

higher R factors. This suggested the use of ARP/wARP to

finalize the Buccaneer model; however, the model sequence

tends to be lost at lower resolutions, limiting the benefit of this

approach. PHENIX AutoBuild has however successfully

implemented Buccaneer as an optional preliminary step (not

tested here).

The model-building pipelines show considerable variability

in performance from structure to structure, making the a priori

recommendation of a single method for a given data set

difficult. The speed and ease of use of the model-building

pipelines mean that users seldom need to try and anticipate

which software will be most suitable; instead, most users are

likely to use whichever software is most convenient for them.

The results presented here may be of use in deciding which

pipeline to try next in the case where the first option is

unsuccessful. ARP/wARP and PHENIX AutoBuild are likely

to be better options at better than 3.1 Å resolution, where

their advanced model-finalization tools lead to lower R

factors. As the resolution drops below 3.1 Å, Buccaneer is

more likely to produce the most complete model; however,

manual editing to remove wrongly built structure is also

required.

Given that the software pipelines perform differently on

different problem types, the results of any test will inevitably

be biased by the choice of test data. In this case, data sets from

the Joint Center for Structural Genomics (JCSG; van den

Bedem et al., 2011) were used; other JCSG data were also used

in the development of Buccaneer, although these data sets

were excluded from the results presented here. It is possible

that this has led to some element of ‘tuning’ of Buccaneer to

work on JCSG-sourced data, although the use of different

programs for different structures within the JCSG pipeline

may mitigate this. Similarly, the resolution-truncation protocol

used for low-resolution tests may lead to different results

compared with genuine low-resolution data sets. In our case,

the resolution-truncation procedure leads to better phases at

low resolution than from a real low-resolution data set. Finally,

the evaluation criteria also dictate the results; in particular the

counting of correctly placed and sequenced � carbons appears

to penalize ARP/wARP at lower resolutions compared with

the results of R-factor comparisons. Which model is more

desirable will depend on the needs of the downstream user.

5. Data and methods

The comparison tool code, the structures built by the pipelines

and log files, and the data used are available at https://doi.org/

10.15124/d4cb35df-a42d-4365-b539-9868730d165f.
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