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In this article we present a novel analysis of time-evolving networks, based on a thermodynamic

representation of graph structure. We show how to characterize the evolution of time-varying complex

networks by relating major structural changes to thermodynamic phase transitions. In particular, we

derive expressions for a number of different thermodynamic quantities (specifically energy, entropy and

temperature), which we use to describe the evolutionary behaviour of the network system over time.

Since in the real world no system is truly closed and interactions with the environment are usually

strong, we assume an open nature of the system. We adopt the Schrödinger picture as the dynamical

representation of the quantum system over time. First, we compute the network entropy using a recent

quantum–mechanical representation of graph structure, connecting the graph Laplacian to a density

operator. Then, we assume the system evolves according to the Schrödinger representation, but we allow

for decoherence due to the interaction with the environment in a model akin to Environment-Induced

Decoherence. We simplify the model by separating its dynamics into a) an unknown time-dependent uni-

tary evolution plus b) an observation/interaction process, and this is the sole cause of the changes in the

eigenvalues of the density matrix of the system. This allows us to obtain a measure of energy exchange

with the environment through the estimation of the hidden time-varying Hamiltonian responsible for the

unitary part of the evolution. Using the thermodynamic relationship between changes in energy, entropy,

pressure and volume, we recover the thermodynamic temperature. We assess the utility of the method on

real-world time-varying networks representing complex systems in the financial and biological domains.

We also compare and contrast the different characterizations provided by the thermodynamic variables

(energy, entropy, temperature, and pressure). The study shows that the estimation of the time-varying

energy operator strongly characterizes different states of a time evolving system and successfully detects

critical events occurring during network evolution.
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1. Introduction

The problem of identifying an effective and succinct characterization of complex network structure has

been the ongoing focus of interest in network analysis for several decades [1–3]. Initially efforts focused

around a static view of network structure and on developing ways to describe networks through iden-

tifying salient substructures, such as communities, hubs or clusters [4–6]. In these cases the resulting

representation is defined by the connectivity structure [7], and this approach has proved effective for

problems of both clustering and classification [8, 9]. Recently, on the other hand, dynamical network

analysis has attracted more attention. In particular the analysis of the processes underlying network evo-

lution and the detailed mechanisms involved, have both acquired an increasingly crucial role in network

science. However, capturing the large-scale properties of a time evolving structure has proven to be an

extremely challenging problem. For searching for structural changes in temporal networks, the classic

methods described in the literature usually adopt tools from statistics. For instance, in [10], statistical

process control techniques are used in order to detect changes in social networks. Methods relying on

machine learning are also common, and these include [11]. Here the authors formalize the problem of

detecting change-points in large-scale evolving structures using an online probabilistic learning frame-

work. Alternative approaches employ statistics and image analysis techniques to detect anomalies in

graph time series. For example, in [12] the authors introduce a theory of scan statistics on graphs.

From the perspectives of both static and dynamic network analysis, many researchers have recog-

nized that drawing on ideas from fields such as physics, may yield promising results. For instance, the

use of analogies based on statistical mechanics [13–18], thermodynamics [19–21] as well as quantum

information [7, 22, 23] provides an excellent framework for describing complex time-evolving systems.

Among these the approaches based on thermodynamic analogies, relating the behaviour of microscopic

particles to the macroscopic properties of a system [16, 17, 24], have proved remarkably successful.

For example, the heat bath analogy from thermodynamics described in [25] allows us to define physical

measures of communicability and balance in networks.

When the network is described by a partition function, thermodynamic quantities, such as entropy,

energy and temperature can be straightforwardly derived from it [26]. Usually in these cases the Hamil-

tonian is obtained from the adjacency matrix or Laplacian matrix of the network and their eigenval-

ues. The choice of partition function governs how the different energy levels are populated and thus

the details of how the thermodynamic quantities characterising a network depend on temperature and

the distribution of energy levels. This means that the choice of partition function also determines the

domain of applicability of the developed graph characterisation. For instance, in [20] the authors use

the Maxwell-Boltzmann partition function to describe a system in thermal equilibrium with a heat bath

and show how the partition function can be computed from a characteristic matrix polynomial.

By contrast, in [27] the Bose Einstein partition function models a Bose gas over a network. In this

case the process of Bose-Einstein condensation provides deep insights into low temperature network

behaviour including the formation of a condensate through the coalescences of particles into the lowest

energy states.

In network analysis and especially for those methods based on statistical physics analogies, most

approaches adopted to study complex structures are based on concepts from spectral graph theory [28].

For instance, in the heat bath analogy utilized to characterize networks, the energy states of a network

are captured using the eigenvalues of the matrix representation of the network [29]. Here, in particular,

global network characteristics, including the entropy, can be computed by using the Maxwell-Boltzmann

partition function. By contrast, in [30, 31] energy states are occupied according to either Bose-Einstein

or Fermi-Dirac statistics. For time evolving structures, thermodynamic approaches and spectral analysis
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have also proved to be extremely useful as tools for characterizing dynamic networks. For instance the

von Neumann entropy of a network was firstly introduced by Braunstein [22] and analysed further in

a number of subsequent works [7, 23]. The idea underpinning this measure is that the combinatorial

graph Laplacian can be interpreted as the density matrix of a quantum system. In [21] the spectrum

of the normalized Laplacian matrix is used to define the microstates of a complex system, and the

associated microstate occupation probabilities are used to define the thermodynamic entropy of the

network. Additionally, the authors show how to compute thermodynamic variables in terms of node

degree statistics. Similarly, in [32] the authors investigate the variation of entropy in time evolving

networks and show how global modifications of network structure are determined by correlations in the

changes in joint degree statistics for those pairs of nodes connected by edges.

Thus, thermodynamic approaches can not only be used to characterize networks utilizing classical

measures, such as entropy or energy, but can also be used to develop new measures of network complex-

ity. For instance in [19], for the case of graph representation of complex networks, a flow complexity

measure is presented and a thermodynamic characterization is developed based on the variation of local

histories over graphs.

1.1 Overview

Recently, the literature has witnessed a large volume of work aimed at understanding the evolution of

time-varying networks by means of analogies and formal similarities with thermodynamics and quantum

information. However, most attempts construct their analysis around a given Hamiltonian, de facto

assuming a complete representation of the system to be studied is at hand.

In this work we look at a different and less studied scenario, where the network is only a partial

component of a larger system and its evolution is affected by the interaction with the larger environment.

Here, following [33] we define the environment as any set of degrees of freedom that are coupled

to the system of interest, and which we can therefore monitor and become entangled with its states. In

an approach akin to Environment-Induced Decoherence [33] we model the system interaction with the

environment as an open system subject to internal and external potentials (unitary component), as well

as the monitoring effect of the environment (entropic component).

Following a classic renormalization approach, we assume that these forces act at a different time-

scale, so that they can be effectively approximated by a (time-varying) potential term in the Hamilto-

nian coupled with an observation/interaction process, sole cause of the change in the eigenvalues of

the density matrix. The fact that the effects of the environment are unknown, results in an unknown

potential and thus an unknown effective Hamiltonian, which we need to estimate from the evolution of

the network. This results in an inverse-problem formulation from the observed dynamics to estimate the

thermodynamic quantities. With this formulation to hand, we aim at analysing, comparing, and contrast-

ing the characterization quality of the obtained thermodynamics measures. The goal is to see whether

major variations in the thermodynamic-variables are linked with fundamental topological changes and

key events in the evolution of the system.

In our approach the graph Laplacian at each time epoch is viewed as a quantum mixed state under-

going free evolution through the Schrödinger equation under an unknown time-dependent Hamiltonian.

Here the free evolution of a quantum system means the time evolution of a system generated by some

Hamiltonian. In particular, the Hamiltonian represents the change in potential energy due to exter-

nal factors. Entropy and energy change with time as a result of direct interaction between the system

and its environment. From the observed evolution of the network (i.e., the system), we estimate the

Hamiltonian together with the energy-exchange with the environment at each time epoch, as well as the
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variation in entropy of the underlying structure (system). Finally, from these variations we derive the

actual thermodynamic variables of the evolving network system, including the energy and temperature.

The resulting characterization is utilized to represent the evolution of a number of real-world time-

varying networks. These include a) the price correlation of selected stocks in the New York Stock

Exchange (NYSE) [34], b) the gene expression of the life cycle of the Fruit Fly (Drosophila melanogaster)

[35, 36] and c) a further financial network, USSM. First we develop the framework for networks with

a fixed number of nodes. This is a quite common feature of networks used to abstract systems with a

known set of components or states. Then we show how the formulation can be extended to take into

account variation in network size, under the assumption of a fixed pressure which becomes a mixing

parameter balancing the effect of changes in energy and network size.

The remainder of the paper is organized as follows. In Section 2 we present the mathematical

and thermodynamic background. In addition, we provide a detailed development of how we compute

the thermodynamics variables under the fixed-volume assumption. In Section 3 we apply the result-

ing thermodynamic representation to a number of real-world time-varying networks. In Section 4 we

generalized the analysis to size-changing networks, and finally in Section 5 we present our conclusions.

2. Quantum Thermodynamics of the Network

Let G(V,E) be an undirected graph with node set V and edges set E ⊆ V ×V and let A = ai j be the

adjacency matrix, where

ai j =

{

1, (vi,v j) ∈ E,

0, otherwise.

The degree d of a node is the number of edges incident to the node and it can be represented through

the degree matrix D = (di j) which is a diagonal matrix with dii = ∑i ai j. The graph Laplacian is then

defined as L = D−A, and it can be interpreted as a combinatorial analogue of the discrete Laplace-

Beltrami operator. The normalized Laplacian matrix L̃ is defined as

L̃ = D−1/2
(

D−A
)

D−1/2 (2.1)

In standard quantum mechanics, the state of a quantum mechanical system associated to the n–

dimensional Hilbert space H ∼= C
n is identified by a n× n positive semidefinite hermitian matrix, with

Tr(ρ) = 1, the density matrix. The density operator is introduced in quantum mechanics to describe a

system whose state is an ensemble of pure quantum states |ψi〉, each with probability pi. In other words,

every density matrix can be written as a weighted sum of pure states, with real non-negative weights

summing up to 1.

ρ = ∑
i

pi |ψi〉〈ψi| . (2.2)

There are different ways to associate graphs to specific states or dynamics, e.g., graph-states [37, 38]

or spin networks [39–41]. However here we opt for another approach, the mapping between discrete

Laplacian and quantum states, firstly introduced by Braunstein et al. [22](see also [42]). In the first

place, it is easy to observe how the normalized Laplacian matrix, scaled by the number of vertices in the

graph, has the characteristic features of a quantum mechanical density matrix: it is a positive semidefi-

nite unit trace matrix, which actually provides a link to quantum states. In [23], Passerini and Severini

suggest how the normalized Laplacian can be also seen as a density matrix in a quantum system repre-

senting a quantum superposition of the transition steps of quantum walk over the graph. Furthermore,

the normalized Laplacian may be interpreted as a mixture of pure states (i.e., a convex combination of
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rank-1 operators), more precisely a uniformly random mixture of pure states in the vertex-space, where

each state in the mixture corresponds to a single edge of the graph [43]. In this way, we can associate

with any graph G a specific mixed quantum state [42].

The Shannon entropy measures the uncertainty associated with a classical probability distribution.

However, if we replace probability distributions with density operators, we can generalize the definition

of the Shannon entropy to quantum states (actually described in a similar fashion), obtaining in fact the

entropy of a quantum state. More to the point, the von Neumann entropy [44] or quantum entropy HN

of a mixed state is defined in terms of the trace and logarithm of the density operator ρ

HN =−Tr(ρ logρ) =−∑
i

ξi ln ξi (2.3)

where ξ1, . . . ,ξn are the eigenvalues of ρ . In this sense, the quantum entropy is related to the distin-

guishability of the states, i.e., the amount of information that can be extracted from an observation of

the mixed state. In [22] Braunstein et al. introduce the von Neumann entropy as a quantitative measure

of mixedness of the density matrix ρ . This definition in turn is based on the mapping between quantum

states and the combinatorial graph Laplacian, as discussed above. Many detailed studies followed this

work [1, 7, 23, 43, 45–47], but one in particular deserves more attention. Precisely, Passerini and Sev-

erini in [23] investigated the use of the normalized Laplacian as a density operator to define the current

state of the network, thus allowing the network entropy to be derived using the quantum mechanical

definition of the von Neumann entropy

SV N =−
|V |

∑
i=1

λ̃i

|V |
ln

λ̃i

|V |
(2.4)

where λ̃1, . . . , λ̃n are the eigenvalues of L̃ and |V | defines the number of vertices. In the same work

, they provide an interpretation of this quantity as a measure of regularity for graphs. The resulting

intuition is thus that we can somehow measure the complexity of a graph through the von Neumann

entropy. Nevertheless, the interpretation of this spectral measure, in terms of structural patterns, is as

yet unclear, as pointed-out in [48]. Specifically, the ability to distinguish certain structural patterns is

strictly influenced by the topology of the underlying graph. In other words, measures of this type are

extremely sensitive to the structural properties of graphs, such as symmetries [49]. Consequently, we

adopt this quantum approach in the analysis of network, not so much because we believe the system or

its evolution to be quantum in nature, but due to the observed sensitivity to structural changes of these

quantum structure-probing mechanisms.

The continuous-time quantum walk is the quantum counterpart of the continuous-time random walk,

and it is similarly defined as a dynamical process over the vertices of the graph [50]. Here the classical

state vector is replaced by a vector of complex amplitudes over V , and a general state of the walk is

a complex linear combination of the basis states |v〉 ,v ∈ V , such that the state of the walk at time t is

defined as

|ψt〉= ∑
u∈V

αu(t) |u〉 (2.5)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C
|V | are both complex. Moreover, we have that αu(t)α

∗
u (t)

gives the probability that at time t the walker is at the vertex u, and thus ∑u∈V αu(t)α
∗
u (t) = 1 and

αu(t)α
∗
u (t) ∈ [0,1], for all u ∈V , t ∈ R

+.
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The evolution of the walk is then given by the Schrödinger equation, where we denote the (possibly

time-dependent) Hamiltonian as H .

∂

∂ t
|ψt〉=−iH |ψt〉 . (2.6)

Time-dependent Hamiltonian, within the context of the Schrödinger equation, means that there is

an external interaction of the system which manifests itself by a time-dependent potential term. In

general, the Schrödinger’s equation must be solved for the joint state describing system and environment

together. However, for certain Hamiltonians and initial quantum states of the environment, the open

system’s dynamics can be well described by an effective (possibly time-dependent) potential term in the

Hamiltonian, to some good approximation.

Here, we assume that the dynamics of the network is governed by the Schrödinger equation together

with an interaction with the external world, which acts as an observer thus affecting the entropy and

exchanging energy with the system. We model the effect of this interaction as a two component pro-

cess: a) the first component neither changes the thermodynamic variables nor causes any variation in

the entropy; this can be seen as an external potential that can be absorbed into the (unknown) Hamilto-

nian thus developing its time-dependency, b) the second component is modelled as an observation-like

process causing changes in entropy in the network and thus a corresponding exchange in energy with

the environment.

We recall that in quantum mechanics, for every physical observable there is an associated operator.

Roughly speaking, a physical observable is anything that can be measured. The energy is thus defined

in terms of the energy operator. To measure the energy exchange we need to recover the potential term

expressed by the unknown Hamiltonian. In fact, the Hamiltonian acts as an energy operator, so that

the expected energy of a generic state ρ can be computed as Tr(H ρ). This results in the following

expression for the change in energy between state ρt and ρt+1

dU = Tr(Ht+1ρt+1)−Tr(Htρt) (2.7)

We estimate the Hamiltonian Ht as the one that minimizes the exchange of energy through the inter-

action with the external environment. Intuitively this derives from the observation that free evolution

under the Schrödinger equation changes neither the entropy nor the energy, and that any such change has

to derive from the interaction with the external environment. The reason for estimating the interaction

as the one which minimizes the exchange of energy is that a more energetic interaction should be less

probable in a statistical mechanic sense. To this end, we adopt a simplified model where the interaction

intervenes at the end of the free evolution. This means that we model the complex interactions as an

evolution under the Schrödinger equation between times t and t +1, followed by an instantaneous inter-

action with the external world at time t +1 during which all the energy and entropy exchange occurs.

Approximating the Hamiltonian with a piece-wise constant operator, we can use the time-invariant

Schrödinger equation to estimate the constant value of the Hamiltonian between time epochs t and t +1

through the use of the unitary transformation

U (s, t) = exp(−iĤt(s− t)) (2.8)

which provides a solution for the evolution induced by the Schrödinger equation. Here Ĥt denotes

the approximate Hamiltonian that we estimate from the evolution, and s ∈ [t; t + 1) is any time within

the unit time interval commencing at t. This results in
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ρ̂t+1 = exp(−iĤt)ρt exp(iĤt) (2.9)

where ρ̂t+1 is the density at time t +1 just prior to the instantaneous energy-exchanging process.

The exchange of energy in the interaction is then

∆Ut = Tr(Ĥtρt+1)−Tr(Ĥt ρ̂t+1) (2.10)

= Tr
(

Ĥt

(

ρt+1 − exp(−iĤt)ρt exp(iĤt)
))

from which we can estimate the Hamiltonian as the operator that minimizes this quantity.

Let ρt = ΦtΛtΦ
T
t be the spectral decomposition of the state of the network at time t, equation (2.10)

can be solved by noting that the unitary evolution implicit in the Schrödinger equation does not change

the eigenvalues of the density matrix, but only rotates its eigenvectors. Hence, under the assumed two

component interaction model, we allow the unitary component to be the one that aligns the eigenvectors

in such a way that the absolute difference between the corresponding eigenvalues is minimized. Thus

the second model component, i.e., the entropy-changing observation process, only needs to change the

relative population of each state in the ensemble. As a consequence, the minimum energy exchange

intervenes when the interaction changes the eigenvalues of the density matrices, and with them the

entropy, but does not change the corresponding eigenspaces. In other words, the Hamiltonian is the

cause of the eigenvector rotation, while the interaction with the environment causes only the rotation of

the eigenvalues. Under this assumption, the Hamiltonian can be recovered from the alinging rotation

U = Φt+1ΦT
t recalling that U = exp(−iĤt). This results in

Ĥt ≈ i log(Φt+1ΦT
t ) (2.11)

It is worth noting that we have computed a lower bound of the Hamiltonian, since we cannot observe

components on the null spaces of ρ . The final change in internal energy is then

dUt = Tr( ˆHt+1
−

ρt+1)−Tr(Ĥt
+

ρt) = Tr(Ĥ
t+ 1

2
(ρt+1 −ρt)) , (2.12)

Where ˆHt+1
−

and Ĥt
+

are respectively the left and right limit of the top and bottom of the interval.

Due to the piecewise-constant approximation we have

ˆHt+1
−
= Ĥt

+
= Ĥ

t+ 1
2
. (2.13)

In the general time-varying case the evolution operator can be expressed as

U (s, t) = exp(−iΩ(s, t)) (2.14)

where Ω(s, t) can be obtained from the Hamiltonian through a Magnus series [51]. To estimate the

exchange in energy, we compute the variation in energy from ρt to ρ̂t+1 as
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FIG. 1: USSM dataset - Entropy vs time. Main market crises are highlighted by vertical lines. Left:

Russian Financial Crisis – Ruble devaluation (17th August 1998), Dot-com bubble - climax (10th March

2000) , September 11 attacks 2001, Downturn of 2002-2003. Right: Stock Markets Fall (August 2011),

Greek legislative election (June 2012), United States debt-ceiling crisis (October 2013), Chinese stock

market turbulence 2015.

dU =
∫ t+1

t
Tr(Hsρs) ds =

∫ t+1

t
Tr

(

HsU (s, t)ρt U
†(s, t)

)

ds =

∫ t+1

t
Tr

(

i
d U (s, t)

ds
ρt U

†(s, t)

)

ds =

∫ t+1

t
Tr

(

U (s, t)

(

I − exp(iadΩ )

−iadΩ

)

Ω ′(s, t)ρt U
†(s, t)

)

ds =

Tr

(

∫ t+1

t
U (s, t)

(

I − exp(iadΩ )

−iadΩ

)

Ω ′(s, t)dsρt

)

=

Tr(Ω(t +1, t)ρt) (2.15)

where the derivative of the exponential U (s, t) = exp(−iΩ(s, t)) is

d U (s, t)

ds
= U (s, t)

(

I − exp(iadΩ )

−iadΩ

)

Ω ′(s, t) (2.16)

Here adΩ is the adjoint operator [52] and Ω ′(s, t) is the derivative of Ω(s, t).
As a consequence, the exchange in energy is

dUt = Tr(Ω(t +1, t)ρt+1)−Tr(Ω(t +1, t)ρt) (2.17)

This means that the unitary operator minimizing the exchange in energy is still

U ≈ Φt+1ΦT
t (2.18)

and that Ĥ = i log(U ) can be used as an effective “mean energy” operator to compute the energy

differences.

With the energy operator to hand, the thermodynamic temperature T can then be recovered through

the fundamental thermodynamic relation dU = T dS−PdV but where we assume that the volume is

constant, i.e., dV = 0 (isochoric process). As a result, the temperature T is simply the rate of change of

entropy with energy

T =
dU

dS
(2.19)
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FIG. 2: USSM dataset - Entropy and Energy variation vs time, respectively top and bottom chart.

The vertical coloured lines mark some important events for the trade market: September 11 attacks,

Downturn of 2002-2003, Financial Crisis of 2007-2008, Dow Jones lowest point (March 2009), Stock

Markets Fall (August 2011), Greek legislative election (June 2012), United States debt-ceiling crisis

(October 2013), Chinese stock market turbulence 2015, Brexit Referendum (June 2016).

2001 2002 2003 2004
-0.2

0

0.2
Entropy Variation Aug 00 - Dec 04 

2001 2002 2003 2004
-2

0

2
×10

-3 Energy Variation Aug 00 - Dec 04 

Sep 2014 Mar 2015 Sep 2015 Mar 2016 Sep 2016
-0.2

0

0.2
Entropy Variation Sep 14 - Oct 16 

Sep 2014 Mar 2015 Sep 2015 Mar 2016 Sep 2016
-2

0

2
×10

-3 Energy Variation Sep 14 - Oct 16 

FIG. 3: USSM dataset - Entropy and Energy variation vs time, respectively top and bottom, details. The

vertical coloured lines refer to political and financial affecting the trade market. Left: September 11

attacks, Downturn of 2002-2003. Right: Chinese stock market turbulence 2015-16, Brexit Referendum

(June 2016).

This definition can be applied to evolving complex networks which do not change the number of

nodes during their evolution.

3. Experiments and Evaluations

In this section, we explore the ability of the thermodynamic formulation to identify global topological

changes in structure. In particular, we apply the analysis to three real-world time-evolving networks in

order to assess the ability of the thermodynamic formulation to identify important topological transitions

in network structure and characterize the overall dynamics of the system. First, we give a brief overview

of the three datasets extracted from real-world complex systems, then we discuss the outcomes of the

analysis. Wherever possible we make a comparison with similar approaches.

3.1 Datasets

Here, we use three data sets. The first and third sets are based on financial data, whereas the second

comes from the biological domain.

Dataset 1 – NYSE: The dataset is extracted from a database consisting of the daily prices of 3799

stocks continuously traded on the New York Stock Exchange (NYSE). To construct the dynamic net-
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FIG. 4: USSM dataset - Estrada Index and Degree Assortativity Coefficient vs time, respectively top

and bottom chart. The vertical coloured lines indicate critical events for the trade market: September 11

attacks, Downturn of 2002-2003, Financial Crisis of 2007-2008, Dow Jones lowest point (March 2009),

Stock Markets Fall (August 2011), Greek legislative election (June 2012), United States debt-ceiling

crisis (October 2013), Chinese stock market turbulence 2015, Brexit Referendum (June 2016).

work, 347 stock with historical data from May 1987 to February 2011 are selected [34]. In order to

construct an evolving network, a time window of 28 days is used and it is moved along time to obtain

a sequence (from day 29 to day 6004); in this way, each temporal window contains a time-series of the

daily return stock values over a 28 day period. Trades among the different stocks are represented as a

network. For each time window, we compute the cross correlation coefficients between the time-series

for each pair of stock and create connections between them if the absolute value of the correlation coef-

ficient exceeds a threshold. The result is a stock market network which changes over the time, with a

fixed number of 347 nodes and varying edge structure for each of trading days.

Dataset 2 – Drosophila: The dataset comes from the field of developmental biology, and concerns

the interactions among genes of Drosophila Melanogaster - better known as the fruit fly - during its

life cycle. The data is sampled at 66 sequential developmental time points. The fruit fly life cycle

is divided into four stages, namely a) the embryonic (samples 1-30),b) larval (samples 31-40) and c)

pupal (samples 41-58) periods together with d) the first 30 days of adulthood (samples 59-66). Early

embryos are sampled hourly and adults are sampled at multi-day intervals, according to the speed of

the morphological changes. To represent this data using a time evolving network, the following steps

are followed [36]. At each developmental point the 588 genes that are known to play an important

role in the development of the Drosophila are selected. These genes are the nodes of the network,

and edges are established based on the microarray gene expression measurements reported in [35]. To

make the normalized Laplacian more tractable, any self-loop in the obtained undirected graph has been

removed, at each time step. This dataset yields a time-evolving network with a fixed number of 588

nodes, sampled at 66 developmental time points.

Dataset 3 – USSM : The dataset USSM is extracted from a database of the daily prices of 431

companies in 8 different sectors from the New York Stock Exchange and the NASDAQ Stock Market

(NASDAQ). Data has been gathered from January 1995 to December 2016. The dataset is arranged to be

around 5500 trading days and built similarly to the NYSE dataset, i.e., a time window of 28 days is used

and moved along time to obtain sequences of the daily return stock values. Then the cross correlation

coefficients between each pair of stocks time-series are used to define links. The resulting network is an

evolving stock market network where the number of nodes is fixed (equal to 431) but the edge structure

is constantly changing.

For the sake of completeness, it should be noted that networks inferred by means of computing

time series cross-correlation and thresholding procedures are very sensitive to the chosen parameters.

Thresholding generally retains the strongest edges. However, the choice of level of interaction - namely
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June 2012, United States debt-ceiling crisis October 2013, Chinese stock market turbulence 2015-16,

Brexit Referendum June 2016.

defining if an edge is sufficiently strong to count in a network - actually may affect the properties

associated with the network. Unfortunately, the inference of stable network structures from time series

data is still an open issue which is still an active area of research in the literature [53].

3.2 Experiments

We aim at analyzing how the thermodynamic variables describe network evolution and specifically

if they can detect critical events as the system develops (e.g., financial crises or crashes in the stock

market and morphological changes during the fruit fly life cycle). To conduct our analysis, at each

time interval, we computed the normalized Laplacian of the network which we used to estimate the

Hamiltonian. Then entropy and energy state variables have been calculated using equations 2.4 and 2.7,

respectively. However, it should be noted that we deal with open systems, which do not evolve towards

an equilibrium. Therefore, we do not expect to observe any conservation in energy or a constant increase

in entropy either. On the other hand, we expect to observe some pattern of variation in these quantities,

as evidence of topological dynamics or reactions of the networks to their environment.

An illustrative example is given by Fig. 1, which is composed of two panels representing the entropy

vs time, in two different time windows (1998–2004 and 2011–2015). From the two plots it is clear that

the von Neumann entropy allows us to interpret the network behaviour. For instance, by comparing the

two panels, it is clear that in the left-hand one (1998—2004) the crises are characterized by sudden drops

in entropy. On the other hand, in the right-hand plot (2011-–2015) the entropy is unstable. This suggests

that the underlying nature of the financial markets has changed with time (e.g., by the introduction of

high-frequency automatic trading). In particular, as suggested by various authors [23, 48, 54], the von

Neumann entropy provides an insight into the network complexity. However, to date, we have no

direct link or explicit map between entropy values and the structural changes occurring in the network.

Nevertheless, we can observe the effect of network alterations in terms of their impact on the temporal

tendencies of the entropy.

We commence our study by analyzing variations in thermodynamic quantities, specifically entropy

and energy, and next, we will examine the relationships between them. In Fig. 2 we show their time

series for the U.S. Stock Market data. Both quantities detect financial and political factors, which

have influenced the structure of the trading network. However, the entropy variation sometimes appears

somewhat noisier than the energy, probably because it is more susceptible even to slight structural muta-

tions. In Fig. 3 we study two financial crises in detail, namely the Downturn of 2002-2003 and Chinese

stock market turbulence 2015-16. We observe how crises are well-localized in energy dimension but less

well so in entropy. Moreover, the entropy variation time series between 2004 and 2006 does not look
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entropy, as alternative representation of the network temperature. The red line fits the trend of the

temperature. Outliers are epochs when the transcript levels of the genes has changed.

so stable in comparison to the energy dimension. In fact, during this intermediate period, the energy

exchange is small, and this corresponds to a period of prolonged network stability. In other words,

energy-exchange proves to be effective in characterizing the network state as well as in the estimation

of the hidden time-varying Hamiltonian which successfully extracts information concerning the change

in network structure.

Now, we investigate the relationship between the previous thermodynamic quantities by studying the

network temperature. This variable has been calculated similarly to Eq. 2.19. However, to reduce

excessive surges or drops, we performed a Laplace smoothing of the series by adding a constant ε to

the denominator, i.e., to the entropy variation dS. The individual time-series for the thermodynamic

variable shown in Fig. 5 clearly presents many significant fluctuations, most of them corresponding to

some realistic major financial crises, e.g., the Downturn of 2002-2003, as well as significant influential

political events, e.g., the Brexit referendum. Another interesting feature in the figure is that, although

the network structure becomes particularly unstable after the Financial Crisis of 2007-2008, different

crucial events are still detectable. This in turn tells us that this dimension provides the fundamental

information to capture the market trend. Unlike the quantum entropy in the graphs domain, which is

a well-established topic in the literature, the temperature, specifically its interpretation in terms of net-

work analysis, has not reached a clear formalization yet. Nevertheless, Ye et al. in [21] have attempted

to provide an insight about the connection between temperature and network behaviour, by defining the

thermodynamic variables by means of node degree statistics for nodes connected by edges. In particu-

lar, according to their definitions, a low temperature is observed when there are large local variations in

edge structure, whereas when there is a significant overall change in the number of edges, the temper-

ature tends to become higher. Moreover, since this observation is based on the von Neumann entropy
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FIG. 7: USSM dataset - Trace of the time-evolving stock correlation network in the entropy-energy

plane during financial crises. (a) Asian Financial Crisis (July 1997 - December 1997); (b) Lehman

Brothers Bankruptcy (January 2008 - October 2008); (c) Brexit Referendum (March 2006 - September

2016).

properties, such insights also apply in our formulation.

Fig. 7 shows the trace of the stock market network on the entropy-energy plane during three different

financial crises. We show the ordinal number of the days which correspond to significant events in the

time series. Those key data points are also highlighted by annotating them with the corresponding date.

In the left-hand panel we show a) the data for the Asian Financial Crisis (days 616 to 732 – from July

1997 to December 1997), b) in the middle panel the Lehman Brothers Bankruptcy (days 3269 to 3479 –

from January 2008 to October 2008) and c) in the right-hand panel the Brexit Referendum period (days

5320 to 5450 – March 2006 to September 2016). At first sight, it seems that there exists a temporal

blocking behaviour in each of the plots. Additionally, we can draw the following conclusions from the

three plots:

• For the Asian crisis the network appears to move from a well-defined phase to another one, passing

through a short intermediate transition stage. In fact, the Asian financial crisis began in the summer

of 1997 and spread through many Asian markets during July and August of that year. However, only

in October was a recovery plan triggered with the injection of loans from the International Monetary

Fund (IMF). This is reflected in the corresponding plot. Preceding the crisis the network was first

in a stable state, then a transient period occurs and finally there is the recovery phase. In particular,

the entropy dimension collapses concomitantly with the transient state. This means there are no

significant interactions within the network. Subsequently there is a return to higher (and normal)

entropy values. Moreover, there appears to be a clear distinction between the crisis peak and the

preceding and succeeding epochs. On the other hand, for the energy dimension, the period occupied

by the actual crisis and the subsequent are well-distinguished. Actually, higher energy is related to a

greater market volume and this is a clear differentiating factor. It is important to recall that the energy

is obtained via the estimation of the Hamiltonian. In other words, the fact that the energy dimension

is capable of capturing and distinguishing different temporal blocks or market epochs underlines the

effectiveness of the method.

• In a similar way, in the right-hand panel (Brexit) the transition is again correctly captured. Here,

when the result of the referendum is known (June 2016), the network undergoes substantial change in

structure. Both the entropy and the energy decrease rapidly. Then, the entropy returns to its original
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range of values after the referendum result. Indeed, once the crisis is over, the pattern of trading

relations is re-established and thus the entropy increases. This also means that the network returns to

its normal state, even if the energy tends to remain low - as if the referendum still has residual effects

on the volume of market trades.

• The middle plot (Lehmann Brothers) is probably the most chaotic, but in practice it precisely captures

the market trend at that moment in time. The entropy fluctuates while tending to low values, due

largely to instability in terms of the pattern of trading interactions. On the other hand, the energy

increases, because in part there is a huge increase of exchange volume.

Finally, it should be noted how the combination of information provided by both the energy and entropy

dimensions effectively helps to describe the detailed structure of the different crises, conveying a richer

representation than if the two quantities were used singly.

In order to verify that our approach is competitive with alternatives, we have compared its perfor-

mance with two well-known measurements of network structure. The first is the Estrada index [55]

and the second the degree assortativity coefficient [56]. Degree assortativity represents to what extent a

given node in a network relates to other nodes in the network with different degrees. The Estrada index

quantifies the well-connectedness of each node. In our case, it is appropriate for comparison because

it is based on the spectrum of the network adjacency matrix. In Fig. 4 we show the Estrada index and

degree assortativity coefficient time series for the financial market data. Both show some evidence of

fluctuation in the proximity of the market crises, but this is swamped by noise. The time series are thus

difficult to interpret. For instance, for the assortativity coefficient, the so-called background looks very

similar to important periods, such as the Financial Crisis of 2007-2008. As far as the Estrada index is

concerned, although some relevant events seem to be better defined but are not well localised in time.

Examples include the United States debt-ceiling crisis (October 2013). These comparisons suggest

that our method can actually be considered a valid and more effective alternative for structural change

analysis.

By changing the study modality, Fig. 8 shows the scatter plot of energy versus entropy, for the

U.S. Stock Market dataset. The main feature to note here is that different epochs of network evolution

form distinct clusters, occupying different regions of the plot. In fact, the plot reveals an interesting

feature of the network whereby there exists a clustering tendency of the market when the system goes

through strong modifications. Actually, each pattern presents a wide variation in entropy a low variation

in energy. Thus, we conclude network states are better identified by energy, which effectively captures

cluster compactness. Entropy on the other hand is more dispersive.

Interesting results can be observed in the experiments on the Fruit Fly data too. In Fig. 6, we show

an alternative representation of the network temperature, presented as the scatter plot of the difference

in energy dU over the difference in entropy dS. Most of the data clusters around a straight-line (shown

in red), whose slope corresponds to the temperature of the network. However, there are also outliers

exhibiting substantial departures from the main cluster. Interestingly, these samples represent funda-

mental developmental landmarks in the evolution of the Drosophila Melanogaster. Specifically, they

belong to the early embryonic stage, the mid larval transaction and final stage of the pupal step. Accord-

ing to [35], these are three of the four major morphological changes in terms of the transcript levels of

genes. In fact, they mark the beginning and end of embryogenesis, the larval-pupal transition and the

end of the pupal period as shown in [35], Fig. 2–A. In addition, we analyze entropy and temperature.

Same as before, we performed Laplacian smoothing of the estimation of the temperature time series. In

Fig. 9 the temperature (bottom time-series) clearly outperforms the entropy (top time-series), by detect-
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ing salient developmental changes during the fruit fly life cycle. Actually, entropy does not capture any

information about the transcript level decline. Furthermore, by comparing the temperature dimension

with the corresponding ones in [21] and [20], our method would seem to be able to capture genuine

developmental stages effectively, rather than limiting the analysis to morphological changes alone.

4. Non-Isochoric processes

The method outlined so far was initially designed for analysing isochoric (constant volume) processes.

Nevertheless, we can generalize the formulation to deal with variations in network size and, thus, in

volume. We do this by assuming an isobaric process, i.e., the pressure from the external environment is

assumed independent of the system’s evolution. By keeping a system at constant pressure, the change

in volume becomes an integral part of the thermodynamic identity dU = T dS−PdV .

Clearly, diverse pressure levels affect the temperature differently, as the volume variation effect

changes. In fact, the temperature formula can be rewritten as

T =
dU +PdV

dS

=
dU

dS
+P

dV

dS
(4.1)

where P dV
dS

depends on the volume and pressure whereas dU
dS

depends on the energy variation.
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As an implementation note, to handle density matrices with different sizes namely the dimension

incongruity, we overcame the issue by padding with zeros the normalized Laplacian matrices. Then,

once both the energy and the entropy variations have been recovered, we can compute the network

temperature. In Fig. 10 we analyze the effect of the pressure parameter in the NYSE dataset. Here,

the two temperature components are depicted simultaneously. When pressure is very small, the volume

component does not contribute to the temperature. On the other hand, at high pressure values, the

volume variation adds noise to the temperature. By balancing this term (in our case P = 3 · 10−5), the

estimated temperature time-series accurately identifies occurrences of major events. In particular, the

volume contribution often reinforces crucial parts of the signal, e.g., during the Persian Gulf War or

throughout the Russian Financial crisis, and only occasionally generates noise, for instance between

the September 11 attacks and the beginning of the Downturn of 2002-2003. In fact, a comparison

with [20] and [21] shows similar performance in terms of event-detection accuracy, proving that the

generalization to size-varying graphs is still capable of modelling the underlying dynamical processes

over the networks.

5. Discussion

In this paper, we have introduced a novel thermodynamic framework to characterize network structure.

Specifically, our driving goal was the visualization and understanding of the evolution of the time-

varying network systems. This analysis is based on quantum thermodynamics and connects to recent

work on the von Neumann entropy of networks. To this end, we provided expressions for a variety

of thermodynamic variables, such as entropy, energy and temperature. In particular, energy is derived

by estimating an unknown Hamiltonian operator governing the free evolution of the system, i.e., its

evolution according the Schrödinger equation.

We have evaluated the method on real world complex systems, from the financial and biological

domains. The experimental outcomes prove that the thermodynamic state variables are effective at char-
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acterizing the evolution properties of dynamic networks, including the detection of global topological

changes, phase transitions in structure or distinctive periods in the evolution of time-varying complex

networks. However, we observed that the noise in the system observables or the overlap of consecutive

significant events may affect the clarity of the signals, thus highlighting the level of sensitivity of the

approach. Despite this, our objective of determining a correspondence between network evolution and

related thermodynamic-variables has been mostly accomplished, although we are still far away from a

truly and definitive mapping between thermodynamics measures and the information provided by the

system. Nevertheless, even without such a mapping, we can still indirectly obtain some useful insights.

For instance, by following Ye et al. [21] suggestions, where entropy is seen as a measure of degree

change correlations on the edges, we can infer temperature significance. Indeed, a low temperature

implies a large correlation. Conversely, the greater the disruption of the pattern of correlations, the

higher is the temperature.

Moreover, we were not able to identify clear precursors for the events, nor indicators of the scale of

change; thus the approach as presented is mainly descriptive and, at this stage, not predictive.

There are several directions in which the work reported here can be extended. First, the work is

extendable to directed graphs. In a recent paper we have reported an approximation to the von Neumann

entropy of directed graphs [57], which can be used to develop a similar framework for graph in which the

edges posses directionality. This may provide particularly interesting in the context of characterising the

thermodynamics of sources and sinks in a network. Second, it would be interesting to study in greater

depth the manifold structure of the thermodynamic space, and understand its links to phase transitions

in the structure of networks. Finally, there is the question of bidirectional entropy variation and whether

this can somehow be reconciled with the second law of thermodynamics.
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