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Abstract:

Solvent-based post-combustion £€apture (PCC) appears to be the most effective choice toomwe the C@emission issue of fossil fuel
fired power plants. To make the PCC better suited for power piotsing interest has been directed to the flexible operation GfiRGhe

past ten years. The flexible operation requires the PCC system to attepstmng flue gas flow rate change and to adjust the cadmure

level rapidly in wide operating range. In-depth study of theadhin characteristics of the PCC process and developing a suitablel contro
approach are the keys to meet this challenge. This paper mavitéicalreview for the dynamic research of the solvdraised PCC process
including first-principle modelling, data-driven system/process identificatiod the control design studies, with their main featbeing

listed and discussed. The existent studies have been classified actottimgpproadsused and their advantages and limitations have been
summarizedPotential future research opportunities for the flexible operation of sebased PCC are also given in this review.

Keywords: Solvent-based post-combustion,€&pture; Flexible operation; First principle modwili System identification; Dynamic control; Review

1. Introduction

Greenhouse gas emissions represented bya@®the resulting global climathangehave become the most serious
environmental problem facing humanity in this century [1]. Fossil fuel fired power ipl#re largest stationary source of
CO; emission since the majority of electricity around the world is generated there [2ji@tdnd will not change in a
foreseeable future [3]. In this context, the technology of Carbon Capture and Storage (CA% aeenitical solution to
make deep and rapid reductions in &missions. According to the prediction of Global CCS Institute in 2018 [4], 14% of
cumulative CQ emissions reduction must be achieved through CCS by 2050 to reach theé®&nige2 [5]. This means,
in the year 2050, over 5Gt of G@nust be captured using CCS technologies (equivalent to present-day anaual CO
emissions in the US). Many thousands of CCS facilities must be deployed in the coming detted&smdet are to be
achieved [4].

Compared with other CQOcapture technologies, the use of amine-based solvent for post-combustiaaii@e
(PCC) can directly remove the low concentration,@Om flue gas, which is mature in technology, relatively low in cost
and easily retrofitted to existing power plants. Therefore, it has been regarded as themesigptechnology for power
plant CQ capture [6-1D A typical monoethanolamine (MEA) solvent-based PCC process is shown in Fig.1.
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Fig.1 Process topology of solvent based-PCC system [7].

Prior to CO; absorption, the flue gas must go through desulfurization, denitrification, dust removal and cooling
processes as they will degrade the solvent, therefore reduc®itadbsorption capacity and efficiency of the PCC pracess
The flue gas mainly containing GQH-O and N is then fed into the bottom side of the absorber and contacts with the lean
solvent (about 0-20.2 mol CQ/mol MEA loading) counter currentlO; is chemically absorbed by the solvent from the
flue gas, yielding rich solvent of about 6045 mol CQ/mol MEA loading. The scrubbed gas is then water washed of
solvent and vented into the atmosphere from the top side of the absorber. N&@, thieh solvent is heated by the
regenerated lean-solvent in a cross heat exchanger and then pumped into the stripper, wheredthy Heatsteam
drawn-off from the medium/low-pressure turbine of power plant to release [M@ng heating, part of the water and
MEA vapor is mixed with the removed GQthus a condenser is used to recollect the fugitive steam and MEA, the
separated high purity GOs then compressed and transported to storage. The resulting lean solvent is theo tesent
absorber via the cross heat exchanger and cooler to reduce the temperature and starts the hxt cycle [

Because C®is chemically stable and the flue gas to be treated is large in flow rate but I@y so@centration, the
operation of solvent-based PCC process requires a large amount of heat for solvent regenkiehids, the major
drawback hinders the large scale application. The heat is typpralvided by the steam drawn-off from the crossover of
medium/low-pressure turbine of power plant. Taking the current pulverized coal-fired sugérpoticer plant as an
example, when the CGQapture rate is 90%, the net power generation efficiency of the plant will be reduced &% 41-
to 30-35% [12-1} For this reason, considerable studies have been carried out for reducing the energy efficiency penalty
CO; capture. The studies can be divided into four categories: 1) developing new solvents with ajesiedion
performance, including high GQabsorption capacity, absorption rate, lower regeneration heat and etc. [15]; 2) process
configuration modifications, including: intercooling in absorber, stripper vapor recompression, rictsplitisteeam, etc.

[16, 17]; 3) process parameter optimization, including: absorber/stripper sizes, solventafeowand re-boiler
temperature/pressure etc. [18, 19]; and 4) effective integration between the PCC plant and po26r3dant [

These efforts in solvent-based PCC provide critical foundation for operating cost reductionhées®rthey have
only focused on the steady state performance of the process under given operating conditions, the flue gas fl
rate/composition and the G@apture level are fixed at certain values. However, the following two features havehmade t
dynamic flexible operation of PCC imperative towards the large scale commercialization.

1) The fossil fuel-fired power plants are required to participate in the grid poweatiegdtequently to balance the
difference between the power supply side and the demand side. With the growth of electric poweradenesaehsive
use of the renewable sources such as wind and solar, this requirement has become tighter. The fossil fuel-fired power pl:



haveto respond to the load demand variation quickly within a wide operation rangeesdtathe flue gas flow rate will
have significah variations and the downstream PCC plants are forced to operate in a flexible mannewtdhiedle
changeg23];

2) As the high operating cost limits the PCC technology’s deployment in power plant, operation of the PCC plant at
full load condition all the time is not a viable option. Flexible adjustment of tl& f*Gcess according to the electricity
price offers an alternative approach to overcome this issue. During periods of high elecicegtythe PCC system can
decrease the steam consumptéod allow more steam for power generation; while during the periods of low electricity
prices, more steam can be drawn off from the turbine and used farap@re [24].

It has been reported in many studies that implementing a flexible operating scheme camgyeate/the economic
performance of the integrated power plant-PCC system and enhance the load ramping @loNitgrgflants. However,
the flexible operation also increases the challenges for the PCC control because the frequent flunttlagogasi flow
rate, solvent circulation flow rasndsteam flow rate to re-boiler will bring strong disturbances into the pra2gss [

Various operating modes and process configuration modifications have been proposed for the flexible operation
PCC process such as flue gas venting, varying degree of smgeneration and lean/rich solvent storage [26]. However,
no matter which mode or configuration is employed, how to achieve a smooth and rapicirdoetitieen different
working conditiongs still the key issue to be faced. Fundamentally, achieving a satisfactory flexible opéeegi#nis on
in-depth understanding of the dynamic behavior of the PCC process and developing a proper comirdbisyste
Therefore, much attention has been paid in these areas to meet the growing demand for flexible operation.

Two methods are commonly used in the past decade to investigate the dynamic behavior Ofgrec®€s. The first
is to directly carry out dynamic experimental studies on the pilot plants [27, 28]. The sawdmdore frequently used, is
to build a dynamic PCC model, validate the model under different conditions and conduatieimawonsidering various
disturbances. In addition to the first-principle models [29], [30], data-driven identficatddels were also presented [31,
32], since they are simple to develop, efficient in calculation, and suitable for advanced ezodésiin. Based on a
comprehensive understanding of the PCC dynamics, different control approaches are then develmp&CDmprocess
with different purposes such as fast regulation, optimization or system stability][33-35

The primary purpose of this paper is to present a comprehensive and critical retheweafent contributions to first
principle modelling, system identification, dynamic behavior investigation and control of fBepRCess, in order to
discover how they can help in improving the quality and performance of PCC flexible operation.

The differences between this paper and previous reviews such as [7, 8] are: i) first patimaphéc modelling of the
advanced PCC processes with configuration modifications have been revigwresljdtest PCC dynamic models, which
have been validated through pilot-scale dynamic experimental data have been reported inethisiiijethis paper
provides the first review for the research activities in system identification analcdesign of the solvent-based PCC
process; and iv) the limitations of current studies on dynamic modelling, sydtatification and control of the PCC
process are summarized and the future research directions are predicted in this review.

The remainder of this paper is organized as follows. A review of the first principle modekoadvent-based PCC
process will be presented in Section 2. The PCC model developed through system identificattiem Wwidl reviewed in
Section 3, followed by a summary of the PCC system dynamics and resulting control challe®getion 4. The main
focus is to summarize different control strategies for the PCC process with their significant features outlinedssedidisc
Achievements so far, challenges ahead and future perspectives are presented in Section 5. Coilthesidraswy in the
end

2. First principle dynamic modelling of solvent-based PCC
2.1.0verview of PCC modelling studies

Carrying out the dynamic experimental tests at pilot PCC plant is a time-consuatiogous and costly work.
Moreover, it is often subject to various limitations and cannot be fully conducted according to theditesign For these
reasons, developing an accurate PCC dynamic model and performing simulation studies on theasnbeebme



necessaryo gain insights into the dynamic behavior of the PCC process, providing guidance fogrdit@ngand control
design of the process. The first principle models, which are developed through the mechanism ainsfass teat
transferandchemical reaction of the PCC process has received the most attention in the past two decades.

The key to PCC process modelling is to develop models for the absorber and stripper, @higb primary
components within the process. In order to properly reflect the dynamics of absorber pged, stiass transfer from
vapour side to liquid side and the chemical reaction betweena@® solvent are two main phenomena to be properly
described [36]. A critical analysis in [37] suggested that mass transfer is the dominantirfaiingy the performance of
CO, absorption and desorption. According to the complexity levels of mass transfer description, thed&lliig can be
roughly divided into two major categories: equilibrium-based approach and rate-based approach. Thapfmoaeh
assumes a theoretical stage in which liquid and gas are well-mixed and attain an equilibrithve pemtbrmance of each
stage is changed by adjusting an efficiency correlation factor [38]; while for the ratedpasedch, actual mass and heat
transfer rate are considered directly [39]. Further considering the descriptioa dfdgmical reactions, the PCC model
development can be subdivided into five categories [7, 36, 40], as illustrated in Fig.2.

Masstransfer
A
G]T LJ'll (3} GiT Lj-ll L4 GJT Lad 57
I I I I I I
Y I L1 ® B ®
1 \I
N '\ ! o \—\ e \—\ L~
I I I I I I
Y NN NN Y
Gj+1T le GjﬂT le Gj+1T le
rate-based approach rate-based a_pprpach rate-ba;ed apprpach
+ reaction equilibrium + reaction kinetics + reaction k|_net|cs
+ enhancement factor + film reactions
+ electrolytes
G,T | Lrll (L} G,T | L,».ll (2} yt
ny =np By =pp
®
Gj+1 LJ l Gj+1 Lj l
equilibrium stage + equilibrium stage +
reaction equilibrium reaction kinetics
Reaction

Fig. 2 Different categories of the PCC first principledels [7, 36, 40]

Starting from the bottom left, Model 1 is the simplest, which assumes botigtie &dnd gas phases achieve a
thermodynamic equilibrium stage and the chemical reaction is very fast to achieve tibeiwegquiThe performance of
each stage is adjusted using an efficiency correction factor, so that the non-equilibrium processes cahdik BEC
models presented in [36], [41]- [43] belongs to this category. Moving right, Model 2 is goreus which considers the
chemical reaction kinetics in the liquid film. PCC models presented in [44], [4&}deelo this category. In practice, it is
difficult to attain equilibrium since the mass and heat transfer are driven by gradiedtermical potential and
temperature [46]. Therefore, actual mass transfer rate is considered in Models 3,tde Bipper layer of Fig. 2. The
so-called rate-based approach is more appropriate in reflecting the @@jivabsorption and desorption processes, thus
has been used in most of the PCC modelling. Among them, Model 3 assumes that the readiemveain C®and
solvent is very fast and the chemical reaction between them is thus in an equilibrium stabés [@hproach has been
adopted in [36], [37], [47]- [53]. The complexity of modelling is then greatly increasbtbdel 4 by further considering
the chemical reaction kinetically and using an enhancement factor to reflect the effect of chemical reaction on mass tran:
The enhancement factor is generally calculated based on the estimated reaction rates and is bestpsaiessés
involving single irreversible reactions. Kucka et al. [54] has pointed out that the enhancementstttigr strictly valid
for the pseudo first-order reaction regime. PCC models presented in [55]- [69] all beldhigscategory. Model 5 can



give the most realistic and accurdiscriptions for the PCC dynamics among the five categories, in which the additional
influences of electrolytes, mass transfer resistances, reaction systems as weatbafigheations are taken into account
[46]. PCC models presented in [70]- [74] belongs to this category. The improvement ofacaglcy is achieved at the
expense of model complexity increase. Therefore, both the accuracy and computational effort of the simuldtdreneed
considered to select a suitable model. Peng et al. [75] found that the transient performateebased model and
equilibrium based model is similar, but the steady state deviation between the two mobegedRs, 37]. Most of the
PCC modelling studies select the rate-based approach.

From the perspective of PCC system, early studies of PCC modelling startediyinammic modelling of the
standalone absorber [B450], [56], [58], [62], [63], [71] and stripper [48], [50], [57], [65]. The independent absbrber
stripper models cannot represent the dynamic behavior of the entire PCC process setwotlsections are highly
coupled. Thus current major studies were progressed on to the dynamic modelling of integraidahP3C], [47], [51],

[52], [55], [60], [64], [68]. The methods and simulation results of¢is¢udies have been summarized and analyzed in the
review papers [7], [8], [76], [77], thus they are not introduced in detail here.

2.2.Dynamic models for advanced PCC process

Besides the conventional PCC process, dynamic modelling of the advanced PCCepnaibssonfiguration
modifications has also received much attention, because the modified processes are shown téehaeorimhic
performance or flexibility in operation.

Waters et al. [7Bdeveloped a rate-based dynamic model in gPROMS for an intercooled absorber with piperdzine (P
solvent. Absorber intercooling can effectively improve the solvent capture capacity within the absorber, thisgld@eas
energy consumption in solvent regeneration. A regressed electrolytanatmm two-liquid (eNRTL) thermdiynamic
physical property method was used in the model development; and the liquid film ama$srtcoefficient was estimated
by experimental method according to different Q@ading. Predictions of CQOcapture level and absorber temperature
profile show high agreement wittrigorous steady state model developed in AsperfPlus

Biliyok et al. [37] presented a dynamic model for the PCC process with intercooled absogBROMS. The
model in this study was modified from Lawal et al. [47] using the two-fipproach with rate-based formulation. The
chemical reaction was assumed to be in equilibrium for simplification. The study highlightethrématgroups of
experimental data collected from the SRP pilot plant in the University of Texas at Wwest used for dynamic validation
of the model, one for the conventional PCC process and the other two for the advanced pradesmgdhe absorber
intercooling. The experimental data was collected in a closed-loop condition under the simultaneous chaniges of
input variables such as lean solvent flow rate/ temperature, flue gas flow rate¢o@€entration/ temperature and
intercooled solvent flow rate/ temperature. It was observed from the comparison thestutttee developed model can
satisfactorily predict the behavior of the plant, especially for the trend of dynamic chiiegealidated model was then
used to analyze the impact of flue gas moisture content increase and intercooled solvent temperadise dber
simulation results showed that the moisture content in flue gas could strongly influerieepieeature profile of the
absorber but only had a trivial influence on the capture level. On the other hand, it was disbavéhedntercooling ca
modestly improve the absorber performance when the temperature bulge is located around it.

Waters et al. [74] established a lumped parameter model for the PCC process usingBAARtudeous PZ solvent is
selected as the chemical absorbén intercooled absorber and flash stripper configuration are considered to improve the
operation dfciency. The model sed semi-empirical thermodynamics and rate based mass transfer, the reaction kinetic:
was considered in a constant overall transfer coefficient for model simplificationp&@yneters of the model were
adjusted to make the model output better match that of a rigorous model in the design conditiongmaitie d
performance of the model was then validated against the SRP pilot plant experimentathdatstepwise increase of
stripper pressure control valve. The dynamic variation of rich and lean solvent density diaiviled thodel can correctly
predict the dynamic behavior of the capture process and was capable to be used in PCC control design.

Karimi et al [17, 78] developed rate-based dynamic models for five different strippéguratibns of the PCC



processwhich are: conventional configuration, split-stream, multi-pressure stripper, vapor recorpeggl compressor
integration. The capital cost and €@voidance cost are calculated to evaluate the steady state performance of the
processes [17]. In addition, PI control loops were designed for the PCC processes followmethtitegiven by Panihi et

al. in [79]. The dynamic performance of PCC processes with conventional configuration, split-stneawvapor
recompression configurations were then investigated. Four types of dynamic tests includimg-tidRgr duty step
reduction,+10% flue gas flow rate/ composition change in a ramp type function and flue gasafeowhange with
constant re-boiler duty were carried out in a closed loop condition T#8} simulation results showed that the
conventional configuration has the best dynamic behavior and is the most stable one. For tve cthdigurations, the
vapor recompression configuration can handle disturbances better than the split-stream configuration.

Flg et al. [26 tested the dynamic performance of four flexible operating modes for the PCC process through
simulations on a model developed for Brindisi Q@pture pilot plant [68]. The flexible operation modes including: load
following, exhaust gas venting, varying solvent regeneration and solvent storage were considered and cotheared i
study. Dynamic simulations in case of varying power plant load and electricity pricetishiosolvent storage mode had
the best performance in terms of £€apture and energy consumption. However, large investments are required for the
construction of solvent storage tanks and the use of additional solvent. In contrast, the exhargingaand varying
solvent regeneration modes can be implemented without complex process modifications. The dynamic sishaolatohs
that under these two operation modes, satisfactory performance could also be achieved Orpiue®%3. Nevertheless,
in order to maintain a desired daily-averdg@, capture rate, the PCC plant may be required to operate at high capture
level condition during the periods with higher electricity prices. The economic performance oteipated power
generation and C{rapture system will therefore decrease.

2.3.Dynamic models for the integrated power plant and PCC system

There are strong interactions between the fossil-fuel fired power plant and the PCC systege traiktion of flue
gas flow rate due to power plant load changle significantly influence the operation of the PCC system; and the steam
drawn-off from turbine in power plant to re-boiler in stripper will quicklieeff the electricity generation of power plant.
For these reasons, investigating the dynamic behavior of the entire power geneaakion-capture system is critical to
improve the operation performance of the integrated system.

Lawal et al. [5] developed a dynamic model for the 500MWe sub-critical coal fired power plant (CFPP) using
gPROMS® and linked it with an industrial size PCC model. Simplified decentralized PI cendrallere designed to
control the CFPP and PCC systems respectively. The dynamic performance cégregadt CFPP-PCC system was then
evaluated in cases of target power output reduction and targetap@ire level increase. The simulation results illustrated
that the response of the PCC process was much slower compared to that of the CFPP and sipoweddhabl scheme
can have negative effect on the operation of the integrated CFPP-PCC system.

Olaleye et al. [5Bdeveloped a 600MWe super-critical CFPP-PCC model and investigated the dynamic responses c
main variables within the integrated system to ramp change of power load. Authors thentésted the performance of
steam reduction/stop strategry improving the power output adjustment speed of CFPP. The steam drawn-ofh&om t
turbine to re-boiler was decreased or stopped temporarily to quickly generate more poveet thenmurgent power
demand of the electricity grid. The simulation results showed that about 4.67% the maximum pibweCEPP can be
quickly produced by the stripper stop mechanism, which has potential benefit for the wide-rangeylogdopearation of
the power plant.

2.4.Dynamic validation of the PCC model

The dynamic modelling of PCC process has gone through many years of development and iempyavehinas now
become mature in methods and theory. Many scholars have also developed corresponding PCC models on vari
simulation platforms, such as gPRIS® [36], [37], [47], [73], Aspen Dynami&s[25], Modelic# [49], [52], [61], Matlaly®
[55], [68], [74], and gCCS8 [29], [30], [35]. However, most of these models have only been validated through steady state



pilot plant data which cannot be used to assess the transient performance of the model. Dynamic validatisn is t
important to further improve th@odels’ accuracy and reliability, so that better guidance can be provided for the flexible
operation and control design of the PCC process. In addition to [3774nthe following studies also tested the dynamic
performance of the models through comparisons against pilot-plant experimental data.

Kvamsdal et al. [80] presented a rate-based dynamic model for theal®Orption process using Mattablwo
groups of dynamic experimental data collected at VOZlidation Of Carbon Captujeig in Norway was used to validate
the model: 1) liquid and gas flow rates change; 2) Gihtent in flue gas change. The model outputs of €@Moval rate
and rich solvent loading were compared with the experimental data; and the results showed thabiieddeaeekel can
reflect the main dynamics of the absorber satisfactorily although there is a degage of steady state deviation. In
addition, the performance of models using different reaction rate coefficients was evaluated and corhpastdlyT
revealed that model fitted for one specific pilot plant may not be valid for othes mamifferent sizes under other
operational conditions.

A rate-based dynamic model of the complete PCC process was developed by Akesson)] etsig{@lodelic& and
validated against dynamic experimental data collected from Esbjerg pilot plant in Denmark. The validation experiment we
conducted in an open loop condition that all input variables were kept constant excepflfer gias flow rate, which was
reduced by 30% stepwisely. The dynamic responses of the model, incdL@ingmoval rate, re-boiler temperature and
stripper top temperature were compared to those of the pilot plant. Thee@0@val rate was shown to increase rapidly in
response to the flue gas flow rate decrease while more than 1 hour is requirecstopplee top temperature to rise to a
new steady- state. The flue gas flow has little effect on re-boiler temperatureoparison results illustrated that the
developed model was in close agreement with the experimental data.

To better understand the transient changes of the absorber temperature profile, Posch and Hawleidad ¢
dynamic rate-based model for the absorber within the Aspen Custom Modetetelling/simulation environment.
Dynamic simulation was carried out in closed-loop condition, the flue gas temperatlearmsdlvent temperature were
increased linearly from 30°C to 50°C respectively. Experimental data from the COSEPPL test rig located at the Dirnrohr
power station in Lower Austria are used for validation purpose. Comparisons of thentrdesiperature changes at
different heights of the absorber indicate that the presented absorber model predicted thie isittizi absorber in a
sufficient way.

Enaasen et al. [67] presented various transient test results collected from Brindigilgrit in Italy. Step-wise
changes in steam flow rate to re-boiler, lean solvent flow rate and flue gas flow rafgevienmed while the responses of
key operational parameters of the capture plant were monitored and analyzed. The decrease of stantofl@sboiler
was found in the experiment touslittle impact on the rich solvent loading but could slowly increase the lean solvent
loading. As a result, the produced £f®w rate at the top of the stripper and the,@@pture level of the plant would be
reduced. The decrease of lean solvent flow rate would quickly decrease the capture level in several minutes, however, si
less solvent was flowed into the stripper and re-boiler while the re-boiler hgatedhained the same, the lean solvent
loading was decreased. Consequently, the capture level would slowly rise back close tdathevigiit It was also
observed that the flue gas flow rate had little impact on the rich/lean solvent loading butpabtland strong effect on
the CO; capture level. A rate-based dynamic model representing the Brindisi pilot plant waspleemeénted in K-Spice
general simulation tool and compared to the dynamic pilot plant data [67]. It showed thaidibleand experimental
results had good agreement in the transient performance. In some cases, there are some steady@iatbaterdati the
model prediction and the experimental test data. This was mostly caused by the fact that plenpileds notat steady
state at initial time.

A rate based dynamic model for the complete, €&pture process of Glghaugen (NTNU/SINTEF) pilot plant was
developed by Flg et al. [68] in MATLAB Eight groups of steady state pilot plant data were used to modify certain
correlation parameteia the model, so that the developed model could match the pilot plant better. Dynamic experiment
in cases of 17% re-boiler duty step increase and 21.8% solvent circulation rate step increeagiaei@ut respectively
(the CQ concentration in the flue gas varied during the two experiments) and the experimental dataesatedvén
validate the model. The comparison results showed adequate agreement between the model and pilobmpliaot 3pat



and-2.8% deviations could be observed in the absorbed Tt dynamic responses oetRACC plant also indicated that,
changes in solvent flow rate or essentially the L/G ratio, caused stronger process distadrapeesd to the changes of
re-boiler heat duty.

Gaspar et al. [69] compared the transient performance of a dCAPCO2 in-house modgajiig] the dynamic
experimental data collected from a 1t/h G&@padiy pilot plant using 30wt% MEA in cases of flue gas flow rate step
changes. The responses of key operating parameters such as: vent;gam€@tration, COproduct flow leaving
stripper and liquid temperature at the top/middle/bottom of absorber/stripper demonstraieclithey of the model. In
most of the simulations, the model and pilot plant responses almost overlapped. Howevdowi@idr concentration
condition, around 0.5 mol % steady state deviation in vent gasc@@entration could be observed between the model
prediction and the experimental data. This was likely due to the greater measuremsrrdrigher uncertainty of the
physical and thermodynamic model at low £C&ncentrations. Since the sump of the absorber was not included in the
PCC model, the model predictions were easier to fluctuate compared with the pilot plant. feh@sled up the model
to a 200t/h CQ capture capacity and investigated the dynamic performance of the PCC process udiiftergra
solvents (MEA andP2) at two different concentrations (30 and 40 wt%). It could be seen that the decrease of e gas f
rate resulted in a significant increase of the,@noval rate and vice versa. For increased flue gas flow, MEA system
reached a new steady state faster than PZ for both concentrations. Nevertheless, for ring gdswn, PZ system
reached steady state conditions before MEA. This behavior might be related to the stronger infllentiaeofas flow
on the temperature for the PZ system compared to MEA. Another simulation was then cotwactalyze the load
following behavior of PCC system under different solvent circulation rates. Thesresalved that, desired G@moval
rate could not be maintained if the solvent flow rate was limited. It was thpestant to regulate the solvent flow rate to
maintain the capture rate in case of flue gas flow rate change, and avoid sudden changebofléneluty.

Haar et al. [43] presented an equilibrium based PCC plant model developed through the open sourc
ThermalSeparation Modelica library. Model coefficients regarding the mass/heat transfer and cheniwalreactuned
using the steady state experimental data to make the model better fit the pilot plant at openatadg condition. Flue
gas flow rate step tests were carried out to produce dynamic experimental data foratat&n. Comparison results in
the responses of capture level, absorber temperature and rich solvent loading demonstrate that thendzaséldrmodel
could represent the transient behavior of the PCC process satisfactory, however, largetateadgviations were
discovered, especially in the absorber temperature profile. This finding was congilietfie observations in [75]. In
addition, authors of [43] proposed to change the steam flow ratebtiler to improve the load following performance of
power plant; and conducted simulations on the model to analyze the dynamic behaviorysR@GCin response to the
re-boiler steam flow rate change.

Although different modelling approaches are used in these studies to develop models for @a@osgstem
configurations, their test results all reported that the model predictions are in good agwegmtdet pilot plant dynamic
experimental data, especially for the changing trend and response time. The main model mismatcéfiscded in the
steady state responses. According to these conclusions, it is now safe to say that the first principle modelling ti@ory of P
system has been studied sufficiently and become mature. Nevertheless, more dynamic experidiéatgrit variable
changes under wide operating conditions are still requirdte future to fully validate the model.

The studies on dynamic validation of PCC first principle models are summarizedariTab

Table 1. Summary of studies on dynamic validation of PCC firstiptenmodels

Year Research Institute Model  Category| Validation Cases Validation Data Source | Reference
and Simulation
Platform

2011 SINTEF Materials and Model 4 for | 1) Liquid and gas flow ratey Dynamic experimenta| [80]
Chemistry (Norway) and absorber using change; 2) C@ content in| data collected at VOC(

Department of Chemical MATLAB ® flue gas change. (Validation Of Carbon




Engineering, Norwegiar

University of Science

Capture) rig in Norway

and Technologyi
(Norway)

2012 School of Engineering| Model 3  for| 1) Changes in lean solverl Experimental datg [37]
Cranfield University| integrated PC(C flow rate, inlet flue gag collected from the SRH
(UK), Process System| process with| temperature and GO pilot plant in the
Enterprise Ltd (UK),| intercooled concentration fluctuation; 2| University of Texas af
University of Texas af absorber using Changes in flue gaj Austin, USA
Austin (USA) gPROMS® flowrate, intercooler solven

return temperature and inl¢
flue gas CQ concentration;
3) Changes in intercoole
solvent return temperaturg
inlet flue gas C@
concentration, lean solve
temperature and inlet flu
gas temperature

2012 Modelon AB (Sweden),| Model 4  for | Decrease in flue gas floy Dynamic experimenta| [61]
Department of Chemica integrated PC(J rate data collected from
Engineering, Texag process using Esbjerg pilot plant in
A&M University (USA), | Modelicd® Denmark
Department of
Automatic Control Lund
University (Sweden
and I’Eau et
I’Environment (France)

2013 Institute  for  Energy| Model 5 for | 1) Change in lean solver] Dynamic experimenta| [71]
Systems and absorber using temperature; 2) change i data from the
Thermodynamics, Aspen Custom| flue gas flow rate CO2SEPPL test rig
Vienna University of| Modelef® located at the Diirnroh
Technology (Austria) power station in Lower

Austria

2014 Department of Chemica Model 4 for| 1) Step changes in stea| Dynamic experimenta| [67]
Engineering, Norwegiar integrated PCC flow rate to re-boiler; 2)| data collected from
University of Sciencel process using Step changes in solvery Brindisi pilot plant in
and Technology| K-Spice  generall flow rate; 3) Step changes i| Italy
(Norway), ENEL | simulation tooP flue gas flow rate
Engineering and
Research Division (ltaly,
and Department of CO
Capture Proces
Technology, SINTEF
Materials and Chemistny
(Norway)

2015 Department of Chemica Model 4 for | 1) Step change in re-boilg Dynamic experimenta| [68]




Engineering, Norwegiarn integrated PCC duty; 2) Step change il data collected from

University of Sciencel process using solvent flow rate Glghaugen
and Technology] MATLAB ® (NTNU/SINTEF) pilot
(Norway) and plant

Department of C®
Capture Proces
Technology, SINTEF
Materials and Chemistny

(Norway)

2016 Department of Chemica Model 5  for| Stepwise increase d Dynamic experimenta| [74]

Engineering, The integrated PC( stripper pressure contrd data collected from thg
University of Texas af process with| valve SRP pilot plant in UT
Austin (USA) intercooled Austin

absorber and flasl
stripper using
MATLAB®  (Pz

solvent)

2016 Department of Chemica Model 4  for | Flue gas flow rate changes| Dynamic experimenta| [69]

and Biochemical| integrated PCQ data collected from ¢
Engineering/Department process using 1t/h CQ capacity pilot
of Applied Mathematicsf dCAPCO2 plant using 30wt%
and Computer Sciencqd in-house mod& MEA

Technical University of

Denmark (Denmark)

2017 Propulsion & Power,| Model 1 for | Step changes in flue gg Pilot plant operated at | [43]

Delft  University  of | integrated PC(J flow rate the Maasvlakte power
Technology (The| process using station in the
Netherlands), Institute o] ThermalSeparation Netherlands

Thermo-Fluid Dynamics| Modelica Iibrar)®
Hamburg University of]
Technology (Germany
and TNO (The
Netherlands)

*Corresponding Author
2.5. Advantages, limitations and future directions for the first-principledyn modelling of PCC process

The advardgesof first principle modelling are that:1) both the model structure and parameters haveeery cl
physical meanings, thus are easily tuned; 2) as the model is based on first principle analysis, it can reflect thaiaternal
of the PCC system and is alledrfor in-depth understanding of the PCC process; and 3) can better portray the dynamics of
the PCC process.

However, developing an accurate first principle model is difficult without the knowledge oficathawactions,
thermal dynamics and design specifications of the PCC system. During the model devel@asenghie assumptions
are also required to simplify the complexity of the model while ensuring the accuracy. In aidditie) composed by a
series of partial differential equations, the computational expense of first principtenidy models may become
demanding for largecale simulations, thus limiting the use for the purpose of dynamic process control or even real-time
process prediction. For this reason, an alternative approach, the data driven identification hasdoeerthaseCC



modeling.

3. Data driven system identification of solvent-based PCC

The motivation of the data-driven approach rises from the explosive growth of process da@.t®thie rapid
development of computer and network technologies, convenient data access through the distributedstamisqI3@S)
is now the normal practice rather than the exception in most of the industrial processo[8tattEr experimentally
designed or even routinely operated, the input-output data contain tremendous intricate inforntla¢iqgprafess and are
good manifestation of the process characteristics. If suitable data can be selected and properly archived, desired models
be extracted from theio be used in process simulation, prediction, optimization and control design.

3.1. Steady state identification of the solvent-based PCC

The data-driven modelling of the solvent based PCC process started from the steaygtstatédentification. Zhou
et al. [82, 83] developed four statistical regression models for the re-boiler heat datgtiabsefficiency, CQ lean
loading and C@ production rate of the PCC process. The input variables of thesesnapeletelected first by prior
expertise of the PCC process and further filtered through the method of partial correlatisis.aRalytinely operated
data collected at International Test Center for. €&pture (ITC) located at University of Regina, Saskatchewan, Canada
were used in the identification. Only the stable data within a given operating range leetexide ensure the accuracy of
the steady state models. The reliability of the models was tested and shown to be satiStaetoegulting models
explicitly unraveled the relations among the critical variables within the PCC pamogésould provide guidance for the
operation and performance prediction of the plant.

These studies were then extended by Wu et al. [84] through developing single-hidden layierwaet-
back-propagation neural networks (NN) to capture the steady state relationships amongiti®es. \B&nsitive analysis
and prior expertise were then utilized to eliminate the insignificant input variables andfgithgliNN model. It was
discovered that the NN model predicts the performance of the PCC process more accurate thigstithe refgression
approach. The authors further improved the identification using adaptive network based fuzzy inferenc€AdystS)
approach [85, 86]. Human knowledge in the form of fuzzy if-then rules was used tothefleomplex relations between
the inputs and outputs of the PCC process. The learning ability of NN was used tehadjukts and their combination
modes in the fuzzy inference system through the data. Simulation resultsdghatwthe ANFIS could attain even higher
prediction accuracy for the PCC process compared with the NN.

Sipocz et a[87] also developed a single-hidden feed-forward back-propagation NN model for the steadyGtate PC
process. The captured g@ass flow rate, rich solvent loading and re-boiler heat duty were considered as the model
outputs; and the temperature, flow rate,,@0ncentration of inlet flue gas, lean solvent loading, solvent circulation rate
and CQ removal efficiency were considered as the model inputs. The training and validation datiéaigred from a
rigorous process simulator CO2SIM over a wide operating range. The Levenberg-Marquardt (LM)nalgastiused to
train the ANN and can attain better accuracy compared with the NN trained with soajadate gradient (SCG)
algorithm. Sensitivity analysis was used to find the minimum number of inputs. Ttatialiresults shogd that the NN
model has very high congruence with the rigorous simulator but is 1000 times faster.

In Li et al. [31], a steady statéN model of the PCC absorber was also developed to predict ther@Quction rate
and capture level. The input variables taken into account include: flow rate, pressurepr€@ntration, temperature of
the flue gas and flow rate, MEA concentration and temperature of the lean solvent. The training data were geneaated froi
first principle PCC model built in gPROMS[36] and were bootstrap re-sampling replicated to train multiple
single-hidden layer feedforward NNs. The identified NNs could have different number of lagdemeurons and were
combined together to improve model accuracy and robustness.



3.2.Dynamic identification of the solvent based PCC

The static PCC model can only reflect the relationship between inputs and outputs under steady dtates.condi
However, the flexible operation requires the PCC system to continually adjust ksxgvoonditions and adapt to the
impact of various disturbances. A dynamic PCC model is thus necessary to understand the retaigiaship between
inputs and outputs.

Li et al [31] extended the steady state model of the absorber to a dynamic model based or theotsrap
aggregated NN modelling approach. The input and output data at the previous sampling instant weitbeiggulits of
the NN (first order model) to capture the dynamic characteristics of the absorber svietdied to the change in time.
One-step and multi-step prediction results illustrated that the developed bootstrap aggregatermenrial(BA-NN)
have satisfactory accuracy and reliability.

In [88], the BA-NN model was further modified to a bootstrap aggregated extreme leamaxhinen(BA-ELM)
model. The proposed ELM model had the same struesiiee single-hidden layer feedforward NN. The difference lies in
that the weights between hidden and output layers were determined by the principal component regrgasioro m
overcome the multicollinearity problems. The comparison withBtAeNN showed that the BA-ELM model has better
generalization performance and faster training speed.

The aforementioned steady state or dynamic NNs only have one hidden layer, thus may hatiendimiit
approximating the complex process dynamics. However, the use of multiple hidden layer Nfiffiasials since the
gradient-based training of the weights from random initialization is easily stuck in local optima. The bottleneck was broke
with the development of deep learning technique [89], in which a deep belief network isr@d-tcabbtain the initial
weights and supervised back-propagation is then used to fine tune the weights. Li et al [90] estalletyedelief
network (DBN) to capture the dynamic behavior of PCC absorber based on the same datgBlethm proposed DBN
was composed by two hidden layevkich were pre-trained by Gaussian Restricted Boltzmann Machine (RBM) and
binary RBM to drive the initial weights to optimum solution. The advantages and jeper DBN are analyzed in
details and the validation results showed that the accuracy of the DBN was 10 gheastliman the conventional single
hidden layer NN. However, the dynamic validation of these three models did not considetuh®ances of different
variables in a wide operating range.

Due to the complexity of the system, it is challenging to directly identifyisfactory dynamic model for the entire
PCC unit. Instead, a “divide and conquer” approach was proposed by Manaf et al. [32]. Three key components within the
PCC process, the absorber, rich/lean solvent heat exchanger and the desorber were identified indivadigdilyhe
dynamic operating data of a pilot plafthe resulting multivariable nonlinear autoregressive with exogenous input
(NLARX) models were tested and found can match the experimental data very well. Therefdiegeghaddels were
linked together to form a 4-input, 3-output PCC process model, in which the flue gamtoWQ concentration, lean
solvent flow rate and re-boiler heat duty were considered as the input variables; afd tioeo€ntration of absorber off
gas,CO;, concentration at the top of the desorber and the flow rate at the top of the desorlsmiected as the output
variables. Step tests were then carried out on the integrated PCC model and the rezaibd itdit the power plant flue
gas had a quick impact on the PCC process while theika-heat duty’s influence was slow. Sensitivity analysis was also
performed to identify the relative importance of model inputs on the model outputs. tisgasered that, th€0O,
concentration of absorber off gas was mainly influenced by the flue gas flow rate, whoideredeat duty was the most
influential parameter to the flow rate and £€ncentration at the top of the desorber. The model investigation offers a
good understanding for the dynamic behavior of the PCC process and was useful in control design.

Most recently, Akinola et al. [9Jalso developed an NLARX model for the PCC process using the dynamic operating
data obtained from a gPROM$CC model [47]. The COconcentration at absorber outlet gas and lean solvept CO
loading are selected as the model outputs; and the flue gas flow rate, lean solveateflamd the re-boiler temperature
were used as the model inputs. The work was featured that the forward regréssimthogonal least squares (FROLS)
algorithm was applied to select the most significant terms in the model. The validatioa desuatinstrated that the
identified model well represented the underlying dynamics of PCC process and could further be used in control design.



Liao et al [92] analyzed the input-output dynamics for main control loops of PCC, including the leant Staw-
CO; capture level, steam flow rate- reboiler temperature, condenser cooling water flosoratenser temperatuaed
lean solvent cooling water flow rate- lean solvent temperature loops respectivelysibgéalinput single-output (SISO)
transfer function models were identified under different €&pture levels using the data generated from gCCS simulator.
The differences among these local models were measured through step tests and gap-metric caRuitatabedocal
models were then selected and connected with each other by a fuzzy membership function tmappitxinonlinear
behavior of the PCC system. The piecewise linear model obtained has good approximation accheopmtinear PCC
systemandhas simple linear expression.

The fuzzy modelling technique was also used in Liang et al [93], where local state-spacenmwal@entified from
data and then linked together according to the C4pture level. The developed fuzzy model was used to capture the
dynamics among Cfcapture level, re-boiler temperature, lean solvent and re-boiler steam flow rateestTtesilts
showed that the fuzzy model had better performance than the linear model. Moreover, the lingpacdi@-mation of
the model made it very suitable for advanced controller design.

3.3.Advantages, limitations and future directions for the system identificatiBiCGf process

The data-driven identification modelling approach has severaldiativantages:

1) The modelling is based on data, tlitudoes not require an in-depth understanding of the PCC process and the
internal working principles;

2) Due to the data-driven nature, the modelling is easily adapted and extended to other PCC process;

3) The model is simple in structure and efficient in calculation. Although the accuracy is dbglgfythan the first
principle model, the computational effort is greatly reduced. The model is suitable for real time control of PCC system.

In most of model-based PCC control design studies, for example, the model predictive kt@)plthe data-driven
model has been well developed and used to approximate the dynamics of PCC process. Rehiesesdtudies will be
given in details in Section 4.

The identification modelling also has some evident shortcomings:

1) It cannot reflect the physical process and working principle of the PCC system. Theparadedters do not have
physical meanings and the model is weak in explaining the input-output relationship and modelling mismatches. Therefol
the accuracy of the identification model is generally lower than the first-principle model.

In [43] and [68], the accuracy of first principle model was improved by correcting ddelrparameters using the
pilot-plant experimental data. Such a hybrid modelling method, which uses the fundamental knowhisigdom the
basic physical model of PC&hdthen uses the modern data-driven approach to fine tune the model parameters. This ma
enable more accurate and efficient predictions of PCC performance, reliability and flexibility.

2) Before the identification, the selection of input variables and their corresponding ondelelalso have strong
impact on the modelling results. The model accuracy can be insufficient if key influenced varialviet taken into
account; while the complexity of the model can be excessively high if less-relevant variables are considered. Teerefore,
identification also needs some fundamental expertise of the PCC process. Combiningrtkeowiedge of the PCC
process with advanced data analytical approach to determine the proper model inputs is an important future direction.

3) The identification approach is highly dependent upon data from the PCC processes. Although massivebaat
provided, high-quality data are often limited for the following reaspmdany variables such as flow rate, solvent loading,
concentration are difficult to be accurately measured in tigsd; ii) The data sets obtained are often mixed with
measurement noise and contain many outliers;i@h@ successful identification require data that can reflect critical
information of the PCC process. However, designing open-loop experiments textitly the PCC system and obtain
useful information under various conditions is difficult to carry out owing to the sedagons. Direct use of the
closed-loop operating data for identification is an alternative method, nevertheless, sinpattioatput data are highly
correlated in the closed-loop condition, the difficulty of the identification has been increased.

For these reasons, only a few data-driven PCC models were identified from pilobgaating data, while other



modelswere all developed based on the data obtained from simulators. Applications are sought Wiechadiern
measurement, data processing, and identification technologies for the PCC process. Additieneligracteristics of
PCC systems easily change due to solvent degradation and corrosion of equipment. The application of adaptive data-dri

approaches on the PG@€also of interest.
The studies on data-driven identification of solvent-based PCC are summarizeldid. Tab

Table 2. Summary of studies on data-driven identification of sblvased PCC

Year Research Institute | Model category | Modelling approach | Model outputs and inputs | Data source | Reference
2008/ | Energy Informatics| Steady statg Multiple-regression | Four regression models fd Routinely [82], [83]
2009 Laboratory, Faculty| data-driven technique using the the re-boiler heat duty] operated datg
of Engineering/| model software of SPSS absorption efficiency, CO| collected at
Process System lean loading and CQ| International
Engineering production rate  werq Test Center|
Laboratory and identified. ~ The  input| for CO,
International  Test variables of these model capture (ITC)
Centre for CQ are selected by prio| located at
Capture, University| knowledge of the PCQ University of
of Regina (Canada) process and further filtere{ Regina,
through the method o] Saskatchewar|
partial correlation analysis| , Canada
2010 Energy Informatics| Steady statg Single-hidden layerl Four NN models for thg Routinely [84]
Laboratory, Faculty| data-driven feed-forward re-boiler heat duty,| operated datg
of Engineering,| model back-propagation absorption efficiency, CO| collected at
University of Regina neural networks lean loading and CQ| International
(Canada) production rate  werg Test Center|
identified. Solvent| for CcOo2
circulation rate, steam flo capure (ITC)
rate, steam pressure, flJ located at
gas CQ concentration,| University of
absorber inlet gas actuj Regina,
flow factored for| Saskatchewan
concentration and off gal , Canada
flow rate are selected 4
inputs for all the four|
models. Insignificant]
inputs are then eliminate
through sensitive analysi
and expertise.
2010/ | Faculty of | Steady statg Adaptive network| Four ANFIS models for thg Routinely [85], [86]
2011 Engineering and data-driven based fuzzy| re-boiler heat duty,| operated datg
Applied Science,| model inference system absorption efficiency, CO| collected at
University of Regina lean loading and CQ| International
(Canada) production rate  werg Test Center|
identified. The inputs of for CO,
the model are selected th capture (ITC)
same as the NN modq located at




(after eliminating  the| University of
insignificant inputs| Regina,
through sensitive analysi| Saskatchewarn
and expertise ) , Canada

2011 Department of| Steady statq Single-hidden layerl Three NN models for thg CO2SIM [87]
Mechanical & | data-driven feed-forward captured CQ@ mass flow| simulator
Structural model back-propagation rate, rich solvent loading from
Engineering & neural networks and re-boiler heat duty SINTEF,
Material ~ Science, The inlet flue gas| Norway
University of temperature, flow rate
Stavanger (Norwgy CO; concentration, lea
and SINTEF solvent loading, solven
Materials and circulation rate and CO
Chemistry, removal efficiency are
Department of selected as inputs for a
Process Technolog) the four models.

(Norway) Insignificant inputs are
then eliminated throug
sensitive analysis.

2015 School of Chemical Steady statq Bootstrap PCC absorber model t{ Ratebased [31]
Engineering and data-driven aggregated neurg predict the CQ@ capture| first principle
Advanced Materials| model/ network (Composed rate and capture leve| PCC model
Newcastle Dynamic by several| using flue gas flow rate| developed in
University (UK) and | data-driven single-hidden layer pressure, Co gPRomé'D
School of | model feed-forward concentration, temperaturq [47]
Engineering, networks) lean solvent flow rate
University of Hull MEA concentration ang
(UK) temperature

2016 School of Chemical Dynamic Bootstrap PCC absorber model t( Ratebased [88]
Engineering and data-driven aggregated extrem( predict the CQ@ capture| first principle
Advanced Materials| model learning machine rate and capture leve| PCC model
Newcastle using flue gas flow rate| developed in
University (UK) and pressure, C®| gpPROME
School of concentration, temperaturq [47]
Engineering, lean solvent flow rate
University of Hull temperature, loading an
(UK) re-boiler temperature

2016 School of Chemical Dynamic Multivariable Flue gas flow rate, CO| Tarong [32]
and Biomolecular| data-driven nonlinear concentration, lean solver] CO, capture
Engineering,  Thel model auoregressive with| flow rate and re-boiler heg pilot plant
University of exogenous inpul duty were considered & located at
Sydney (Australia) (NLARX) model | the input variables; and th| Tarong power
and CSIRO Energy (Three NLARX | CO, concentration of| station,
(Australia) models were| absorber off gas, COJ] Nanango,

developed for the concentration at  tog Queensland,
absorber, hea] desorber and the flow rat| Australia




exchanger and at top desorber wer
desorber selected as the outpy
respectively. Therd variables.

were combined

together to form an

integrated PCC

process model.)

2018 School of Chemical Dynamic Deep belief network| PCC absorber model t{ Ratebased [90]
Engineering and data-driven predict the CQ@ capture| first principle
Advanced Materials| model rate and capture leve| PCC model
Newcastle using flue gas flow rate| developed in
University  (UK), pressure, C®| gPROMS
Department of concentration, temperaturq [47]
Automation, lean solvent flow rate
Tsinghua University| MEA concentration ang
(China) and temperature
Department of
Chemical and
Biological
Engineering,

University of
Sheffield (UK)

2018 Key laboratory of| Dynamic Piecewise linear Models for four main| Ratebased [92]
Energy Thermal| data-driven transfer function control loops of PCC| first principle
Conversion and model model (local models| including the lean solven| PCC  model
Control of Ministry identified through flow- CO, capture level| developed in
of Education, System loop, steam- re-boiler gCCS®
Southeast University Identification temperature loop
(China), Toolbox in | condenser cooling watel
Department of MATLAB) condenser temperatur
Chemical and loop and lean cooling
Biological water- lean temperatur
Engineering, loop
University of
Sheffield (UK) and
Process System
Enterprise Ltd (UK)

2018 Key laboratory of| Dynamic Fuzzy state-spac{ CO; capture level, re-boile|] Ratebased [93]
Energy Thermal| data-driven model (local model| temperature are selected | first principle
Conversion and model identified  through| the model outputs; leay PCC model
Control of Ministry Subspace solvent and re-boiler stearl developed in
of Education, Identification) flow rates are selected a8 gcc®

Southeast University

(China) and
Department of
Electrical and

the model inputs




Computer
Engineering, Baylor|
University (USA)

2019 Department off Dynamic multivariable CO, concentration af Ratebased [91]
Chemical and| data-driven nonlinear absorber outlet gas an first principle
Biological model autoregressive with lean solvent C® loading| PCC model
Engineering/ exogenous inpul are selected as the mod developed in
Department of (NLARX) model output; and the flue ga| gPROMS
Automatic  Control flow rate, lean solvent flow [47]
and Systems rate and the re-boile|
Engineering, temperature were used
University of the model input
Sheffield (UK)

4. Control of solvent-based PCC

4.1.Control objectives and challenges for the PCC process

As the electricity selling price and electricity demand vary for the CFPP, the fliowaste and re-boiler steam
drawn-off from the turbine will change frequently in a wide range. As a result, égipeaation of the PCC at given
operating condition can no longer meet the operation requirement. In this context, an increagiong ats been drawn
on the flexible operation of PCC process [23], [24], which expects the PCC symtechange the COcapture level
rapidly and smoothly; and also adapt to the disturbances caused by the upstream CFPP in a timely manner.

The key issue towards the flexible operation of PCIG @esign a proper control system. Some basic requirements for
the flexible control of PCC system are listed as follows [25], [29], [30], [33], [39], [47], [51]:

1) Be able to track the desired €€apture level set-points and to maintain the process operating at a givee captur
level in the presence of various disturbances;

2) Be able to minimize the variation of condenser pressure and temperature to guarantee the qualfizooiuCiO

3) Be able to maintain the liquid levels of inventories to achieve a water balance of the system;

4) Be able to minimize energy consumption during the operating condition change; and

5) Avoid an excessively high re-boiler temperature, which may cause solvent degradation.

However, the following dynamic characteristics of the PCC process make the control design challenging:

1)The overall dynamics of PCC system is very slow since a series of mass ,theatetransfer and chemical
reactions between gas and liquid phases are involved in the process. In addition, the absorber,uepsréed she lean
MEA tanks provide buffer to the solvent flow rate and further slow down the response &fGheystem. Lawal et al [47]
showed that for a reduction in re-boiler heat duty, the PCC system takes more than two bates new steady state,
which is much slower than the upstream CFPP;

2) Composed by theeversible processes of absorption and desorption, there are significant couplings among
multivariable within the PCC system. This feature is particularly evident anhenkety variables of COcapture level,
re-boiler temperature (lean solvent loading), lean solvent flow rate and re-boiler heat guty [94

3)The frequent change of flow rate and composition in flue gas will have strong impact B&Gheperation.
Meanwhile, there may be many unknown disturbances in the system, such as failure of the miimpsofstalves,
corrosion of the equipment and solvent degradation;

4) The nonlinearity of the PCC process is strong, the dynamics of the systeohaviie when the operating
conditions change [95];

5) There are strict constraints for the controlled variables (MV) and manipulaiablesr(CV) within the system
considering the safety issues and physical limitations of the actuators.

Therefore, many efforts have been made in control design to overcome these issues and achiée andlexi



efficient operation of PCC

4.2.Decentralized feedback control design for PCC

As the most conventional and reliable control approach, the proportional integral de(Réliydased decentralized
feedback controllers have been extensively applied in the solvent-based PCC procesg @ emsact operation of the
entire process. Because the decentralized control system is developed based on the SISO loopajriiber @Vs and
MVs is key to control design.

4.2.1 Control design based on heuristics of the PCC

Based on the insights gained from the PCC process dynamics (i.e. heuristics), a genetatromtire was applied
in [25], [29], [30], [33], [39], [47], [51], [96-100], as illustrated in Fig. 3. The pulavels are controlled by the
downstream liquid valves; the pressures are controlled by the vapor outlet valveshdiler, condenser, lean solvent
temperatures are controlled by the flowrates of steam/ cooling water supplied. The water dalmcesystem is
maintained by manipulating the makeup water flow to control the level of the buffer thitk,am additional makeup
MEA flow rate is used to control the lean solvent concentradiod;he CQ capture level, which is defined as:

CQO, in flue gas- CQ in vented flue ga 1)

CO, Capture Levet -
CQ, in flue gas

is controlled by the lean solvent flow rate.

CQO, product
Compressor
:t;: Cooling water out
' Cooling water in
Condenser
: P @ [ Heat N
Flue gas inlet H eXChanger --------------- Steam out

Steam in

Reboiler

Fig. 3 Conventional control structure of the solveased PCC process

Based on this control configuration, Lawal et al [47] designed a series of Pl contaligrs integrated PCC process.
The dynamic impact of water makeup stop, re-boiler heat duty reduction and flue gas flow eatgeineere investigated
in closed-loop condition. The control performance of the PCC was tested in case of flt@®;gascentration increase
and showed that the given C@capture level can be well maintained. Under the same control structure, Lawal ét al [51
conducted dynamic simulations of the integrated CFPP and PCC for reduction of target power outpteaselof target
CO; capture rateDifferent responses of the two plants were clearly shown. Since the iiotesametween them were
not taken into consideration, strong oscillations and overshoots in capture ldweileresteam and solvent flow
rates were observed.

Lin et al. [25] designed the PI controllers under the similar configuration. Since the bufferasmiotwsed in their



studies the water makeup was manipulated to control the re-boiler sump level. The control perforasesaluated in
the presence of flue gas flow rate/composition step changes and showed that the desired capame réebeller
temperature can be successfully maintained. The importance of water makeup control and the retiedt
temperature under different operating conditions were also discussed in their work.

Mechleri et al. [96] simulated a PCC plant for a 200MWe nature gas combined cyd®CjNskant in ASPEN
HY SYS Dynamic8 and designed the Pl control system according to the conventional configuration. Control performance
evaluation was carried out in cases of £10% flue gas flow rate change. It was disdbaereffective disturbance
rejection for the capture level and re-boiler temperature can be achieved by the controlleerHibvi@sk a very long
time for the PCC system to finish the transition process.

Rodriguez et al. [29] tested the performance of the conventional PCC PI control systertheradtual load varying
operation of the connected CFPP. The upstream CFPP was supposed to change its 1680%rdm 75% and then
returned back to 100% at the ramping speed of 5% /min. Such a rapid change of load will causshangeidf flue gas
flow rate and bring in significant disturbances to the PCC system. The simulation resuétd #aid.5 hour was needed
for the CQ capture level to return to steady state and apparent oscillations occurred during thentr&osithe re-boiler
steam and C@product, almost 1 hour is required to attain new steady state values. The simulation mahéesiad t
dynamics of the PCC process and indicated that the Pl control of PCC may not meet the operating expectations.

Gaspar et al. [97] implemented the conventional decentralized control structure to a P€XS pratevaluated its
performance in cases of start-apd power plant load changes. Normally distributed pseudo-random noise was added to
the flue gas flow rate andO, content to mimic the operation condition of real power plant. Rich and lean solvent storages
were considered in the process to better decouple the operation of absorber andastdppénprove the flexibility of
the process. The results reveal that the conventional Pl controllers were able to keep thecB&Copsrating at the
desired point with small deviations during the transition.

Sharifzadeh and Shah [98] selected the same control structure for the PCC process and assessed the controllability
flexibility of the system uner a wide range of disturbances such as capture level set-point change and power plant loa
change The dynamic impact of re-boiler temperature, MEA concentration, load ramping speed and eaplset-point
change speed on the PCC operation was also tested. The flow rate and composition of the fluegglasdwtiange was
calculated by stegtstate CFPP and NGCC power plant models; and a high degree of flexibility was olfsebat the
coal and gas fired scenarios, demonstrating the effectiveness of the control framework. The PCC for CFPP was found m
challenging to control since larger amount of.@@s to be removed.

Among multiple variables within the PCC, €Capture level and re-boiler temperature are two most important CVs.
The capture level reflects the degree of@noval from the flue gas. The re-boiler temperature is an indicator of the lean
solvent CQ loading, which determineiéss CO, absorption ability. Moreover, solvent degradation will occur under an
excessively highre-boiler temperature. Many studies of the PCC control focused on how to select Mbfstril these
two variables [30], [33], [99]. According to the dynamics of PCC, the lean solventdlevand the re-boiler steam flow
rate are good candidates. Increasing the lean solvent flow rate will increase the ansolvgndfdirectly contacted with
the flue gas and rapidly increase the,@@pture level. However, as more solvent will flow into the re-boiler, the terboi
temperature will drop, leading to a rise in lean solvent loading. Therefore, the capture legehdvilllly return to the
previous level [33]. On the other hand, the increase of re-boiler steam flow ratecvélise the re-boiler temperature,
release more C{from the solvent and reduce the lean solvent loading. TheaBsdrption capability of the solvent will
thus be enhanced and the Gf@apture level will be increased.

Lin et al. [99 proposed two Pl control modes for the integrated PCC system: (Mode-1) the conventiondlicme,
used the lean solvent flow rate to control the capture level and used the steam flow rate to control the re-lodarrtmp
(Mode-2) keeping the lean solvent flow rate constant and controlled the capture level threugkain flow rate.
Simulations were conducted in case of 1%/min capture level set-point ramping ehdldede-2 was observed to have
more stable hydraulic condition. However, it should be noted that, the optimal re-boiler terepesanot be maintained
under control Mode-2, thus the energy performance may be worse. Mechleri et al. [30] &stbérthe operational
flexibility and economic performance of the two PCC control strategies in case of wide range CFPP and NGCC power lo:



change. The performance of another operating scheme which wye@drmical switch between the aforementioned two
strategies according to the power plant loading was also assessed. The evaluation resulthahosied aippropriate
control strategy, satisfactory performance can be achieved by the PCC, avoiding the ade#drial expensive solvent
storage tanks. Among the three control strategies, the conventional control structure providddiberdtewy flexibility

and was most efficient. This advantagas especially evident for CFPP case. Nevertheless, the authors pointed out the
other two strategies may still be useful during system start-up and shut-down whearéhgrengent constraints on the
steam supply.

Nittaya et al. [33] compared the conventional decentralized control structures of PCC with aneitvehich paired
the capture level with re-boiler steam flow rate and re-boiler temperature wiibhtsoivent flow rate. The performance
of the control schemesas evaluated under different scenarios such as flue gas flow rate change, capture level set-poir
change and lean solvent flow valve stiction. Although temporary, the quick impact of lean solwerdatd on the C©
capture level was proven to be very helpful for improving the flexibility oP8€. The conventional control scheme was
shown to have faster responses in flue gas disturbance rejection and capture level tracking. thewsaréormance of
this control scheme may be greatly degraded in case of constraint of re-boiler steamidl or the stiction of the lean
solvent flow valve.

Gardarsdottir et al [100] used the conventional control strategy for the PCC in dag®®fpart load operation,
where the flue gas flow rate frequently changed along with the power plant load. In CFP&apeaeration, where the
steam to re-boiler is decreased for more electricity production, they suggested to eaa Huvent flow rate to maintain
the lean solvent loading at a given optimal value. They concluded that, manipulating the solveateflam improve the
response time for both the capture level and solvent loading of the PCC.

4.2.2 Control design using RGA analysis

To identify the pairing of CVs and MVs with minimal interactions among multiple colatopis, relative gain array
(RGA) analysis [101] was used in PCC control designs [23], [33], [LOR-NiXbaya et al. [33] performed RGA analysis
for their PCC model and the results suggested that the liquid levels of absorber aner ihbaill be controlled by their
downstream solvent flow rate, the temperature of condenser and the lean solvent should exidontial cooling water
flowrates, which were the same as the conventional control structure. The diffiergheecapture level was suggested to
be controlled by manipulating the re-boiler steam flow rate and the re-boiler s#urpecontrolled by the lean solvent
flow rate entering the absorber. The parameters of the Pl controllers were set using intelelatontrol approach
initially and then fine-tuned during the simulation. However, the performance of this conimusgrwas found worse
than the conventional one in terms of flue gas disturbance rejection and capture level ffhekieg.son may be that the
RGA analysis only considered the steady state correlation between CVs anadAgsaed the dynamic effect between
them. For the PCC process, the RGA analysis cannot completely reflect the impactsafiteah flow rate on capture
level since only the steady state relationships can be revealed. Considering this limitattogis following study for an
industrial scale PCC control design [102], the authors manually paired the captureitleMebw solvent flow rate and
re-boiler temperature with steam flow rate. RGA analysis was only usedhfiairmiag control loops pairing. The resulting
control structure becomes the same as the conventional one and was shown to have smooth trahsitimesaence of
disturbances or operating condition changes.

Gaspar [103] applied the RGA analysis to design controllers for both the PZ and MEARa3gdant. The results
indicated that, for the PZ plant, the capture level was better to be controlled by thierelliyj whereas the lean solvent
loading is controlled by the lean solvent flow rate. The pairing for the MEA plant wastimbedconsistent with the RGA
analysis results given in [104]. They then carried out various dynamic simulations to compgeddimeance of the two
plants. The PZ plant was shown to have slower response, thus required larger gains arichesnraégrals. The
performance of two plants in the presences of solvent flow valve stiction and steam supply shortage was also tested and
performance of PZ plant was more easily degraded. However, since the control structure and parameters settings of the
plants were different, it remained unsure whether the controller or the solvent itself caused this outcome.



In Luu et al R3] and Manaf et al. [32], [LO5{;O. capture level and energy performance (energy consumption per
unit CG captured) were defined as two CVs of the PCC system to improve the enf@igpnaf of the process.
Considering that the behavior of PCC is variable, RGA analysis was performed uretentidperating conditions [105].
The results suggested to pair the capture lawelenergy performance with lean solvent flow and re-boiler heat duty
respectively. Effectiveness of the controller was demonstrated through simulations of aj@lirenergy performance
set-points changes and flue gas flow rate random changes. However, since the re-boiler temperatirtakes into
account, it could not be maintained within the proper range during the transition. To dedlisvigsue, the authors
modified the conventional re-boiler heat duty-energy performance controller to a cascadmtfilec [23]. The master
controller received energy performance set-point and calculated the re-boiler temperature satgbei slave controller,
from which the appropriates-boiler heat duty was computed.

4.2.3 Control design through optimization

One key problem with the operation of solvent based PCC is the high energy requiremenefdrregeneration. To
reduce the energy consumption a self-optimization control appr&86hwas applied to the PCC to find the best CVs in
such a way that the process can be kept close to its optimum if the CVs are maintdiegdyaten optimal set-points
even in the presence of disturbances.

Panahi et al. [79] comprehensively analyzed the available MVs, the requirements and constrairesPioC
operation, through which the degree of freedom (DOF) of the optimization was deteffuned.and heat consumptions
were considered in the objective function to calculate the optimal steady state value of candlated€ major
disturbances and operating condition changes. Temperature on tray no. 4 of the stripper wés liearedminimal
sensitivity to the disturbances, thus was selected as CV of the PCC insteaccofitbrtional re-boiler temperature.
Heuristics of the process was then used to pair the CVs and MVs; the presentedstamture was similar to the
conventional one. Simulations in case of flue gas flow rate/ composition change and stripper pressuitushaiey
that the proposed control structure has better economic performance. However, since no direct contpalsedon the
re-boiler temperature which was the highegthin the process, there might be potential problems during PCC operation.
In case of strong disturbances or equipment failure, the re-boiler tempevatueasily become too high, which could
cause solvent degradation.

In Panahi and SkogestatiOf, 108], a tax on the CQOeleased to the air was taken into account in the objective
function, in addition to the power and heat consumptions. Operating range of the PCC was wligidleeé regions
according to the flue gas flow rate: 1) nominal flue gas flow rate; 2) larger fludogagmte that the re-boiler heat duty
was saturated; and 3) even larger flue gas flow rate that the process reached minimabhea@@vrecovery. Different
constraing were considered in the three cases, resulting in different optimization DOF and différeglieCtions. Various
decentralized control configurations were developed using RGA analysis and heuristics. The contra sthictiunsed
the steam flow rate, rich solvent flow rate and lean solvent flow rate to control the capéliréemperature of tray no. 16
of stripper and absorber sump level was found to have satisfactory performance in all the operating regions.

Schach et al. [109] applied the self-optimization approach in control structure developmeat diffdrent PCC
processes, one with intercooling absorber and the othertwatistrippers. Ten best CV candidates were found for each
process and the coupling of different control structures were analyzed through RGA. Jé¥ep@ftion performance and
energy cost of the candidate control structures were evaluated in steady state under 40%, @@weBQ3fant loads.
However, the dynamic performance of the proposed control structures was not tested.

Although the self-optimization approach can improve the operation performance of PCC hademple
decentralized control configuration, its advantages are mainly reflected in steady state condition. yThasenthe
following limitations for the flexible operation of the PCC:

1) In case of wide range operating condition changes or strong disturbances, the optimal set-@iistsnafy
change; thus the self-optimization approach can only make the system close to the optimum, tain tioé aptimum;
and



2) The seHoptimization approach is developed based on steady state optimization, thus cannot guarantee a dynar
optimum during the transient changes.

Sahraei and Ricardez-Sandoval [110] proposed a novel process design approach, which simultaregoushy tthet
equipment specifications and controller parameters of the absorber through optimization. The contré siiube
absorber was pre- determined, the lean and rich solvent flow rates were selecteditoheooapture level and absorber
sump tank level respectively. Optimization indexes such as capital cost, operating cost anthgaseoa considered in
an integrated objective function, which was then minimized under minimakc&aure level requirement and sinusoidal
type flue gas flow rate disturbance. Since the dynamic operation performance was pre-considerequipment design
stage, much lower costs can be achieved by the proposed approach.

4.2.4 Considering ratio control in the decentralized feedback control structure

The most commonly used ratio control in the PCC system is to keep the ratio betmresaolvent flow rate and flue
gas flow rate (L/G ratio) constant. Lawal et al [36] and Posch and Haider [71] developdzeabsodels of the PCC and
found that the operation of absorber was more sensitive to the L/G ratio. Maniptiiatiegn solvent flow rate to keep a
given constant L/G ratio could improve the performance of absorber and make the absorbereggokerto the flue gas
flow rate change. It was also discovered that, keeping a constant L/G ratio can mair@&a theture level close to the
given value even though the capture level is not closed-loop controlled.

The effectiveness of the L/G ratio control should be tested through the integrated PCC procaserssimte the
performance greatly depends on how well lean solvent loading is maintained. Based on the conveGtbnal
decentralized control structure, Lawal et al.][pidt the lean solvent flow control in an open loop condition and make it
change synchronously and proportionally according to the variation of flue gas flow rate. A simafali®®o flue gas
flow rate increase showed that, as the lean solvent loading can be roughly maintained due to theredmmkant
temperature control, theéO, capture level could be maintained at almost the same level before the disturbance.

Gaspar et al. [97] compared the performance of constant L/G ratio control with the aoralekicontrol during the
start-up of the PCC plant. In their simulatitine given L/G ratio was not attained until the flue gas flow rate was in steady
state. Due to this reason, slow and less accuratec&@gdure level tracking performance was discovered in the simulations.
In Gardarsdéttir et al. [100], the two control schemes were again compared in case of floer gate change, their
results indicated that maintaining a constant L/G ratio in the absorber was dgftelythan feedback control of t6€,
capture level.

Waters et al.J11] developed control structure for a PZ based PCC plant with intercooled absorber and advanced flas
stripper. The lean solvent flow rate was used to control the L/G ratio for abgmtiermance. In the real process,
continuous and accurate online measurement of flue gas flow rate is challenging to achiekremashilimit the
application of the L/G ratio control. To this regards, waters et dlt§g8d the temperature profiles of absorber and found
that the solvent temperature at a certain level of absorber can be a good indicator @& ttaio./However, the
temperature set-point may need to be modified in the presence of flue gas composition changlegfdaemperature
changeetc., so that the desired L/G ratio can be maintained.

Actually, to a large extent, implementing the ratio control can compensate the shortcoming of feedbatkn
slow response. As we know, the adjustment of the conventional PI/PID based feedback cdmth@ksd on the
deviations of the CVs from their set-points. For the slow PCC process, it talkea tprig time from the occurrence of the
disturbances to the process entering new steady state. Therefore, using the feedback control can easilipuead t
responses or frequent oscillations of the PCC sysBymappropriate use of the ratio control, some MVs can change
synchronously with the disturbances, which can effectively suppress the further increase of dewigtadns and
accelerate the response of the PCC system.

Besides the constant L/G ratio control, Ziaii et al. [48] proposed to adjust treohemt flow rate proportionally to
the change of re-boiler steam rate. Their simulation showed that by implementing suactcantatil for the stripper, the
lean solvent loading and re-boiler temperature could be maintained almost constant, meaawbe#pdnse time of the



system was greatly reducelb improve the response time of the integrated PCC system, Ceccarellilé?hprpposed
to manipulate both the solvent flow rate and re-boiler steam flow rate proportitmnéily flue gas flow rate. Schach et al.
[109] used self-optimization method in their control design studies and suggested to keep thoLé@Gnstant for the
economic operation of the PCC with intercooled absorber; whereas for the PCC equipped witippers,sthe best
control scheme was to regulate the lean solvent flow rate, steam flow rate andigit pabportionally to the flue gas
flow rate.

Flue gas flow rate is the main disturbance to the PCC process. Similar as feedtmmieot] directly adjusting the
MVs according to the changes of flue gas flow rate can speed up the response of the PCEloystesn. the use of the
ratio control in open loop condition may easily lead to large control offset since the MVegatated completely
according tahe variation of flue gas flow rate. It is impossible for the ratio contr@lccurately control the CVs such as
capture level. Moreover, in the occurrences of unknown disturbances, the optimal ratio may change faotl dfeatid
control may be degraded.

4 2.5 Limitations and future directions of decentralized PCC feedbatkoto

The conventional PI/PID based decentralized control has been successfully used in industsgispor its simple
structure, convenient tuning, higher robustness and satisfactory performance in disturbance rejectitmedypargtion
maintained around a base load. However, as the PCC is required to be operated in a flexible manner, theatd?ivent
PID control schemes may no longer meet the operating specifications, owing to thexcbetmviour of PCC such as
severe nonlinearity over wide operating range, strong couplings among multi-variablessgonsesind disturbances.
The main limitations of the decentralized feedback control using PID are concluded as follows:

1) The control mechanism of the feedback control is based on the deviations of C\lsdroeferences, therefore,
its control action is not in time and cannot speed up the slow response of the PCC in the best way;

2) In general, the parameters of the feedback controller are tuned under the designed operatorgs cndlithen
fixed. During the flexible operation, severe performance degradation may occur when operating condition changes;

3) There are strict limitations for the CVs and Mbufis the PCC operation, however, the decentralized feedback
control is not capable to consider these constraints in the design stage. When the constraints are inngivibeé dur
regulation, the performance is still decreased even the controllers are well designed and tuned., Modeoleng-term
of this state, integral windup may occur for the controller, which will further degrade the control performance; and

4) The decentralized feedback control is developed based on the SISO loop, which cannot consideadfiens
among multiple loops and implement a comprehensive control for the integrated system.

Therefore, 1) combining feedforward and feedback control to accelerate the response of PCC while ggatanteei
robustness and accuracy of the control; 2) developing gain-scheduling or auto-tuning P1 coniropeovte the control
performance of wide range load change; 3) considering active disturbance estimation and compenbaticoninot
structure to handle the unknown disturbances and plant behaviour variatidg; design more advanced de-coupling
control scheme to alleviate the interactions among multi-variable, are potential directidasdiotralized control studies
of the PCC.

The progression in decentralized control of solvent-based PCC is summarized in Table 3.

Table 3. Summary of studies on decentralized control of solvent-B&3ed

Year Research Institute Process model | Control  structure/| Simulation cases fo| Reference/

design strategy control test Section Discussed

2009 Department of Chemica)l PCC  stripper| Adjusting the rich| 10% step reduction of [48]/

Engineering, Thel model in Aspen| solvent flow rate| re-boiler heat duty Section 4.24
University of Texas af Custom proportionally to the
Austin (USA) Modele change of re-boile

steam rate




2010 School of Engineering| PCC model in| 1) Conventional| i) switching off water| [47]/
Cranfield University| gPROME control structure; balance control; Section  4.2.1&
(UK), RWE npower 2) Constant L/G| ii) Increasing flue gas 4.2.4
(UK) and Procesg ratio, flow rate
Systems Enterprise Lt re-boiler iii) reducing re-boiler
(UK) temperature heat duty

controlled by| iv) Increasing CQ@
re-boiler steam flow| concentration of flue gag
rate

2010 Department of Chemica PCC model in| Self-optimizing Power plant load [79])/
Engineering, Norwegiar| UniSim® control design changes and strippg Section 4.2.3
University of Science pressure changes
and Technology
(Norway)

2011 Department of Chemical PCC model in| Conventional i) change of waten [25]/
Engineering,  Nationa| Aspen control structure| makeup Section 4.2.1
Tsing-Hua  University, Dynamicé@ (re-boiler sump level| ii) disturbances in flug
(Taiwan, China) ang controlled by water| gas flow rate and
School of Electrical ang makeup) composition
Information Engineering,

Jiangsu University|
(China)

2011/ | Department of Chemica] PCC model in| Self-optimizing Flue gas flow ratg [107], [108]/

2012 Engineering, Norwegiar| UniSim® control design for| change Section 4.2.3
University of Science different  operating
and Technologyi conditions+ RGA
(Norway) analysis/ heuristics

2012 National Tsing-Hua|] PCC model in| 1) Conventional| CO,  capture level| [99]/
University, (Taiwan,| Aspen PIL® control structure; set-point ramping| Section 4.2.1
China) and China Stee 2) Constant solven| change
Corporation (Taiwan, flow rate, capture
China) level controlled by

re-boiler steam flow
rate

2012 School of Engineering| Integrated Conventional i) reducing target powe| [51]/
Cranfield University| CFPP-PCC control structure output Section 4.2.1
(UK) and RWE npower| model in i) increasing CQ
(UK) gPROME capture level set point

2013 Institute of Thermal,| Two PCC | Self-optimizing CO; removal and energy [109] /
Environmental and models ,one| control design +| Performance analyzed i| Section 4.2.3
Natural Products Proceq with intercooled | RGA analysis given steady  statq
Engineering, TU| absorber  and conditions

Bergakademie Freibert
(Germany) and Siemen
AG

Energy  Sector,

Fossil Power Generatiol

one with two

strippers




(Germany)

2014 Department of Chemical| PCC model in| Conventional 10% step increase [96]/
Engineering, Aspen HYSYS| control structure decrease of flue ga| Section4.2.1
Imperial College London Dynamicé@ flowrate
(UK) and School of
Engineering, Cranfield
University (UK)

2014 Process System| PCC model in| Conventional Power plant load change [29] /
Enterprise Ltd UK) gccé@ control structure Section 4.2.1

2014 Department of Chemica)l PCC model in| 1) Conventional| i) flue gas flow rate| [33]/
Engineering, University| gPROM§ control structure; change Section 4.2.1 &
of Waterloo (Canada) 2) capture level ii) flue gas composition 4.2.2

controlled by| change
re-boiler heat duty| iii) change of capture
rate-; re-boiler| level set-point
temperature iv) change of CO2 purity
controlled by lean| in product’s stream
solvent flow rate v) lean solvent valve
3) RGA analysis stiction
vi) constant water an
MEA makeup during
flue gas flow rate changg
vii) limited re-boiler heat
duty during flue gas flow
rate change
viii) Step-wise
increments in the flug
gas flow rate

2014 Department of Chemica PCC model in| CO, capture level|l i) ramp change in flug [102]/
Engineering, University| gPROM@ controlled by lean| gas flow rate Section 4.2.2
of Waterloo (Canada) (with three | solvent flow rate,| ii) CO, capture level

absorbers anq re-boiler set-point change
two strippers) temperature iii) flue gas composition|
controlled by stean] change;
flow rate, remaining| iv) sinusoidal change i
CVs and MVs & | the flue gasflow rate+
paired with RGA| scheduled changes i
analysis CO, capture level
set-point

2014 School of Chemical and multivariable RGA analysis: i) capture level and [105]/
Biomolecular non-linear CO, capture level| energy performancg Section 4.2.2
Engineering, Thel autoregressive | controlled by lean| set-points change
University of Sydney| with exogenous| solvent flow rate,| ii) Flue gas flow rate andg

(Australia) and Division

of Energy Technology,

CSIRO (Australia)

input (NLARX)

PCC model

developed datg

energy performancg

controlled by

re-boiler heat duty;

composition change




identification

2014 Department of Chemical PCC absorbel Fixed absorber| Sinusoidal flue gas flow [110]/
Engineering, University model in Aspen| control structure,| rate change Section 4.2.3
of Waterloo (Canada) HYSYS simultaneously

Dynamic® determine the
equipment
specifications  and
controller
parameters throug
optimization

2014 Shell Global Solution§g PCC model in| Manipulating both| Upstream CCGT loaqd [112]/

(The Netherlands) ant gPROM@ the solvent flow ratel change Section 4.2.4
Process System| (with two | and re-boiler stean
Enterprise Ltd (UK) absorbers) flow rate

proportionally to the

flue gas flow rate

2014 Department of Chemica)l PCC model in| RGA analysis| i) flue gas flow ratel [104]/
Engineering, University Aspen HYSYS| (results in| increase Section 4.2.2
of Waterloo (Canada) Dynamic@ conventional i) capture level set-poin

controls structure) | tracking
iii) limited re-boiler heat
duty during flue gas flow
rate change

2015 Department of Energy PCC model in| partload operation: | i) pat load: flue gas flow| [100]/
and Environment,| Modelica® 1) Conventional| rate change Section 4.2.1 &
Chalmers University of control structure i) peak load: re-boilen 4.2.4
Technology  (Sweden| 2) Constant solven] steam flow rate reduce
and Modelon AB flow rate, lean
(Sweden) solvent loading

controlled by
re-boiler steam flow
rate

3) Constant LG
ratio, lean solvent
loading  controlled
by re-boiler steam
flow rate

peak load operation;|
lean solvent loading
controlled by lean
solvent flow rate

2015 School of Chemical and First order plus| Two decentralized Flue gas flow rate ang¢ [23]/
Biomolecular dead time| control structure| composition change Section 4.2.2
Engineering, The| transfer designed  through
University of Sydney| function RGA analysis:

(Australia) developed 1) CQ, capture level




through
linearization of
PCC model

developed in

controlled by lean

solve flow rate,

energy performancg

controlled by

gPROME re-boiler heat duty;
2) CG capture level
controlled by lean
solve flow rate,
cascade PID contro
for the energy
performance
2015 Department of Chemica PCC model 1) Conventional| i) start-up operation of [97]/
and Biochemical control structure; PCC Section 4.2.1 &
Engineering/ Departmen 2) Constant LU/G| ii) load changes of 4.2.4
of Applied Mathematics| ratio, power plant in the
and Computer Sciencg re-boiler presence of noises i
Technical University of temperature flue gas
Denmark (Denmark) controlled by
re-boiler steam flow
rate
2016 Department of Chemica PCC model| Conventional i) CO, delivery set-point| [111] /
Engineering, The| with intercooled| plant-wide control| change Section 4.2.4
University of Texas af absorber, structure with| ii) steam flow rate
Austin (USA) advanced flash constant L/G ratio change
stripper  baseg iii) CO, capture level
on PZ solvent set-point change
developed in iv) striper condition
MATLAB/ change
SIMULINK®
2016 Department of Chemica Intercooled Temperature at g i) Flue gas flow rate [73]/
Engineering, Thel PCC absorbel| certain level of| change Section 4.2.4
University of Texas af model in| absorber (it wag ii) disturbance in
Austin (USA) gPRor\/@ found to be a gooq intercooling water
indicator of the L/G| temperature
ratio) controlled by
solvent flow rate
solvent + set-point
modification
according to the
disturbances
2016 Department of Chemica)l PCC model in| RGA analysis i) flue gas ramp change | [103] /
Engineering/ Departmen dCAPCOZ® ii) flue gas ramp chang{ Section 4.2.2
of Applied Mathematics| (based on PZ with lean solvent flow
and Computer Sciencd and MEA) valve stiction

Technical University of

Denmark (Denmark) an(

iiil) Steam supply

shortage under consta




Department of Chemica flue gas flowrate
Engineering, University|
of Waterloo (Canada)

2016 School of Chemical and multivariable RGA analysis: capture level and energ| [32]/
Biomolecular non-linear CO, capture level| performance set-point| Section 4.2.2
Engineering, The| autoregressive | controlled by lean| change
University of Sydney| with exogenous| solvent flow rate,

(Australia) and CSIRQ input (NLARX) | energy performancg

Energy (Australia) pPCC model| controlled by
developed datg re-boiler heat duty;
identification

2017 Centre for  Proces{ PCC model in| 1) Conventional| Variation in flue gas| [30]/
Systems  Engineering gccé@ control structure; flow rate Section 4.2.1
Centre for 2) Constant solven
Environmental  Policy, flow rate, CQ
Imperial College London capture level
(UK), Process System controlled by
Enterprise Ltd (UK) and re-boiler steam flow
IEAGHG R&D rate
Programme (UK) 3) switch between

the aforementioneq
two scheme
according to the
power load

2019 Department of Electroni¢ PCC model in| Conventional Capture level set poin| [98]/
and Electrical| gcc<® control structure and NGCC/ CFPP loaq Section 4.2.1
Engineering, University change under differen
College London (UK) operating conditions
and Centre for Proces
Systems  Engineering
Imperial College London
(UK),

4.3 Model predictive control design of PCC

The increasing demand for flexible PCC operations has attracted more and more scholars to pay attention to the us
advanced controllers. Model predictive control (MPC) is one of the best controllers owisgotdstanding ability in

handling PCC control issues.

MPC refers to a class of control approaches which utilize an explicit process model ¢btheetliture response of
the plant under different input sequences. The best input sequence is then calculated through theoapinaizithamic
objective function [11B The fundamental idea of the MPC is illustrated in Fig. 4 and its design framework can be briefly

concluded in four steps:
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Fig. 4. Basic idea of the MPC.

Step 1. (off-line preparation) Establish a dynamic model of the process to associateitMWevCVs and other
concerned variables;
Step 2 (online implementatipn At current sampling instant k, estimate the future response of the

proces$ Y., Yz Yo } through the prediction of dynamic model and express it as a function of future input
sequence{Uy,,, U, " U,y } andavailable or estimated current state;

Step 3 (online implementation) Calculate the optimal future input sequftigg U, U,y } through

minimization of a dynamic objective function subject to given irgd output constraints. Depending on the operating
target, control performance or economic performance of the process can both be considered in the objective function;

Step 4 (online implementatipApply the first element in the optimal input sequerm;*g1 on the process, and return

to Step 2 at next sampling time to implement a receding horizon optimization.

MPC has some distinguished advantages, which make it very suitable for PCC control:

1) The model prediction based working principle makes the MPC possible to speed up the slow response of PCC,;

2) MPC is naturally a multi-variable controller which can effectively handle the cou@imgeg multi-variables
within the PCC;

3) The operational constraints of the process can be taken into account at the controller desigmistaganw
increase the flexibility for operation; and

4) Both the control tracking performance and the energy performance can be considered in the folrjetibn of
MPC, which can be directly used to improve the dynamic performance of PCC in flexible and economic operation.

Under conventional design framework, netithg is the prerequisite and foremost important step for MPC
development. The accuracy of the model determines the performance of the controller, whereas the empression f
of the model determines the computational complexity and robustness. From the perspective ofilimedethe use of
MPC in PCC can be divided into two categories: linear MPC and nonlinear MPC.theoperspective of objective
function, dynamic control such as set-point tracking is mostly concerned in the objective fumatyon, few studies
consider the economic optimization in the MPC design of PCC.



4.3.1 Linear MPCdesign for solvent based PCC

The first MPCstudy on the PCC process was proposed by Bedelbayev &4, for the control of an individual
absorber. The complex first principle model was linearized at a given operating point, and heegredidtive model of
the MPC. The C@concentration in the vented flue gas was considered as the CV and the lean solventwasocity
selected as the MV. In addition, the inlet gas velocity, temperature ando@@nt were taken into account in the model to
improve the performance of MPI@ disturbance attenuation. Simulations in cases of step changes of set-point and inlet
flue gas disturbances were conducted. Sufficient good performance was observed from the results.

Similarly, in Cormos et al. [115], MPC was designed to regulate thecGxentration in vented flue gas using the
solvent flow rate. Typical disturbance of flue gas flow rate increase was introdubedsimulation and an upper limit of
CO; concentration was imposed for the PCC operation. The MPC demonstrated to have valuable tooparfiaim
efficient control while complying with the constraints.

To minimize the operation cost of solvent regeneration, Arce el¥] proposed a two-level hierarchical control
structure for the PCC stripper. The high level control determined the economafiOre flow set-point through solving
a steady state optimization problem on an hourly basis considering theric® and energy price. Two generalized
predictive controllers (GPC) were developed in the lower layer to track the optirpairsts. The first GPC controlled the
re-boiler pressure by manipulating the vapor molar flow, while the constraints of re-boiler tempeeatineciuded in the
formulation. The other GPC controlled the S€@pture flow and re-boiler level by manipulating the solvent inlet flow and
heat supply, whereas the solvent outlet flow was considered as a measured disturbance. First order transfer function mo
were identified through the System Identification Toolbox of MATI%A&nd used as the predictive models. Simulation
results illustrated the advantages of the proposed hierarchy in operating cost saving andhstod@ could respond
faster than the conventional PID control and better eliminate the effects of disturbances.

Sahraei and Ricardez-Sandoval [104] preseateMPC for the flexible operation of the integrated PCC process.
Input output data collected from open-loop simulations of the ASPEN H¥$Y&ess model were used to identify the
linear first order models, which were then transformed into the state space model and useadeaisctive model. The
MPC was designed for the dynamic control purpose that considered the conventional se&gaditg and actuator
moving performance in the objective function. Simulation was carried out in cases of flilengeste change, capture
level set-point change and limited re-boiler heat duty. A decentralized feedback controlhencenventional structure
was used for comparison. Simulations discovered that superior response speed, dynamic emmpkartce of the
constraints could be achieved by the MPC. Based on the MPC, a simultaneous scheduling and contrelasctieane
proposed by the authors to determine the optimal operating strategy under environmental and operaticaiats. The
energy consumption and G@mission of the plant were considered when formulating the objective function of the
optimization, in which their weights were set according to the current operating scenarniaséids flue gas flow rate
was introduced to the PCC plant in the simulation and showed that the proposed schedulingsstrategiore feasible
and efficient for the PCC operation compared to the normal steady state optimizatitn Ireset al. [117] extended this
work by dynamically adjusting the weights of the MPC in the scheduling optimmzatie increase of the freedom made
the integrated scheduling and control structure very close to an economic MPC, which directly dhleutgtemal
control sequence by dynamically minimizing an economic objective performance. Better scheddlirmgnéol
performance has been achieved for the PCC according to their results.

Mehleri et al. 118] evaluated the controllability of the solvent-based PCC process under the implementsifiR@. of
An MIMO state-space model obtained through transformation of several identified lineaertfamstion models was
used as the predictive mod€&heir simulation results have again shown that, the implementation of MPC provided a good
option for the PCC operation in terms of flue gas flow rate disturbance rejection and capture level set-point tracking.

Luu et al [23] designed a linear MPC to control the;€@pture level and energy performance of the PCC plant. The
lean solvent flow rate and re-boiler heat duty were selected as the MVs, whereas the flloev gate and CQ
concentration were regarded as the measured disturbances. The re-boiler temperature was roingtoléid in their
design, but was required to be maintained within a given range for the safe operation BfrBtQder plus dead time



transfer functions among these variables were identified and used as the predictivé\maskelstudy with step wise flue

gas flow raté CO, concentration variations and set-point changes was presented and the MPC was compared with tw
other decentralized PID controllers. The comparisons highlighted the distinguished advantages of MP{thgnthand
operational constraints, which could provide the most satisfactory control performance while guardreesmng-output
variables within the specified operating range. The MPC was further us&iPjn [[L20] as a lower layer controller to
track the idealCO, capture level set-point, whickias optimized at the upper layer for maximizing the operating revenue
of the integrated CFPP-PCC plant under the changing electricity price. According tesh#s, the MPC exhibited good
performance by minimizing the controller error to an average of 4% pnd the proposed flexible operating mode can
increase the net revenue by approximate 6% against the fixed operating mode [120].

Directly developing an MPC involving too many variables will lead to too high predictinergions, thus degrade
the efficiency and robustness of calculation. In fact, there is no need to design MPCt&waliables within the PCC.
Some variables, for example, the sump and tank levels, which are weakly coupled with other vairaplesin
characteristics and low requirements in control. It is sufficient to use conventional feedback worachieve a
satisfactory performance. For these reasons, some MPC studies [34, 94, 95] only considengstriienadjCO, capture
level and re-boiler temperature by manipulating the lean solvent flow rate and re-leaiterfletw rate, because they are
most important variables within the PCC process and can reflect the main couplings between the absorber and stripper.

Zhang et al. [34] developed such a linear MPC controller for the integrated PCC proc&4&TiiaB ® MPC
Toolbox. The flue gas flow rate, G@oncentratiorand rich solvent flow rate were considered in the predictive model
identification as measured disturbances. For simulated power plant load and target captuteaieed, the control
performance of MPC in capture level control was much better than the PID controller. Hoegaeting the re-boiler
temperature, the performance of MPC bee® similar to that of PID, mainly due to the modelling mismatches. Effective
control strategies to avoid flooding in absorber were also discussed in their study.

Wu et al. [94] analyzed the dynamic behavior variation and nonlinearity of the PCieendioperating points.
They found that if the re-boiler temperature could be maintained closely around the optipeéthisehe nonlinearity was
not strong within 50%-90% 0O, capture level range. Therefore, a linear MPC was developed for the flexible operation of
PCC within this angeand was shown to have better performance in capture level tracking compared to the conventional F
control structure. In addition, the flue gas flow rate was considered in their predictiveanadebsured disturbance, so
that a quick alleviation for the effect of flue gas variation could be attained.

Although an excellent control performance of MPC has been shown in these studies, its rolsustiiess good as
the conventional PID, since the performance of MPC greatly depends on the accuracy of the modeth®dliexible
operation of the PCC, the operating point can deviate far away from the designed conditiowhiodethe linear
predictive model is developed. Strong modelling mismatches may thus occur withicdeverely degrade the coritro
performance or even cause the control system unstable. To these regards, a disturbance rejectiencpredidier was
proposed in [95] for the operation control of PCC in the presences of model mismatchebglpdamttr changes and
unknown disturbances. A disturbance observer was designed in the MPC structure to estivasteshasd disturbances
through which the predictive control signal can be compensated for quick disturbance rejection control.

In recent studies presented by Wu et al. [121], [122], MPCs were designed for theteécteperation of CFPP-PCC
system based on the understanding of how the two system were dynamically interacted with each other. A centralized M
controlling the key variables within the entire CFPP-PCC system was develop&®lin 4nd a coordinated control
system composed by two MPCs developed for the CFPP and PCC respectively was grefigfedifferent operating
modes were proposed in these studies to better achieve the functions of the CFPP-PCQ@ g¢stemdgeneration and
CO; reduction. By fully estimating and utilizing the interactions between the two systeer,dwattrol performance could
be achieved by the proposed controllers.

4.3.2 Nonlinear NPCdesign for solvent based PCC

Developed based on a linear model of the process, the linear MPC is mature in techniqueaaivdrttages in



efficient and robust computation, thiishas ben extensively used in PCC control. However, with the increasing demand
of flexible operation, the PCC system is required to face the varying flue gas and sdj@staapture level over a wide
range. During the transition, the other variables within the PCC system such asbtiilerr temperature may change
significantly. As these key variables deviate from the designed conditions, the dynamics of the plant will changregand str
nonlinear behavior will be exhibited. Since the linear model developed around a given operating poinionggrrioe
sufficient to reflect the behavior of PCC in this situation, it is inevitable téheseonlinear MPC to improve the operating
performance of PCC.

Akesson et al. [59], [61] proposed the first nonlinear MPC for the PCC process. To develpprepriate model
efficient for on-line calculation of MPC, the complex PCC process model was simplifiedpkacing the chemical
reactions in the liquid phaseth an interpolated table having equilibrium data. Two nonlinear MPCs were then designed
based on the model, which aimed to control the C4pture efficieny of the PCC. One MPC used the re-boiler heat duty
as the only MV, while both the re-boiler heat duty and solvent recirculation rate were setebds in the other MPC
[61]. The results indicated the feasibility of nonlinear MPC in PCC process and showedvigegsential to control the
PCC process by manipulating the solvent circulation rate.

Zhang et al. [123] developed a nonlinear MPC for the PCC process using a nonlinear additgemssioe model
with exogenous inputs (NAARX). The identified NAARX model is supetinthe linear model in wide range capture
level and re-boiler temperature prediction, resulting in better performance of the nonlineaoMp&ed with the linear
MPC. However, the improvement was very limited since it was challenging to seletieswit@sterms of NAARX
model to further modify the approximation accuracy.

He et al. [124] compared the performance of nonlinear MPC, linear DMC and PIDllesstfor conventional and
lean vapor compression PCC configurations. Maintaining the carbon capture level at 90% ufiderghe flow rate
change was the primary goal of the MPC, but the power consumption was also considerezbjecthve function to
improve the economic performance. The MPCs were successfully implemented and were dhavennmich superior
control performance compared to the PID control. However, since different objective functions were used for HrelDMC
nonlinear MPC, the comparisons between them were unfair. He and Lima [125] modifieshlihear MPC by including
the penalty of MV actions and lean solvent loading control in the objective function. Simulatiansoamentional PCC
process under flue gas flow rate change demonstrated the effectiveness of the nonlinear MPCdh rtraickaining
desired CQcapture level. The nonlinear MPC outperformed the linear DMC since the mismatch of lineameredesied
during the operating condition change.

To overcome the nonlinearity of PCC process, Wu et al. [35] proposed a multi-model predictiskstategy for
wide range flexible operatn of the PCC. Three local linear MPCs developed at low, medium and higbap@re level
regions were combined together and scheduled through a membership function determined by the current elapture le
Simulations showed that the multi-model predictive control system controlled the PC®aitanthan the linear MPC,
which could attaira rapid and smooth change of the CO> capture level in wide operating range.

Instead of using MPC to track the desired set-points, Chan and Chen [126], [127] proposedacanicemodel
predictive control (EMPC) strategy for the PCC operation. The economic performance suclbast dieMEA solvent
and the energy usage for pumps and re-boilers was directly considered in the objective function. & kel¥etuir flow
rate and re-boiler duty sequences which could attain the best economic performance wjtadittige horizon were
calculated through the dynamic optimization. Compared with the conventional design framework composed by steady st
set-point optimizatiorand dynamic set-point tracking control, the EMPC has simple structure and can better handle the
disturbances in the optimization. Lower cost of;@@pture was found with the implementation of EMPC.

4.3.3 Limitations and future directions for predictive control of PCC

MPC has shown good performance in the flexible operation of the PCC process. Howevenods| dased
controller, how to develop a suitable predictive model is the key obstacle limiting thappilieation of MPC in the PC
system.



To date, most of the studidsve focused on controlling the PCC through linear MPCs, which can be solved
efficiently and reliably in the form of standard quadratic programming problem. Howevdinghe model is only
effectivein reflectingthe dynamics of linear systeamd cannot capture the nonlinear dynamics of PCC process in a wide
operating range. Therefore, many linear MPC designs for the PCC are limited in a small operatiagdangyg not meet
the requirement of wide range flexible operation. Some studies have tried to use nonlinetar d@ome this issue
However, it is a great challenge to design a satisfactory nonlinear model to capture the gknbatsdgf PCC: the simple
data driven nonlinear model may still not have the expected accuracy, whereas the rigorpuscipt-modelis too
complex to be calculated efficiently and robustly.

From this point of view, future studies should:

1) Gain in-depth knowledge of the nonlinear distribution of the PCC and partition the ogeskting range into
some small regions with weak nonlinearity; and decompose the complex nonlinear control asseeeirgl simple linear
control issues using the multiple model strategy;

2) Integrate the first-principle modelling approach with the state-of-art data-drifénadintelligent technique, and
develop appropriate predictive models with satisfactory accuracy and simple structure for the predictive control of PCC

3) Online assess and update the PCC predictive model.

In addition, uncertainty is another issue for the MPC of PCC. On one hand, the modellingtcimesmwere
impossible to be completely avoided considering the complex dynamics of PCC. On the other hianchahges in flue
gas and solvent compositions, there exists frequent dynamic changes and unknown disturbances foisyseeCC
Developing advanced MPC algorithm to improve the robustness and disturbance rejection property OfsysdnChas
to be studied further in future.

Previous MPC studies on the solvent-based PCC process are summarizéeldn Tab

Table 4. Summarof the MPC studies on the solvent-based PCC process

Year Research Institute Controlled Controller Predictive model Simulation Case| Reference
process

2008 | Department of Single Linear MPC Developed through i) step changeg [114]
Electrical Engineering,| absorber CV: CO, concentration| linearizing the| of CO,
Information in the vented flue gas | first-principle model at| concentration
Technology, and MV: solvent velocity given operating point. | set-point
Cybernetics, Disturbance: inlet ga: ii) inlet flue gas
Telemark  University velocity, temperature disturbances
College (Norway) and CQ content

2011 | Modelon AB | Integrated Nonlinear MPC Model developed| CO;, capture| [59]
(Sweden), Vattenfall PCC process| CV: CO, capture| through simplification| efficiency
Research an(g efficiency of first-principle model | set-point change
Development AB MV: re-boiler heat duty
(Germany), and solvent
Department of recirculation rate
Chemical Engineering
Texas A&M
University (USA) and
Department of
Automatic Control,
Lund University
(Sweden)

2012 | Modelon AB | Integrated Nonlinear MPC Model developed CO, capture| [61]




(Sweden), Departmer] PCC process| CV:  CO, capture| through simplification| efficiency

of Chemical efficiency of first-principle model | set-point change
Engineering, Texag MV: re-boiler heat duty|

A&M University and solvent

(USA), Department of recirculation rate

Automatic Control,

Lund University

(Sweden and I’Eau

et I’Environment

(France)

2012 | Departamento dg Single Two Linear GPCs in| First order transfer solvent outlet| [116]
Ingeniefa de Sistemaq stripper lower layer of a| function model| flow and rich
y Automatica, hierarchical control| developed through solvent loading
Universidad de Sevillg structure data-driven systen] change
(Spain), Centre fo GPC 1: identification
Process System CV: re-boiler pressurg
Engineering, Imperial (constraint for re-boiler
College London temperature)

(UK) and MATGAS MV: vapor molar flow

Research Cente GPC 2:

(Spain) CV: CO;, capture flow
and re-boiler level
MV: solvent inlet flow
and heat supply
Disturbance:  solven
outlet flow

2014 | Department of| Integrated Linear MPC Linear  first  order| i) flue gas flow | [104]
Chemical Engineering| PCC process| CV: CGO; product flow, | models (transfer into th¢ rate change
University of capture level; absorbg state-space model ii) capture level
Waterloo,  Waterloo| level, re-boiler level,| developed through set-point change
(Canada) condenser level| data-driven systen] iii) limited

re-boiler temperature | identification re-boiler  heat
MV: lean solvent flow duty

rate, condenser duty

re-boiler duty, rich

solvent  flow rate,

re-boiler outlet flow

rate, condenser outlg

flow rate

2015 | Faculty of Chemistry| Single Linear MPC Not specified. flue gas flowrate| [115]
and Chemical| absorber CV: CO, concentration change
Engineering, in the vented flue gas
Babes-Bolyai MV: solvent flow rate
University (Romania)

2015 | Centre for| Integrated Linear MPC Linear first order model i) flue gas flow | [118]

Environmental Policyl/|

PCC process

CV: CQO; product flow,

(transfer into  the|

rate change




Centre for Proces
System  Engineering
Imperial

London (UK)

College

capture level; absorbe

level, re-boiler level,

condenser level

re-boiler temperature
MV: lean solvent flow

rate, condenser duty

re-boiler duty, rich

solvent flow rate,

re-boiler outlet flow

rate, condenser outlg

state-space mode
developed through
data-driven systen
identification

ii) capture level

set-point change|

flow rate
2015 | School of Chemical Integrated Linear MPC First order plus time flue gas flow| [23]
and Biomolecular| PCC process| CV: CO;, capture level| delay transfer function rate /ICQ
Engineering, The and energy| model developed concentration
University of Sydney performance of thg through data-driver] variations and
(Australia) PCC plant system identification set-point
MV: lean solvent flow changes
rate and re-boiler heg
duty
Disturbance: flue ga
flow rate and C@
concentration
2016 | Department of| Integrated Linear MPC Linear transfer function i) flue gas flow | [34]
Chemical Engineering| PCC process| CV: CO, capture level| model developed rate /ICQ
West Virginia and re-boiler| through data-driver] concentration
University (USA) temperature system identification variations
MV: lean solvent flow ii) capture level
rate and re-boiler heg set-point
duty changes
Disturbance: flue ga
flow rate, CQ
concentration, rich flo
solvent flow rate
2016 | Department of| Integrated Linear MPC (online | Linear first order model i) flue gas flow| [117]

Chemical Engineering

University of
Waterloo, Waterloo|
(Canada)

PCC process

tuning the weights in
the scheduling
optimization )

CV: CQO; product flow,
capture level; absorbe
re-boiler

level, level,

condenser level

re-boiler temperature
MV: lean solvent flow

rate, condenser duty

re-boiler duty, rich

solvent flow rate,

(convert into the
state-space mode!|
developed througH
data-driven systen

identification

rate change
ii) capture level

set-point change|




re-boiler outlet flow

rate, condenser outlg

flow rate
2016/ | School of Chemical Integrated Linear MPC in lower| First order plus time flue gas flow| [119],
2017 | and Biomolecular| PCC process| layer of a hierarchica| delay transfer function rate /ICQ | [120]
Engineering, The control structure model develop@ | concentration
University of Sydney CV: CO, capture level| through data-driver] variations and
(Australia) and energy| system identification set-point
performance of the changes
PCC plant
MV: lean solvent flow
rate and re-boiler heg
duty
Disturbance: flue ga
flow rate and C@
concentration
2018 | Key laboratory of| Integrated Linear MPC State space modq i) capture level| [94]
Energy Thermal| PCC process| CV: CO, capture levell developed through set-point
Conversion and and re-boiler| data-driven systen] change;
Control of Ministry of temperature identification ii) flue gas flow
Education, Southeag MV: lean solvent flow rate change;
University  (China), rate and re-boiler heg
Department of duty
Chemical and Disturbance: flue ga
Biological flow rate
Engineering,
University of Sheffield
(UK) and Process
Systems Enterpris
Ltd (UK)
2018 | Key laboratory of| Integrated Multi-model MPC State space modg i) capture level| [35]
Energy Thermal| PCC process| CV: CO, capture level| developed through set-point
Conversion and and re-boiler| data-driven systen| change;
Control of Ministry of temperature identification ii) flue gas flow
Education, Southeas MV: lean solvent flev rate change;
University  (China), rate and re-boiler heg
Department of duty
Chemical and Disturbance: flue gas
Biological flow rate
Engineering,
University of Sheffield
(UK) and Process
Systems Enterpris
Ltd (UK)
2018 | Department of| Integrated Nonlinear MPC| Autoregressive-moving| Maintain the | [124]
Chemical and| PCC  with | (penalty on MV actiong average model withl given  capture




Biomedical conventional | was not considered if exogenous variable{ level in case of]
Engineering, Wes{ and lean| the objective function) | developed through flue gas flow
Virginia University | vapour CV: CO, capture level| data-driven systen| rate change
(UsA) compression | (main control target)| identification
configuration | power consumpdin
MV: lean solvent flow
rate, re-boiler heat duty
Disturbance: flue ga
flow rate
2018/ | Department of Integrated Economic MPC Not specified i) flue gas| [126],
2019 | Chemical Engineering] PCC process| (Directly considering| (should be a nonlinea change [127]
Chung-Yuan Christian the economic| model since “fmincon” | ii) utility price
University (Taiwan, performance in thg function in MATLAB is | change
China) objective function;| used for the| iii) different
outlet CQ | optimization) weight of CQ
concentration wag outlet
considered as g
terminal cost)
MV: lean solvent flow
rate, re-boiler heat duty
2019 | Department of| Integrated Nonlinear MPC Autoregressive-moving | Maintain the | [125]
Chemical and| PCC process| CV: CO, capture levell average model with given  capture
Biomedical (main control target){ exogenous variable{ level in case of]
Engineering, West power consumption developed through flue gas flow
Virginia  University MV: lean solvent flow| data-driven systen| rate change
(UsA) rate, re-boiler heat duty identification
Disturbance: flue ga
flow rate
2019 | Key laboratory of| Integrated Linear MPC (with| State space modg i) capture level| [95]
Energy Thermal| PCC process| disturbance observer) | developed through set-point
Conversion and CV: CO, capture level|l data-driven systen| change;

Control of Ministry of

Education, Southeas
University (China),
Department of
Chemical and
Biological
Engineering,

University of Sheffield
(UK), Process System
Enterprise Ltd (UK)

and Department o

Electrical and
Computer
Engineering,  Baylor

and re-boiler
temperature

MV: lean solvent flow
rate and re-boiler heg
duty

Disturbance: flue gas

flow rate

identification

ii) flue gas flow
rate change;

iii) presence of
unknown

disturbances




University (USA)

2019 | Department of| Integrated Nonlinear MPC Nonlinear additive| i) flue gas flow | [123]
Chemical Engineering| PCC process| CV: CO, capture level| autoregressive  modg rate /ICQ
West Virginia and re-boiler| with exogenous inputy concentration
University (USA) temperature developed through variations

MV: lean solvent flow| data-driven systen] ii) capture level
rate and re-boiler heq identification set-point

duty changes
Disturbance: flue ga

flow rate, CcQ

concentration, rich flow

solvent flow rate

2019 | Key laboratory of| CFPP-PCC | Linear MPC State space modg i) normal | [121]
Energy Thermal| process CV:  Power output,| developed through set-point
Conversion and throttle pressure, CO| data-driven systen| change;
Control of Ministry of capture level anqg identification i) rapid power
Education, Southeag re-boiler temperature ramping
University  (China), MV: coal flow iii) strict carbon
Department of command, turbing capture
Chemical and governor valve, lear
Biological solvent flow rate and
Engineering, re-boiler heat duty
University of Sheffield
(UK), Process System
Enterprise Ltd (UK)
and Department o
Electrical and
Computer
Engineering,  Baylor
University (USA)

2019 | Key laboratory of| CFPP-PCC | Two coordinated lineaj State space modg i) normal | [122]
Energy Thermal| process MPC developed through set-point
Conversion and CFPP MPC: data-driven systen| change;
Control of Ministry of CV:  Power output, identification ii) rapid power

Education, Southeas
University  (China),
Department of
Chemical and
Biological
Engineering,

University of Sheffield
(UK), Process System
Enterprise Ltd (UK)
and Department o
Electrical and

Computer

throttle pressure

MV: coal flow

command, turbine
governor valve
Disturbance: steam ti
re-boiler

PCC MPC:

CV: CO, capture level
and re-boiler
temperature

MV: lean solvent flow

rate and re-boiler hed

ramping
iii) strict carbon

capture




Engineering, Baylor| duty
University (USA) Disturbance: flue gas

flow rate

4.4 Other control design of PCC

Besides the conventional PI/ PID based controllers and the MPCs, there are onlydie® fsiund in the literature,
which used other control approaches for the PCC operation.

Li et. al [128] developed a model-free adaptive controller (MFAC) for the PCC absorber,oshicblled the CQ®
capture level by manipulating the solvent flow rate, while considering the flue gasdalevamd C@ concentration
variations as disturbances. The design idea of the Mik&Cessentially the same with MPC, however, different from the
MPC, that relies on an explicit model to bridge the gap between process and control, tleeiipputtata of the plamtas
directly used to calculate and update the control law. The MW&E simple in design and could avoid the issue of
modelling mismatch compared with the MPC. The simulations showed that the performiite&CGivas superior to the
PID control and similar to the MPC, however, the operational constraints could not be handled by the MFAC.

Zhang et al. [123] developed an, kbbust control for the PCC process, in which anrtérm of the transfer function
was minimized to reduce the influence of perturbation while improving the control perforasashcability in closed
loop. The comparison with a nonlinear MPC has shown that, although the response speed, cotillér was slower
than the MPC in terms @O, capture level set-point tracking, it could yield a smoother performance in complex situations
of plant behavior variation and input/output measurement uncertainties.

5. Achievements, challenges and Futur e Per spectives

Although the working principle and the factors determining the performance of the solvent-based PGCapoces
clearly understood, crucial issues still remain on the flexible operation of PCC (egpebiti integrated with the CFPP
andreduction of the high energy penalty). In-depth understanding of the dynamic characteristid®3Q€ thgstem under
various disturbances and developing satisfactory control scheme to adjust the operating parameters rapidly and smoothl
a wide range of operation are two key points towards the flexible operation of PCC.

In the past decade, significant progress has been made for the solvent-based PCC procgsintiffiestlynamic
model development, system identification and control strategies design. The developments ohtdregestydies have
greatly extended the steady state system analysis and improved the flexibility of the process, which make us convinced 1
a safe, efficient and flexible operation of PCC process is ahead of us (especially for consoaleiplants). However,
some problems have also been exposed through the review of previous studies. More efforts should be patigrénto
further improve the modelling and control performance of the PCC process.

5.1.First principle dynamic modelling

Dynamic modelling of the solvent-based PCC process using first-principle approach has becomé¢hroatyhre
many years of development and improvement. Many models have been well developed talggiin kmowledge of the
PCC dynamics.

However, there are still two difficulties for the first principle modeling of PQCThe available dynamic
operating/experimental data is still insufficient to verify PCC models at different sizes, unelendiffperating conditions
and disturbanced;) The first-principle PCC model is time consuming to develop and complex in computation, which limit
its use in real time model prediction and process control design.

To these regards, from the validation point of view, more experiments should be carried oftur¢hat both pilot
and commercial scale PCC planMeanwhile, advanced measurement technology should be developed to monitor the
dynamic operation of PCC plants accurately and in real time, so that sufficient dyo@eriting data can be archived to
fully verify the dynamic models. From the modelling point of view, it ipamtant in future to pay more attention on the
hybrid modelling method, which uses the first-principle approach to develop the basic stru®@€ afodel and then



uses the identification approach to fine tune the model parameters.
5.2.Data-driven system identification

The identification of solvent-based PCC system is still in its initial stage, anteskarch is still insufficient.
However, from steady state identification to dynamic identification, from lirgeantification around a given operating
point to nonlinear identification trying to cover wide operating range, increasing tritasebeen paid in applying modern
data-driven identification approach on PCC modelling and control.

The main challenges for the identification of PCC system are i) The performance of thicadiemtiis highly
dependent on the datAlthough massive data can be provided, high quality data which can meet the identification
requirements are often limited) The selection of input variables and their corresponding model orders are difficult,
which may easily cause the model to be insufficiently accurate or too conpl&ke identifed model is less explanatory
to the working principle of the solvent-based PCC process, thus tends to have larger errors coittpahed finst
principle model.

Therefore, modern measurement, data processing and identification technologies, especially the aiiigéadtint
approach are expected to be applied to the solvent-based PCC process in the future. As mentioned befurgaitisa
carry out the system identification based on the in-depth understanding of PCC dynamics, maksegdtithe priori
knowledge and the closed-loop operation data to establish a model with satisfactory accuracycangplexty for PCC
simulation, optimization and control.

5.3.Process control design

There have been many studies on the control design of solvent-based PCC process, mostly fodhging on
conventional PI/PID based decentralized control, which have shown satisfactory performance and saturstigethe
PCC operation maintained around a base load. In addition, active promotion of the advanced control tecichigages
MPC have been made recently to achieve better flexible operating performance for the PCC process.

However, the control studies of solvent-based PCC process still have following limitations and challenges:

i) From the process design point of view, many studies have been carried out on new solvemqEycass/
configurations and large scale PCC plants, but most of them focused on the steady state systeampeffl29-131]
Nevertheless, higher GGabsorption rate and lower regenerative energy consumption do not mean that the system he
better flexibility and is easily controlled;

i) From the system point of view, most of the current control studies only fodhe amdependent PCC system [96,
102], its integration with power plants is not fully taken into account. However, the stemsyare strongly coupled due
to the effects of flue gas and steam extracted. Therefore, study of the independent PCC process is aadtopossibl
comprehensively handle the mutual influence between the two systems and maximize the effectivitieegovoér
generation- carbon capture plants in terms of power supply, emission reduction, economy and safety;

iii) From the optimal scheduling point of view, many studies have considered the targkt$ of energy saving and
emission reduction; and carried out a steady state optimization to provide the besigpeiatifor the control system of
PCC plant [116]. Nevertheless, the steady state optimization is unable to consider thgsyfstenance during transient
process when the desired £€apture level or upstream flue gas changes;

iv) From the control point of view, control of the PCC process is challenging owitgydomplex behavior such as
nonlinearity, large inertia, strong coupling and the presence of measured or unmeasured disturbances.

To overcome these issues, future perspectives for the PCC control studies may include:

i) Integrated design and control at an early stage: considering the dynamic control performance \rthbassd
PCC in the process design stage, rather than steady state performance only, so that theirdiffisutyl design can be
reduced;

i) Coordinated control design for the integrated power generatid@O, cagure plants;

ii ) Better integration of the scheduling and dynamic control of the PCC process (for exampltheusgehnique of



EMPC) so that the adverse effects of transient disturbances on the optimization can be eliminated;
iv) Design of advanced and appropriate controllers based on the operating requirement andcthanaotéristics of
the solvent-based PCC to further enhance the flexible operating performance.

6. Conclusions

Dynamic flexible operation is imperative for the large scale commercialization ehsddased PCC technology. The
key to the flexible operation of PCC process is to gain in-depth knowledge of thierttgmerformance and design
appropriate control strategies fior A state-of-the-art review of the studies carried out so far in this area ardeggrovi
including first principle dynamic modelling, system identificatiand control of the solvent-based PCC process. To
authors’ best knowledge, this paper gives the first critical review on the data-driven system identification and conventional/
advanced process control design studies of the solvent-based PCC process. The existentvstbdes tlassified with
their advantages and limitations been analyzed. Research challenges and future perspecdilsesiieen discussed.
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