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Assessing deprivation with an ordinal variable: theory and

application to sanitation deprivation in Bangladesh

Suman Seth∗ Gaston Yalonetzky†

December 5, 2019

Abstract

The challenges associated with poverty measurement with a cardinal variable have received

due attention during the last four decades, but there is a dearth of literature studying how

to meaningfully assess poverty with an ordinal variable. In this paper, we first propose a

class of simple, intuitive and policy-relevant poverty measures for ordinal variables. Our

measures are sensitive to depth of deprivations, unlike the headcount ratio. Moreover, under

appropriate restrictions, our measures ensure that priority is given to the poorest among

the poor while targeting, monitoring and evaluating poverty alleviation programs. To as-

sess the robustness of poverty comparisons to alternative choices of parameters, we develop

various stochastic dominance tests (some of which are themselves novel contributions to the
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stochastic dominance literature). Our empirical illustration documenting changes in sanita-

tion deprivation in Bangladesh showcases our measures’ ability to identify instances in which

overall sanitation deprivation improved while leaving the poorest behind.

Keywords: Ordinal variables, poverty measurement, precedence to poorer people, Ham-

mond transfer, degree of poverty aversion, stochastic dominance.
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1. Introduction

Around four decades ago, in an influential article titled ‘Poverty: An Ordinal Approach

to Measurement’, Nobel laureate Amartya Sen proposed an axiomatically derived poverty

measure to avoid some shortcomings of the traditionally used headcount ratio (Sen, 1976).

Sen’s approach was ordinal in the sense that his poverty measures assigned an ordinal-rank

weight to each poor person’s income, an otherwise cardinal variable. Since then, this seminal

article has influenced a well-developed literature on poverty measurement involving cardinal

variables within an axiomatic framework (Thon, 1979; Clark et al., 1981; Chakravarty, 1983;

Foster et al., 1984; Foster and Shorrocks, 1988a,b; Ravallion, 1994; Shorrocks, 1995).

Distances between the values of cardinally measurable variables are meaningful; whereas

ordinal variables merely consist of ordered categories. 1 When numeral scales are as-

signed to these categories according to their order, the implied cardinal distances are hard

to interpret. Moreover, poverty orderings are inconveniently sensitive to changes in the

choice of these scales. Let us consider a simple example with a five-category ordinal vari-

able, where the four worst categories reflect deprivations. Suppose the population distribu-

tions across the five ordered categories in two countries are A = (0.1, 0.3, 0.2, 0.2, 0.2) and

B = (0.2, 0.1, 0.1, 0.2, 0.4), respectively. If we use the numeral scales of (1, 2, 3, 4, 5) for the

1Based on the classification of measurement scales by Stevens (1946), whenever numeral scales are assigned

to different ordered categories of an ordinal variable according to the orders or ranks of these categories, any

‘order-preserving’ or monotonic transformation should leave the scale form invariant. See Roberts (1979)

for further in-depth discussions. In this paper, by ordinal variables we simply refer to variables with ordered

categories, where numeral scales may not have necessarily been assigned to the categories.
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five categories and use the well-known poverty gap measure with the numeral scale of the

fourth category (i.e., the second best category) as the poverty line, then the former society

(A) reflects higher poverty than the latter (B).2 However, if we simply change the numeral

scales to (1, 5, 6, 7, 8), then the poverty ordering reverses.

Yet, the practice of using ordinal variables has been on the rise, in both developed and

developing countries alike, due to the recent surge of interest in studying deprivation in

non-monetary indicators, which are often ordinal in nature (e.g. access to basic facilities

of different quality).3 Moreover, there may be instances where ordinal categories of an

otherwise cardinally measurable variable could have more policy relevance. For example, in

some cases we might want to focus on ordered categories of income, nutritional status, or

years of education completed, rather than these indicators’ cardinal values.

How should poverty be meaningfully assessed with an ordinal variable? One straightforward

way may be to dichotomise the population into a group of deprived and a group of non-

deprived people, and then use the headcount ratio. However, this index is widely accused

of ignoring the depth of deprivations (Foster and Sen, 1997). In our illustration in Section

5, for instance, in Sylhet province of Bangladesh, between 2007 and 2011, the proportion of

2Let xi be the attainment of individual i and z be the poverty line. Then the poverty gap measure is the

average attainment shortfall from the poverty line as a proportion of the latter, attributing a zero shortfall

to non-poor people. That is, if N stands for the population size and q stands for the number of poor people,

then the poverty gap measure (PG) is: PG = 1

N

∑q

i=1

z−xi

z
(Foster et al., 2013).

3For example, as part of the first Sustainable Development Goals, the United Nations has set the target to

not only eradicate extreme monetary poverty, but also to reduce poverty in all its dimensions by 2030. See

http://www.un.org/sustainabledevelopment/poverty/ (accessed in April 2017).
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population with inadequate sanitation facilities went down from around 70% to nearly 63%;

whereas, during the same period, the proportion of people with the worst form of sanitation

deprivation (‘open defecation’) increased significantly, from around 2% to more than 12%

(see Table 3).

How can one reasonably capture the depth of deprivations for an ordinal variable? One

approach may be to use an aggregate poverty measure that is sensitive to depth of depriva-

tions. Alternatively one could simply either consider separately the relative frequencies of the

population experiencing deprivation within each ordered category, or equivalently compute

and compare headcount ratios (i.e. cumulative frequencies) for each possible poverty line.

The latter two approaches seem reasonable especially when the variable under consideration

has only a few deprivation categories and also when the required number of population-

comparisons is relatively small. Otherwise they may become cumbersome: even with only

four deprivation categories used in our illustration, an analysis of deprivation dynamics across

six provinces of Bangladesh over three years would involve comparing a staggering number

of 72 data points. Nonetheless, and in order to avoid a multitude of comparisons, one may

choose to prioritise and focus on those experiencing the most severe category of deprivation;

but this route comes at the expense of ignoring deprivations in other categories. Thus, in

this paper, we pursue the former approach of using an aggregate poverty measure that is

sensitive to all depths of deprivations within a variable.

The challenges associated with measuring well-being and inequality using an ordinal vari-

able in an axiomatic framework have received due attention during the last few decades

(e.g., Mendelson, 1987; Allison and Foster, 2004; Apouey, 2007; Abul Naga and Yalcin,

5



2008; Zheng, 2011; Kobus and Milos, 2012; Permanyer and D’Ambrosio, 2015; Kobus, 2015;

Lazar and Silber, 2013; Yalonetzky, 2013; Gravel et al., 2015). Yet, when assessing poverty,

such efforts have not been sufficiently thorough. Bennett and Hatzimasoura (2011), in a

rare attempt, showed that indeed we can measure poverty with ordinal variables sensibly,

but implicitly ruled out entire classes of well-suited measures (as shown by Yalonetzky,

2012). Moreover, their assessment of depth-sensitivity was restricted to the ordinal version

of Pigou-Dalton transfers, thereby missing many other options including the burgeoning use

of Hammond transfers (e.g. see Ebert, 2007; Gravel et al., 2015; Cowell et al., 2017; Gravel

et al., 2018; Oui-Yang, 2018).4

Our paper contributes theoretically to the poverty measurement literature in three ways.

First, we axiomatically characterise a class of ordinal poverty measures under a minimal set

of desirable properties. Our class consists of measures that are weighted sums of population

proportions in deprivation categories, where these weights are referred to as ordering weights

because their values depend on the order of the categories. Our proposed measures are

sensitive to the depth of deprivations (unlike the headcount ratio), additively decomposable,

and bounded between zero and one.

Second, an adequately designed poverty measure should also ensure that policy makers have

proper incentive to prioritise those poorer among the poor in the design of poverty alleviation

4We refer to the unidimensional context here. The issue of ordinality has certainly been examined thoroughly

in the context of multidimensional poverty measurement (Alkire and Foster, 2011; Bossert et al., 2013;

Dhongde et al., 2016; Bosmans et al., 2017). However, even in the multidimensional context, ordinal

variables are often dichotomised in empirical applications (see, Alkire and Foster, 2011; Bossert et al., 2013;

Dhongde et al., 2016), thereby ignoring the depth of deprivations within indicators.
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policies so that the poorest are not left behind.5 In a novel attempt, we operationalise the

concept of precedence to poorer people by incorporating a new form of degree of poverty aver-

sion in the ordinal context, reflecting a prioritarian point of view rather than an egalitarian

one. Although grounded on prioritarianism, our new form of poverty aversion encompasses,

as limiting cases, both previous attempts at sensitising ordinal poverty indices to the depth

of deprivations (e.g., Bennett and Hatzimasoura, 2011; Yalonetzky, 2012) as well as current

burgeoning approaches to distributional sensitivity in ordinal frameworks based on Ham-

mond transfers (Hammond, 1976; Gravel et al., 2015). We define a range of properties based

on this new form of degree of poverty aversion and characterise the corresponding subclasses

of ordinal poverty measures. Within our framework, different degrees of poverty aversion

merely require setting different restrictions on the ordering weights, preserving the measures’

additive decomposability property.

Third, since each of our classes and subclasses admits a large number of poverty measures,

we develop related stochastic dominance conditions whose fulfilment guarantees the robust-

ness of poverty comparisons to alternative functional forms and measurement parameters.

Although some of these conditions turn out to be the ordinal-variable analogue of existing

dominance conditions for cardinal variables (Foster and Shorrocks, 1988b), several others are

novel methodological contributions to the literature on stochastic dominance with ordinal

variables (to the best of our knowledge).

To demonstrate the efficacy of our approach, we present an empirical illustration studying the

evolution of sanitation deprivation in Bangladesh using Demographic Health Survey datasets.

5Poverty measures may affect the incentives of policy makers during poverty alleviation (Zheng, 1997).

7



Interestingly, our measures are able to discern the instances where the improvements in

overall sanitation deprivation did not necessarily include the poorest. Furthermore, we apply

the stochastic dominance conditions to test the robustness of poverty comparisons over time.

The rest of the paper proceeds as follows. After providing the notation, we present and then

axiomatically characterise the class of depth sensitive ordinal poverty measures in Section

2. Section 3 introduces the concept of precedence to poorer people, states the properties

related to the degrees of poverty aversion, and characterises the subclass of relevant poverty

indices. Then section 4 develops stochastic dominance conditions for the characterised class

and subclasses of poverty measures. Section 5 provides an empirical illustration analysing

sanitation deprivation in Bangladesh. Section 6 concludes.

2. A class of depth-sensitive poverty measures for an ordinal variable

Suppose, there is a social planner whose objective is to assess a hypothetical society’s poverty

in some well-being dimension, which is measured with a set of ordered categories. For

instance, self-reported health status may only include response categories, such as ‘good

health’, ‘fair health’, ‘poor health’, and ‘very poor health’. Similarly, there are also instances

where the ordinal categories of an otherwise cardinal variable, such as the years of schooling

completed, have more policy relevance.

Formally, suppose, there is a fixed set of S ∈ N \ {1} ordered categories c1, . . . , cS, where

N is the set of positive integers. The ordered categories are such that cs−1 ≻D cs for all

s = 2, . . . , S, where ≻D, which reads as “is more deprived than”, is a binary and transitive

relation whereby category cs−1 represents a worse-off situation than category cs. Thus, cS
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is the category reflecting least deprivation and c1 is the state reflecting highest deprivation.

Suppose, for example, a society’s well-being is assessed by the education dimension and the

observed ordered categories are ‘no education’, ‘primary education’, ‘secondary education’,

and ‘higher education’, such that ‘no education’ ≻D ‘primary education’ ≻D ‘secondary

education’ ≻D ‘higher education’. Then, c4 = ‘higher education’ and c1 = ‘no education’.

We denote the set of all S categories by C = {c1, c2, . . . , cS} and the set of all categories

excluding the category of least deprivation cS by C−S = C \ {cS}.

Each individual in society must experience only one of the S categories. We denote the

proportion of population experiencing category cs by ps for all s = 1, . . . , S. Clearly, ps ≥ 0

for all s and
∑S

s=1 ps = 1. The proportions of population in the society is summarised by

the vector: p = (p1, . . . , pS). Note that p is nothing but the discrete probability (or relative

frequency) distribution of the society’s population across the S categories. We denote the

set of all possible discrete probability distributions over S categories by P.

It is customary in poverty measurement to define a poverty threshold for identifying the poor

and the non-poor populations (Sen, 1976). Suppose, the social planner decides that category

ck for any 1 ≤ k < S and k ∈ N be the poverty threshold, so that people experiencing cat-

egories c1, . . . , ck are identified as poor ; whereas, people experiencing categories ck+1, . . . , cS

are identified as non-poor. We assume that at least one category reflects the absence of

poverty, as this restriction is both intrinsically reasonable and is required for stating certain

properties in Section 2.1. When k = 1, only category c1 reflects poverty and, in this case,

p1 is the proportion of the population identified as poor. For any ck ∈ C−S, we denote the

proportion of poor population, also known as the headcount ratio, by H(p, ck) =
∑k

s=1 ps.
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We define a poverty measure P (p, ck) as P : P ×C−S → R+. In words, a poverty measure

is a mapping from the set of probability distributions and the set of poverty thresholds to

the real line (note that the set of categories remains fixed).

2.1. Desirable properties

Now, as in many other areas of well-being measurement, the social planner needs to make

certain assumptions to perform interpersonal comparisons and meaningfully aggregate the

information available on the ordered deprivation categories in order to obtain a numerical

poverty measure. We present these assumptions in terms of properties or axioms. By relying

on discrete probability distributions, we already implicitly assume that poverty measures

satisfy anonymity and population principle. Anonymity requires that merely shuffling the

individual deprivation levels within a society should not alter the society’s poverty level;

whereas, the population principle requires that a mere duplication of the number of indi-

viduals experiencing each deprivation level within a society should not affect the society’s

poverty level. The population principle allows comparing poverty levels of societies with dif-

ferent population sizes. The social planner makes the following four additional assumptions.

The first property is ordinal monotonicity, which requires that if the living standard of a

poor person improves so that the person moves to a category of less deprivation, then societal

poverty should be lower. Formally, the property requires that if a poor person or a group

of poor people moves from a category ct reflecting poverty (i.e. t ≤ k) to a less deprived

category cu (i.e. ct ≻D cu), while the deprivation levels of everybody else in the society

remain unchanged, then poverty should fall. In terms of probability distributions, we set the
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requirement that if a fraction of the poor population is moved from category ct to category

cu, while the proportion of population in other categories remain unchanged, then poverty

should fall:

Ordinal Monotonicity (OMN) For any p,q ∈ P and for any ck ∈ C−S, if qt < pt for

some t ≤ k and t < u but ps = qs ∀s 6= {t, u}, then P (q, ck) < P (p, ck).

The second property is single-category deprivation. The property requires that whenever

there is only one category reflecting poverty (i.e. c1), then the poverty measure should be

equal to the headcount ratio H(p, c1) = p1. In other words, we assume that whenever there

is only one category reflecting poverty and the others reflect an absence of poverty, then

the headcount ratio becomes a sufficient statistic for the assessment of poverty. In fact,

in this situation, any functional transformation of the headcount ratio would not add any

meaningful information to the poverty assessment while being inferior in terms of intuitive

interpretation.

Single-Category Deprivation (SCD) For any p ∈ P and c1 ∈ C−S, P (p, c1) = p1.

The third property, focus, is essential for a poverty measure. It requires that, ceteris paribus,

a change in a non-poor person’s situation should not alter societal poverty evaluation as

long as the non-poor person remains in that status. In terms of probability distributions,

we set the requirement that as long as the proportion of poor population within each of the

k categories reflecting poverty remains unchanged, the level of poverty should be the same.

Note that the proportions of non-poor people may remain unchanged or may be different
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across the S − k categories not reflecting poverty, but this should not matter for poverty

evaluation.

Focus (FOC) For any p,q ∈ P and for any ck ∈ C−S, if qs = ps ∀s ≤ k, then P (q, ck) =

P (p, ck).

Finally, the social planner may be interested in exploring the relationship between the overall

poverty evaluation and the subgroup poverty evaluation, where population subgroups can

be geographical regions, ethnic groups, etc. Suppose society is partitioned into M ∈ N\{1}

mutually exclusive and collectively exhaustive population subgroups. We denote the pop-

ulation share in subgroup m by πm, such that πm ≥ 0 ∀m = 1, . . . ,M and
∑M

m=1 πm = 1.

We further denote the probability distribution across S categories within subgroup m by

pm = (pm1 , . . . , p
m
S ) ∈ P for every m = 1, . . . ,M , such that p =

∑M

m=1 πmp
m. The final

property, subgroup decomposability, requires overall societal poverty to be expressible as a

population-weighted average of subgroup poverty levels:

Subgroup Decomposability (SUD) For any M ∈ N/{1}, for any p ∈ P such that p =

∑M

m=1 πmp
m where (i) pm ∈ P ∀m = 1, . . . ,M , (ii) πm ≥ 0, and (iii)

∑M

m=1 πm = 1, and for

any ck ∈ C−S,

P (p, ck) =
M
∑

m=1

πmP (pm, ck).

2.2. The class of poverty measures

The four properties outlined in Section 2.1 lead to the class of poverty measures that we

present in Theorem 2.1:
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Theorem 2.1 A poverty measure P satisfies properties OMN, SCD, FOC and SUD if and

only if

P (p, ck) =
S
∑

s=1

psωs (2.1)

where ω1 = 1, ωs−1 > ωs > 0 for all s = 2, ..., k whenever k ≥ 2, and ωs = 0 for all s > k.

Proof. See Appendix A1.

We denote our class of poverty measures in Theorem 2.1 by P . A poverty measure in our

proposed class is a weighted sum of the population proportions in p, where the weights

(i.e. ωs’s) are non-negative for all categories, strictly positive for the deprived categories,

and unity for the most deprived category. We refer to weights ωs’s as ordering weights

and to ω = (ω1, . . . , ωS) as the ordering weighting vector.6 The ordering weights increase

with deprived categories representing higher levels of deprivation. In practice, the ordering

weights may take various forms. For example, Bennett and Hatzimasoura (2011) make the

ordering weight for each deprivation category depend on the latter’s relative deprivation

rank. Category s is assigned an ordering weight equal to ωs = [(k − s + 1)/k]θ for all s =

1, . . . , k and for some θ > 0. Thus, the least deprived category ck receives an ordering weight

of ωk = 1/kθ; whereas, the most deprived category c1 receives an ordering weight of ω1 = 1.

6Kobus and Milos (2012, Theorem 3) also showed that a subgroup decomposable inequality measure for

ordinal variables that is sensitive to spreads away from the median is a monotonic transformation of the

weighted sum of population proportions. However, our ordering weights are significantly different both in

terms of their restrictions and interpretation vis-a-vis those involved in ordinal inequality measurement.

Moreover, our SCD property (see below) imposes a more stringent restriction on the permissible functional

transformations.
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The class of poverty measures in Equation 2.1 bears several policy-relevant features. First,

an appealing feature of the measures in our class is their simplicity. Second, unlike the

headcount ratio, the poverty measures in our class are sensitive to the depth of deprivations

as they assign larger weights to the more deprived categories. Thus, unlike the headcount

ratio, the proposed measures are sensitive to changes in deprivation status among the poor

even when they do not become non-poor owing to those changes. Third, the proposed

poverty measures are additively decomposable, which has two crucial policy implications.

One is that the society’s overall poverty measure may be expressed as a population-weighted

average of the population subgroups’ poverty measures, whenever the entire population is di-

vided into mutually exclusive and collectively exhaustive population subgroups. The other is

that additively decomposable measures are convenient for cross-sectional and inter-temporal

econometric analysis as well as impact evaluation exercises. Fourth, the poverty measures

are conveniently normalised between zero and one. They are equal to zero only in a soci-

ety where nobody is poor; whereas, they are equal to one only whenever everybody in the

society experiences the worst possible deprivation category c1. Note that the normalisation

behaviour of our measures between zero and one, especially owing to the restrictions on ω’s,

is not an axiomatic assumption, but a logical conclusion from the foundational properties.

Fifth, the poverty measure boils down to the headcount ratio either when the poverty thresh-

old is represented by the most deprived category or whenever the underlying ordinal variable

has merely two categories.

Each poverty measure in class P may also have the following alternative interpretation: when

a policy maker only observes the population’s relative frequencies across ordered deprivation

14



categories, then, based on the four assumptions, the policy maker assigns particular depri-

vation values in the form of ωs’s to these individuals. Each poverty measure in our proposed

class is an average of these assigned deprivation values.7

3. Precedence to the poorer among the poor

Poverty alleviation is a gradual process, where it is imperative to ensure that the poorest of

the poor are not left behind. Although all poverty measures in Equation (2.1) are sensitive to

the depth of deprivations, not all of them ensure that the poorest among the poor population

receive precedence over the less poor population during a poverty alleviation process. For

that purpose, we introduce an intuitive concept of giving precedence to poorer people in the

ordinal framework, in tune with the prioritarian view which holds that ‘benefiting people

matters more the worse off these people are’ (Parfit, 1997, p. 213).8 Furthermore, our notion

of precedence is presented in a general framework where the degree of precedence to poorer

people can vary between a minimum and a maximum.9

Let us introduce the concept using the example in Figure 1. Suppose, there are ten ordered

deprivation categories, where c1 is the most deprived category and c10 is the least deprived

7For an alternative version of the axiomatic characterisation of the measures in class P using anonymity and

population principle alongside the aforementioned properties, see Seth and Yalonetzky (2018).

8For an application of the prioritarian concept to the multidimensional context, see Bosmans et al. (2017).

For further discussion, comparing the prioritarian view with the egalitarian view see Fleurbaey (2015, p.

208).

9The concept is analogous to the degree of poverty or inequality aversion in the monetary poverty measure-

ment literature (Clark et al., 1981; Chakravarty, 1983; Foster et al., 1984), but not technically identical.
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category. Denoted by black circles, categories c1, . . . , c7 reflect poverty; whereas the other

three categories, denoted by gray circles, do not. Thus, c7 is the poverty threshold category,

which is highlighted by a large black circle in each distribution. The original distribution is

p, where each individual experiences one of the ten categories.

Figure 1: Precedence to poorer and the degree of precedence

p
c10 c9 c8 ck=7 c6 c5 c4 c3 c2 c1

p′

c10 c9 c8 ck=7 c6 c5 c4 c3 c2 c1

q
c10 c9 c8 ck=7 c6 c5 c4 c3 c2 c1

q′

c10 c9 c8 ck=7 c6 c5 c4 c3 c2 c1

q′′

c10 c9 c8 ck=7 c6 c5 c4 c3 c2 c1

Suppose the policy maker has the following two competing options: either (a) obtain distri-

bution p′ from p by assisting a fraction ǫ ∈ (0, 1) of poor people to move from category c1

to category c2 ; or (b) obtain distribution q from p by assisting a fraction ǫ of poor people

to move from category c2 to category c3. Which option should lead to a larger reduction in

poverty? One way of giving precedence to poorer people is to require that the move from

p to p′ should lead to a larger reduction in poverty than the move from p to q. It is a

minimal criterion for giving precedence to poorer people which we call minimal precedence

to poorer people (PRE-M). This property requires that, ceteris paribus, moving a fraction of

poorer people to an adjacent less deprived category leads to a larger reduction in poverty

than moving a fraction of less poor people to a respectively adjacent less deprived category.10

10We have defined only the strict versions of these properties, requiring poverty to be strictly lower in the
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The PRE-M property presents a minimal criterion for giving precedence to poorer people.

Yet what happens when the policy maker faces the alternatives of improving the situation of

a fraction of poorer people by one category and improving the situation of a similar fraction

of less poor people by several categories? To ensure that the policy maker still chooses to

improve the situation of the poorer people in these cases, we introduce the property of greatest

precedence to poorer people (PRE-G). This property requires that, ceteris paribus, moving a

fraction ǫ of poorer people to a less deprived category leads to a larger reduction in poverty

than moving a fraction ǫ of less poor people to any number of less deprived categories. Note

here that the improvement is not restricted to a particular number of adjacent categories.

For example, if PRE-G held, a move from p to p′ in Figure 1 should lead to a larger reduction

in poverty than even a move from p to q′′.

Conceptually, the PRE-G property is analogous to the notion of a Hammond transfer (Ham-

mond, 1976; Gravel et al., 2015), which essentially involves, simultaneously, an improvement

in a poor person’s situation and a deterioration of a less poor person’s situation, such that

their deprivation ranks are not reversed (in the case of poverty measurement). Also, an

ordinal poverty measure satisfying property PRE-G also satisfies property PRE-M, but the

reverse is not true. A policy maker supporting property PRE-G over property PRE-M should

be considered more poverty averse.

aftermath of specific pro-poorest distributional change. Consequently the ensuing results impose strict

inequality restrictions on weights. However, these strict restrictions may be relaxed with alternative

versions if the latter only require that poverty does not rise due to the same pro-poorest distributional

change.

17



We could also consider intermediate forms of preference between the minimal (PRE-M) and

the greatest (PRE-G) forms of precedence. For example, instead of the greatest forms of

precedence, the policymaker may be satisfied with requiring, that, ceteris paribus, moving a

fraction ǫ of poorer people to an adjacent less deprived category leads to a larger reduction

in poverty than moving a fraction ǫ of less poor people to, say, two adjacent less deprived

categories. In such case, a move from p to p′ in Figure 1 should lead to a larger reduction

in poverty than a move from p to q′. We refer to this case as precedence to poorer people of

order two (PRE-2).

Likewise, we may obtain the policy maker’s preferred degree α of giving precedence to poorer

people. Thus, we introduce the general property of precedence to poorer people of order α,

which requires that, ceteris paribus, moving a fraction ǫ of poorer people to an adjacent

less deprived category leads to a larger reduction in poverty than moving a fraction ǫ of

less poor people up to an α (≥ 1) number of adjacent less deprived categories. A formal

general statement of the property, which includes PRE-M and PRE-G as limiting cases, is

the following:

Precedence to Poorer People of Order α (PRE-α) For any p,p′,q′ ∈ P, for any k ≥

2, for any ck ∈ C−S, and for some α ∈ N such that 1 ≤ α ≤ k−1, for some s < t ≤ k < S and

for some ǫ ∈ (0, 1), if (i) p′ is obtained from p such that p′s = ps−ǫ while p′u = pu ∀u 6= {s, s+

1}, and (ii) q′ is obtained from p such that q′t = pt− ǫ while q′u = pu ∀u 6= {t,min{t+α, S}},

then P (p′, ck) < P (q′, ck).

Note that PRE-1 is essentially the PRE-M property. This is the case where the social planner
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is least poverty averse. As the value of α increases, the social planner’s poverty aversion rises.

In this framework, the social planner’s poverty aversion is highest at α = k − 1. We shall

subsequently show that PRE-α for α = k − 1 leads to the same subclass of ordinal poverty

measures as the PRE-G property. The PRE-α property imposes further restrictions on the

class of measures in Theorem 2.1. In Theorem 3.1, we present the subclass of measures Pα

that satisfy the general PRE-α property:

Theorem 3.1 For any k ≥ 2 and for some α ∈ N such that 1 ≤ α ≤ k − 1, a poverty

measure P ∈ P (Theorem 2.1) satisfies property PRE-α if and only if

a. ωs−1−ωs > ωs−ωs+α ∀s = 2, . . . , k−α and ωs−1 > 2ωs ∀s = k−α+1, . . . , k whenever

α ≤ k − 2.

b. ωs−1 > 2ωs ∀s = 2, . . . , k whenever α = k − 1.

Proof. See Appendix A2.

In a novel effort, Theorem 3.1 presents various subclasses of indices based on the degree of

poverty aversion α, which we denote as Pα. In order to give precedence to poorer people,

additional restrictions must be imposed on the ordering weights. Corollary 3.1 presents the

limiting case of P1, featuring the least poverty averse social planner:

Corollary 3.1 For any k ≥ 2, a poverty measure P ∈ P (Theorem 2.1) satisfies property

PRE-M (i.e. PRE-1) if and only if ωs−1 − ωs > ωs − ωs+1 ∀s = 2, ..., k − 1 and ωk−1 > 2ωk.

Proof. The result follows directly from Theorem 3.1 by setting α = 1.
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To give precedence to poorer people in the spirit of property PRE-M, the ordering weights

must be such that the difference ωs−1−ωs is larger than the subsequent difference ωs−ωs+1,

in addition to the restrictions imposed by Theorem 2.1. Suppose, we summarise the ordering

weights by: ω = (ω1, . . . , ωS). Let us consider an example involving five categories and two

ordering weight vectors: ω
′ = (1, 0.8, 0.5, 0, 0) and ω

′′ = (1, 0.5, 0.2, 0, 0), where k = 3.

The ordering weights in ω
′ fulfill all properties presented in Theorem 2.1, but the largest

reduction in poverty is obtained whenever a poor person moves from the least poor category

to the adjacent non-poor category. By contrast, ordering weights in ω
′′ require that the

largest reduction in poverty be obtained whenever a poor person moves from the poorest

category to the adjacent second poorest category. Thus, unlike the ordering weights in ω
′,

the ordering weights in ω
′′ make sure that poorer people receive precedence.

Next we present the subclass of poverty measures satisfying property PRE-G, i.e. PG:

Proposition 3.1 For any k ≥ 2, a poverty measure P ∈ P (Theorem 2.1) satisfies property

PRE-G if and only if ωs−1 > 2ωs ∀s = 2, . . . , k.

Proof. See Appendix A3.

The additional restriction on the ordering weights in Proposition 3.1 effectively prioritises

the improvement in a poorer person’s situation over improvement of any extent in a less poor

person’s situation. Let us consider an example involving five categories and two ordering

weight vectors: ω′ = (1, 0.6, 0.3, 0.1, 0) and ω
′′ = (1, 0.48, 0.23, 0.1, 0), where k = 4. Clearly,

both sets of weights in ω
′ and ω

′′ satisfy the restriction in Corollary 3.1 that ωs−1 − ωs >

ωs − ωs+1 for all s = 2, . . . , k. However, the ordering weights in ω
′ do not satisfy the

20



restriction in Proposition 3.1, since ω′

1 < 2ω′

2; whereas the ordering weights in ω
′′ do satisfy

the restriction in Proposition 3.1 as ω′′

s−1 > 2ω′′

s for all s = 2, . . . , k.

An interesting feature of the set of weights satisfying property PRE-G is that, for k ≥ 3,

any deprivation category up to the third least detrimental deprivation category (i.e. k − 2),

should receive a weight greater than the sum of weights assigned to all categories reflecting

lesser deprivation, i.e. ωs >
∑k

ℓ=s+1 ωℓ for all s = 1, . . . , k − 2.

Finally, it is worth pointing out that, remarkably, the subclasses PG (Proposition 3.1) and

Pk−1 (Theorem 3.1 when α = k − 1) are identical; even though the distributional changes

involved in the PRE-α property are only specific cases of those involved in PRE-G. Besides

being of interest in itself, this perfect overlap between the subclasses of indices will prove

useful in Section 4 because by deriving the dominance conditions for the subclasses Pα, we

will also obtain the relevant dominance conditions for subclass PG.
11

4. Poverty dominance conditions

Stochastic dominance conditions come in handy whenever we want to ascertain the robust-

ness of a poverty ranking of distributions to alternative reasonable comparison criteria, e.g.

11Noteworthy is the expected resemblance between the weighting restriction identified in Proposition 3.1

and that in the class of welfare functions for ordinal variables derived in Gravel et al. (2015, Lemma 2).

The latter characterises welfare functions that increase both when someone moves to a better category

(so-called increments) and in the aftermath of Hammond transfers. Setting αk = 0 and changing the

inequality sign in Gravel et al. (2015, Lemma 2) to interpret their α functions (not to be confused with

our α parameter) as ordering weights for poverty measurement yields the weight restriction in Proposition

3.1.
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selection of poverty lines, choice of different functional forms, etc. (Atkinson, 1987; Foster

and Shorrocks, 1988b; Fields, 2001). Moreover, often stochastic dominance conditions reduce

an intractable problem of probing the robustness of a comparison across an infinite domain

of alternative criteria to a finite set of distributional tests (Levy, 2006). In Sections 2 and 3,

we introduced the class of poverty measures P and its subclasses Pα. The main parameters

for these measures are the set of ordering weights {ω1, . . . , ωk} and the poverty threshold

category ck. It is thus natural to inquiry into the circumstances under which poverty com-

parisons based on ordinal variables are robust to alternative ordering weights as well as

alternative poverty threshold categories. In this section, first we introduce the first-order

dominance conditions relevant to P , followed by the second-order dominance conditions for

Pα for all α.

4.1. Poverty dominance conditions for all measures in P

Theorem 4.1 provides poverty dominance conditions that are relevant to all measures in class

P , but for a given poverty threshold category ck ∈ C−S:

Theorem 4.1 For any p,q ∈ P and a given ck ∈ C−S, P (p, ck) < P (q, ck) ∀P ∈ P if and

only if
∑s

ℓ=1(pℓ − qℓ) ≤ 0 ∀s ≤ k with at least one strict inequality.

Proof. See Appendix A4.

Once a particular poverty threshold category ck ∈ C−S is chosen, Theorem 4.1 states that

poverty in distribution p ∈ P is strictly lower than that in distribution q ∈ P for all measures

in P if and only if all partial sums of the probabilities up to category ck in p are nowhere
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higher and at least once strictly lower than the respective partial sums in q. The result in

Theorem 4.1 may also be presented in terms of the headcount ratio H(p, ck) as follows: the

poverty comparison for a particular poverty threshold category ck is robust to all poverty

measures in P if and only if H(p, cs) ≤ H(q, cs) for all s ≤ k and H(p, cs) < H(q, cs) for at

least one s ≤ k.

Corollary 4.1 extends the first-order dominance condition obtained in Theorem 4.1 to any

measure P ∈ P and all poverty threshold categories in C−S:

Corollary 4.1 For any p,q ∈ P and all ck ∈ C−S, P (p, ck) < P (q, ck) for any P ∈ P and

for all ck ∈ C−S if and only if
∑s

ℓ=1(pℓ − qℓ) ≤ 0 ∀s = 2, . . . , S − 1 and p1 < q1.

Proof. The sufficiency part is straightforward and follows from Equation A1. We prove

the necessary condition as follows. First, consider k = 1. Then, P (p, c1) < P (q, c1) only if

p1 < q1. Subsequently, the requirement that
∑s

ℓ=1 pℓ ≤
∑s

ℓ=1 qℓ ∀s = 2, . . . , S − 1 follows

from Theorem 4.1.

Interestingly, in terms of headcount ratios, poverty in distribution p is lower than poverty in

distribution q for any P ∈ P and for all possible poverty threshold categories if and only if

H(p, cs) ≤ H(q, cs) for all s ≤ k and H(p, c1) < H(q, c1). Thus, the results in Theorem 4.1

and Corollary 4.1 are the ordinal versions of the headcount-ratio orderings for continuous

variables derived by Foster and Shorrocks (1988b).
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4.2. Poverty dominance conditions for all measures in Pα

We now present poverty dominance conditions that are relevant to all measures in subclass

Pα for some α ∈ [1, k − 1]. We refer to the poverty dominance for a particular value of

α as PRE-α dominance. For the presentation of our results in this section, we define the

following additional notation. First, by ⌊b⌋ for any b ∈ R++, we denote the largest possible

non-negative integer that is not greater than b (for example, if b = 5.2 then ⌊b⌋ = 5).

Secondly, for some k ≥ 2, we denote the rth ordinal weighting vector by ω
r = (ωr

1, . . . , ω
r
S)

for all r = 1, . . . , k. In Theorem 4.2, we show that one needs to evaluate poverty orderings

across two distributions at k distinct ordinal weighting vectors to test PRE-α dominance

and we explicitly derive the weights ωr
s for all s = 1, . . . , S and for all r = 1, . . . , k.

Theorem 4.2 presents the PRE-α dominance conditions for a given poverty threshold category

ck ∈ C−S and k ≥ 2:

Theorem 4.2 For any p,q ∈ P, for some k ≥ 2, and for some α ∈ [1, k−1] ⊆ N, P (p, ck) <

P (q, ck) ∀P ∈ Pα for a given ck ∈ C−S if and only if, with at least one strict inequality,
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∑S

s=1 ω
r
s(ps − qs) ≤ 0 ∀r = 1, . . . , k such that:

ωr
s =































































































0 for s > r and r = 1, . . . , k

1 for s = 1 and r = 1, . . . , k

21−s for s = 2, . . . , r and r = 2, . . . , α + 1

2r−s

r
∑

j=0

(−1)j
(

r−αj−1
j

)

2r−(α+1)j−1

for s = r − α, . . . , r and r = α + 2, . . . , k

s
∑

j=0

(−1)j
(

r−s−αj

j

)

2r−s−(α+1)j

r
∑

j=0

(−1)j
(

r−αj−1
j

)

2r−(α+1)j−1

for s = 2, . . . , r − α− 1 and r = α + 3, . . . , k

,

(4.1)

where r =

⌊

r − 1

α + 1

⌋

and s =

⌊

r − s

α + 1

⌋

.

Proof. See Appendix A5.

For a given ck ∈ C−S and for a given α ∈ [1, k − 1], according to Theorem 4.2, poverty in

distribution p is lower than that in distribution q for all P ∈ Pα (i.e., p PRE-α dominates

q) if and only if
∑S

s=1 ω
r
sps ≤

∑S

s=1 ω
r
sqs ∀r = 1, . . . , k with at least one strict inequality,

where the values for all ωr
s ’s are determined by Equation 4.1. The first condition within

Equation 4.1 requires that ωr
s = 0 whenever s > r; whereas, the second condition requires,

based on Theorem 2.1, that ωr
1 = 1 for all r = 1, . . . , k. For example, for k = 3, ω1 =

(ω1
1, ω

1
2, ω

1
3) = (1, 0, 0). The third condition within Equation 4.1 requires that for values of

r ranging between 2 and α + 1 for a given value of α, ωr
s = 21−s for all s = 1, . . . , r, due to

the restriction ωs−1 > 2ωs ∀s = 2, . . . , r whenever α = r − 1 or r = α + 1 as in part b. of

Theorem 3.1. The fourth and fifth conditions within Equation 4.1 follow from the second

condition and the first condition, respectively, of part a. of Theorem 3.1.
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For any chosen value of α, k different conditions must be tested for concluding dominance

in a poverty comparison.12 Let us provide an example with S = 6 and k = 5. In this

case, α may take four different values: α = 1, 2, 3, 4. Moreover, since S > k, ωk
6 = 0 for

all k. For each value of α, the condition
∑6

s=1 ω
r
sps ≤

∑6
s=1 ω

r
sqs, with one strict inequality,

must be satisfied for the five ordinal weighting vectors ω
r corresponding to r = 1, . . . , 5,

as presented in Table 1. Each column of the table presents the five ordering weighting

vectors for a given value of α; whereas, the kth row of the table reports the kth ordering

weights vector for different values of α. The corresponding values of r̄ are also reported

where they are relevant. For instance, if α = 2, then poverty comparisons should be checked

at the following five ordering weighting vectors: ω
1 = (1, 0, 0, 0, 0, 0), ω2 =

(

1, 1
2
, 0, 0, 0, 0

)

,

ω
3 =

(

1, 1
2
, 1
4
, 0, 0, 0

)

, ω4 =
(

1, 4
7
, 2
7
, 1
7
, 0, 0

)

, and ω
5 =

(

1, 7
12
, 4
12
, 2
12
, 1
12
, 0
)

.

Table 1: The ordering weighting vectors for conducting dominance tests for different α’s
when S = 6 and k = 5

α = 1 α = 2 α = 3 α = 4

ω
1 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0)

ω
2

(

1,
1

2
, 0, 0, 0, 0

) (

1,
1

2
, 0, 0, 0, 0

) (

1,
1

2
, 0, 0, 0, 0

) (

1,
1

2
, 0, 0, 0, 0

)

ω
3

(

1,
2

3
,
1

3
, 0, 0, 0

)

;

r̄ = 1

(

1,
1

2
,
1

4
, 0, 0, 0

) (

1,
1

2
,
1

4
, 0, 0, 0

) (

1,
1

2
,
1

4
, 0, 0, 0

)

ω
4

(

1,
3

4
,
2

4
,
1

4
, 0, 0

)

;

r̄ = 1

(

1,
4

7
,
2

7
,
1

7
, 0, 0

)

;

r̄ = 1

(

1,
1

2
,
1

4
,
1

8
, 0, 0

) (

1,
1

2
,
1

4
,
1

8
, 0, 0

)

ω
5

(

1,
4

5
,
3

5
,
2

5
,
1

5
, 0

)

;

r̄ = 2

(

1,
7

12
,
4

12
,
2

12
,
1

12
, 0

)

;

r̄ = 1

(

1,
8

15
,
4

15
,
2

15
,
1

15
, 0

)

;

r̄ = 1

(

1,
1

2
,
1

4
,
1

8
,
1

16
, 0

)

We also provide simplified versions of the dominance conditions presented in Theorem 4.2

12This approach to dominance testing is analogous to that used in robustness tests for composite indices

with respect to alternative weights (see, Seth and McGillivray, 2018; Foster et al., 2012).
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for the two extreme cases of minimal precedence (i.e. α = 1) as in Corollary 3.1 and of

greatest precedence (i.e. α = k − 1) as in Proposition 3.1. Whenever α = 1, we must test k

restrictions on the linear combinations of partial sums of probabilities as in Corollary 4.2:

Corollary 4.2 For any p,q ∈ P and for some k ≥ 2, P (p, ck) < P (q, ck) ∀P ∈ P1 for

a given ck ∈ C−S if and only if
∑s

ℓ=1

∑ℓ

j=1(pj − qj) ≤ 0 ∀s ≤ k with at least one strict

inequality.

Proof. See Appendix A6.

The dominance condition presented in Corollary 4.2 is the ordinal version of the “P2” poverty

ordering as in Foster and Shorrocks (1988b). Corollary 4.3, on the other hand, presents the

dominance conditions for greatest precedence (i.e. α = k − 1):

Corollary 4.3 For any p,q ∈ P and for some k ≥ 2, P (p, ck) < P (q, ck) ∀P ∈ PG for a

given ck ∈ C−S if and only if
∑s

ℓ=1 2
1−ℓ(pℓ−qℓ) ≤ 0 ∀s ≤ k with at least one strict inequality.

Proof. It is straightforward to verify from Theorem 4.2 by setting α = k − 1.

So far, we have presented the dominance conditions for a given ck. Finally, Corollary 4.4

provides the second-order dominance conditions relevant to any measure P ∈ Pα for some

α ∈ [1, k − 1], but for all ck ∈ C−S such that k ≥ 2:

Corollary 4.4 For any p,q ∈ P, for some k ≥ 2, and for some α ∈ [1, k − 1] ⊆ N,

P (p, ck) < P (q, ck) ∀P ∈ Pα for all ck ∈ C−S if and only if (a) p1 ≤ q1 and 2p1+p2 ≤ 2q1+q2

with at least one strict inequality and (b)
∑S

s=1 ω
r
s(ps − qs) ≤ 0 ∀r = 3, . . . , S − 1, where

ω
r = (ωr

1, . . . , ω
r
S) ∀r = 3, . . . , S − 1 are obtained from Equation 4.1 of Theorem 4.2.
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Proof. First consider the case when k = 2. Then from Equation 4.1 of Theorem 4.2, it

follows that p1 ≤ q1 and 2p1 + p2 ≤ 2q1 + q2, with at least one strict inequality. Therefore,

conditional (a) is both necessary and sufficient. Whenever, k ≥ 3, part (b) follows from

Theorem 4.2 by setting k = S − 1.

In summary, the robustness of poverty comparisons for various classes and subclasses of

ordinal measures introduced in Sections 2.1 and 3 can be assessed with a battery of dominance

tests based on the theorems and corollaries presented in this section.

5. Empirical illustration: Sanitation deprivation in Bangladesh

We now present an empirical illustration in order to showcase the efficacy of our proposed

measurement method. In the current global development context, both the United Nations

through the Sustainable Development Goals13 and the World Bank through their Report

of the Commission on Global Poverty (World Bank, 2017) have acknowledged the need for

assessing, monitoring, and alleviating poverty in multiple dimensions besides the monetary

dimension. In practice, most non-income dimensions are assessed by ordinal variables. In

this section, we show how our measurement tools may be applied to analyse inter-temporal

sanitation deprivation in Bangladesh.

For our analysis, we use the nationally representative Demographic Health Survey (DHS)

datasets of Bangladesh for the years 2007, 2011, and 2014. We compute the point estimates

and standard errors incorporating the sampling weights as well as respecting the survey

13Available at https://sustainabledevelopment.un.org/sdgs.
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design.14 Excluding the non-usual residents, we were able to consider the information on

50,215 individuals from 10,398 households in the 2007 survey, 79,483 individuals from 17,139

households in the 2011 survey, and 77,680 individuals from 17,299 households in the 2014

survey.

Table 2: The five ordered categories of access to sanitation facilities

Category Description

Open defecation Human faeces disposed of in fields, forests, bushes, open bodies of
water, beaches or other open spaces or disposed of with solid waste

Unimproved Pit latrines without a slab or platform, hanging latrines and bucket
latrines

Limited Sanitation facilities of an otherwise acceptable type shared between
two or more households

Basic unsafe A basic sanitation facility which is not shared with other households,
but excreta are not disposed safely, such as flushed but not disposed
to piped sewer system, septic tank or pit latrine

Improved Sanitation facility which is not shared with other households and
where excreta are safely disposed in situ or treated off-site and in-
cludes flush/pour flush to piped sewer system, septic tank or pit la-
trine, ventilated improved pit latrine, composting toilet or pit latrine
with a slab

One target of the United Nations’ sixth Sustainable Development Goal (whose aim is to

‘ensure availability and sustainable management of water and sanitation for all’) is ‘by 2030,

[to] achieve access to adequate and equitable sanitation and hygiene for all and end open

defecation.’ In order to hit the target, the Joint Monitoring Programme (JMP) of the

World Health Organisation and the UNICEF proposes using ‘a service ladder approach to

benchmark and track progress across countries at different stages of development”, building

on the existing datasets.15 We pursue this service ladder approach and apply our ordinal

14See NIPORT et al. (2009, 2013, 2016) for details about the survey design.

15The JMP document titled WASH Post-2015: Proposed indicators for drinking water, sanitation and
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poverty measures to study the improvement in sanitation deprivation in Bangladesh. We

classify households’ access to sanitation in the five ordered categories presented in Table 2.

The five categories are ordered as ‘open defecation’ ≻D ‘unimproved’ ≻D ‘limited’ ≻D ‘basic

unsafe’ ≻D ‘improved’. We consider all persons living in a household deprived in access to

sanitation if the household experiences any category other than ‘improved’.

Table 3: Change in population distribution across sanitation categories in Bangladesh

Bangladesh Dhaka Rajshahi Sylhet

2007 2011 2014 2007 2011 2014 2007 2011 2014 2007 2011 2014

Open defecation 7.5 4.2 3.3 7.5 4.0 2.2 13.8 3.9 3.2 2.1 12.5 9.4
(0.8) (0.3) (0.5) (1.4) (0.7) (0.8) (2.3) (0.8) (0.9) (0.4) (1.5) (1.3)

Unimproved 47.1 38.3 25.7 44.3 35.9 22.6 45.3 36.4 28.3 57.2 34.3 23.0
(1.1) (0.9) (1.3) (1.9) (1.7) (2.8) (2.6) (3.1) (2.7) (3.3) (2.0) (2.6)

Limited 13.4 16.7 20.9 14.4 18.0 26.1 14.7 20.7 20.2 10.1 17.7 22.3
(0.5) (0.6) (0.8) (1.1) (1.5) (2.0) (1.2) (1.4) (1.3) (1.9) (0.9) (1.8)

Basic 3.5 4.3 2.3 8.6 10.5 5.4 0.2 0.2 0.3 0.6 0.1 0.3
(0.4) (0.5) (0.4) (1.0) (1.6) (1.0) (0.1) (0.1) (0.1) (0.2) (0.1) (0.2)

Improved 28.5 36.6 47.8 25.2 31.6 43.7 26.0 38.8 48.0 30.1 35.4 45.0
(1.0) (0.9) (1.1) (1.9) (1.9) (2.5) (1.9) (2.3) (2.3) (2.3) (1.9) (1.7)

Sources: Authors’ own computations. Standard errors are reported in parentheses.

Table 3 shows how the estimated population shares in different deprivation categories have

evolved over time in Bangladesh. Clearly, the estimated percentage in the ‘improved’ cate-

gory has gradually increased (statistically significantly) from 28.5% in 2007 to 36.6% in 2011

to 47.8% in 2014. Thus, the proportion of the population in deprived categories has gone

down over the same period. Changes within the deprived categories are however mixed.

Although the estimated population shares in the two most deprived categories (‘open defe-

cation’ and ‘unimproved’) have decreased (statistically significantly) systematically between

hygiene was accessed in November 2019 at https://www.who.int/water sanitation health/monitoring/

coverage/wash-post-2015-rev.pdf.
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2007 and 2014, the population shares in the other two deprivation categories have not.

Table 4: Change in sanitation deprivation by ordinal poverty measures in Bangladesh and
its divisions

H PI PM PG

2007 2011 2014 2007 2011 2014 2007 2011 2014 2007 2011 2014

Barisal 66.1 60.5 46.8 47.7 44.0 32.6 35.0 32.6 23.4 25.2 23.5 16.7
(2.7) (2.1) (3.3) (1.9) (1.7) (2.9) (1.4) (1.4) (2.4) (1.1) (1.1) (1.8)

Chittagong 67.1 59.2 44.9 47.0 38.9 29.2 34.8 27.3 20.2 26.2 19.6 14.9
(2.9) (2.1) (3.1) (2.8) (1.7) (2.9) (2.7) (1.5) (2.7) (2.6) (1.2) (2.5)

Dhaka 74.8 68.4 56.3 50.1 42.6 33.5 36.6 29.4 21.8 27.8 21.6 15.4
(1.9) (1.9) (2.5) (1.7) (1.3) (1.8) (1.6) (1.1) (1.6) (1.4) (1.0) (1.3)

Khulna 69.0 61.4 50.3 48.9 41.8 33.0 35.7 29.4 22.7 25.9 20.9 16.1
(1.8) (1.6) (2.3) (1.4) (1.2) (1.7) (1.1) (1.0) (1.4) (1.0) (0.7) (1.0)

Rajshahi 74.0 61.2 52.0 55.2 41.6 34.7 43.0 29.6 24.2 34.1 21.6 17.6
(1.9) (2.3) (2.3) (1.8) (1.9) (1.8) (1.9) (1.6) (1.5) (1.9) (1.3) (1.3)

Sylhet 69.9 64.6 55.0 50.1 47.1 37.9 36.8 36.2 27.9 26.5 28.9 21.9
(2.3) (1.9) (1.7) (1.9) (1.6) (1.7) (1.5) (1.4) (1.6) (1.1) (1.4) (1.4)

Bangladesh 71.5 63.4 52.2 50.4 42.3 33.5 37.5 30.1 23.1 28.5 22.2 16.8
(1.0) (0.9) (1.1) (0.9) (0.7) (0.9) (0.9) (0.6) (0.8) (0.8) (0.5) (0.7)

Sources: Authors’ own computations. Standard errors are reported in parentheses.

Has this estimated reduction pattern been replicated within all divisions? Table 3 also

presents the changes in the discrete probability distributions of three divisions: Dhaka,

Rajshahi, and Sylhet.16 The estimated population shares in the ‘improved’ category have

increased (statistically significantly) gradually in all three regions (Table 3), and so the shares

of deprived population have gone down. We need, however, to point out two crucial aspects.

First, let us compare the reduction patterns in Dhaka and Rajshahi. The population share in

16A new division called Rangpur was formed in 2010, which was a part of the Rajshahi Division. The new

division did not exist during the 2007 DHS, so we had to combine this division with the Rajshahi division

in the 2011 and 2014 DHS in order to preserve comparability over time. Likewise, our selected surveys

were not affected by the carving out of northern Dhaka to form the Mymesingh division in 2015.
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the ‘improved’ category is higher in Rajshahi in 2011 and 2014 and statistically indistinguish-

able in 2007, implying that sanitation deprivation in Dhaka is never lower than sanitation

deprivation in Rajshahi. However, the estimated population shares in the two most deprived

categories (‘open defecation’ and ‘unimproved’) are higher in Rajshahi than in Dhaka in 2007

and 2014 and statistically indistinguishable in 2011. Second, like Dhaka and Rajshahi in Ta-

ble 3, sanitation deprivation in Sylhet has also improved gradually. However, the estimated

population share in the poorest category (‘open defecation’) is significantly higher in 2011

and in 2014 than in 2007. A simple headcount measure, which only captures the proportion

of the overall deprived population, would always overlook these substantial differences.

Table 4 presents four different poverty measures for Bangladesh and for its six divisions

(as per the pre-2010 administrative map). We assume the poverty threshold category to

be ‘basic unsafe’. The first poverty measure is the headcount ratio (H), which, in this

context, is the population share experiencing any one of the four deprivation categories. The

second measure is PI , such that PI ∈ P \ {Pα} for α ≥ 1, and is defined by the ordering

weights ω
I = (1, 0.75, 0.5, 0.25, 0). The third measure is PM ∈ P1 \ {Pα} for α ≥ 2 with

ordering weights ω
M = (1, 0.752, 0.52, 0.252, 0), i.e. respecting the restrictions in Corollary

3.1, but not respecting, for instance, the restrictions in Proposition 3.1 or the restrictions

in Theorem 3.1 for α ≥ 2; whereas, the fourth measure is PG ∈ PG with ordering weights

ω
G = (1, 0.4, 0.15, 0.05, 0), i.e. respecting the restrictions in Proposition 3.1. Note that

measures PM and PG give precedence to those who are in the poorer categories. All four

measures lie between zero and one, but we have multiplied them by one hundred so that

they lie between zero (lowest deprivation) and 100 (highest deprivation).
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Comparisons of these measures provide useful insights, especially into the two crucial aspects

that we have presented in Table 3. The headcount ratio estimate in Dhaka is statistically

indistinguishable from the headcount ratio estimate in Rajshahi for 2007, despite deprivation

in the two poorest categories being higher in Rajshahi. However, this crucial aspect is

captured by the latter three measures, which show statistically significantly higher poverty

estimates in Rajshahi than in Dhaka. Similarly, the headcount ratio estimate is higher in

Dhaka than in Rajshahi for 2011, but the difference vanishes when poverty is assessed by the

other three ordinal measures. Meanwhile, Table 4 also shows that, without accounting for

the depth of deprivations, the headcount ratio ranks Dhaka as poorer than Sylhet in 2011.

However, this ranking reverses as soon as we use deprivation-sensitive measures from the

class P .

Since most of the information in Table 4 points to experiences of poverty reduction, we

further conduct pair-wise dominance tests in order to verify whether the comparisons over

time are robust to all measures in class P , and in sub-classes P1 and PG. Note, in this case,

that S = 5 and k = 4. The dominance test for P is based on Theorem 4.1, the dominance

test for P1 is based on Corollary 4.2 (i.e. α = 1), and the dominance test for PG is based

on Corollary 4.3 (i.e. α = k − 1 = 3 ). Checking pair-wise dominance for P1 requires

comparing poverty levels at the following four extreme points: (1, 0, 0, 0, 0), (1, 1
2
, 0, 0, 0),

(1, 2
3
, 1
3
, 0, 0) and (1, 3

4
, 2
4
, 1
4
, 0). Meanwhile, checking pair-wise dominance for PG requires

comparing poverty levels at the following four extreme points: (1, 0, 0, 0, 0), (1, 1
2
, 0, 0, 0),

(1, 1
2
, 1
4
, 0, 0) and (1, 1

2
, 1
4
, 1
8
, 0).

Table 5 presents the pair-wise dominance tests over time for Bangladesh and its divisions.
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Table 5: Pair-wise dominance tests for changes in poverty over time in Bangladesh and its
divisions

2007–2011 2011–2014

P P1 PG P P1 PG

Barisal No No No Yes Yes Yes
Chittagong Yes** Yes** Yes** No No No
Dhaka Yes** Yes** Yes** Yes** Yes** Yes**
Khulna Yes* Yes* Yes* Yes Yes Yes
Rajshahi Yes*** Yes*** Yes*** Yes Yes Yes
Sylhet No No No Yes* Yes* Yes*

Bangladesh Yes*** Yes*** Yes*** Yes* Yes* Yes*

Sources: Authors’ own computations. A “Yes” implies reduction of the poverty levels within each
region over time evaluated at the four extreme weights; a “No” implies otherwise. The levels of
statistical significance for the dominance tests are: *** for 1%, ** for 5% and * for 10%.

Each cell of the table reports whether a reduction or increase in poverty within each region

over time in Table 4 is robust (or not) to alternative ordering weighting vectors within the

class (i.e., P) and subclasses (i.e., P1 and P2) to which the ordering weighting vectors used

in Table 4 belong.17 For example, it is evident from Table 4 that, according to PM , poverty

in Bangladesh has fallen from 37.5 points in 2007 to 30.1 points in 2011. So we could ask: is

this reduction between 2007 and 2011 robust to all P ∈ P1? The corresponding dominance

test reported in Table 5 shows that the reduction is certainly robust with 1% significance

level. If a cell in Table 5 reports either “No” or “Yes”, but without appropriate statistical

significance level, then we conclude that the relevant comparison in Table 4 is not robust.

17We implemented a standard intersection-union test (IUT) whose alternative hypothesis is that poverty

levels at the four extreme points are jointly lower in year-region “A” (e.g. Bangladesh in 2011) vis-à-vis

“B” (e.g. Bangladesh in 2007). We reject the null (i.e. at least one poverty level in “A” is equal or higher

than in “B”) in favour of this alternative only if every poverty level is lower in “A” than in “B” with a

given significance level α. As explained by Berger (1997, p. 226), the IUT’s overall significance level is

also α and no correction for multiple comparisons (e.g. Bonferroni, etc.) is required.
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For instance, poverty reduction in Dhaka has been robust for the whole class P at the 5%

level of significance throughout both time periods (2007-2011 and 2011-2014); whereas, the

poverty reduction for neither Barisal nor Chittagong for the period 2011-2014 reported in

Table 4 can be claimed to be robust for any of the three (sub)classes of indices considered.

6. Concluding remarks

There is little doubt that poverty is a multidimensional concept and the current global devel-

opment agenda correctly seeks to ‘reduce poverty in all its dimensions’. To meet this target,

it is indeed important to assess poverty from a multidimensional perspective. However, one

should not discount the potential interest in evaluating the impact of a targeted program

in reducing deprivation in a single dimension such as educational or health outcomes and

access to public services, which may often be assessed by an ordinal variable with multiple

ordered deprivation categories. The frequently used headcount ratio, in this case, is ineffec-

tive as it overlooks the depth of deprivations, i.e. any changes within the ordered deprivation

categories.

Our paper has thus posed the question: ‘How should we assess poverty when variables are

ordinal?’ Implicitly, the companion question is ‘Can we meaningfully assess poverty beyond

the headcount ratio when we have an ordinal variable?’ Drawing on six reasonable axiomatic

properties, our answer is: ‘Poverty can be measured with ordinal variables through weighted

averages of the discrete probabilities corresponding to the ordered categories.’ We refer to

these weights as ordering weights, which need to satisfy a specific set of restrictions in order to

ensure the social poverty indices fulfil these key properties. Our axiomatically characterised
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class of social poverty indices has certain desirable features, such as additive decomposability

and being bounded between zero (when none experiences any deprivation) and one (when

everyone experiences the most deprived category).

In contrast to previous attempts in the literature on poverty measurement with ordinal

variables, we have gone fruitfully further in the direction of operationalising different concepts

of ‘precedence to the poorer people among the poor’, which ensures that the policymaker

has an incentive to assist the poorer over the less poor. We have shown that it is possible

to devise reasonable poverty measures that prioritise welfare improvements among the most

deprived when variables are ordinal. We have axiomatically characterised a set of subclasses

of ordinal poverty measures based on different notions of precedence to those poorer among

the poor. Each subclass is defined by an additional restriction on the admissible ordering

weights. The precedence-sensitive measures have proven useful in the illustration pertaining

to sanitation deprivation in Bangladesh by highlighting those provinces where the overall

headcount improvement did not come about through reductions in the proportion of the

population in the most deprived categories.

Since several poverty measures are admissible within each characterised class and subclass, we

have also developed stochastic dominance conditions for each subclass of poverty measures.

Their fulfilment guarantees that all measures within a given class (or subclass) rank the same

pair of distributions robustly. While some of these conditions represent the ordinal-variable

analog of existing conditions for continuous variables in the poverty dominance literature

(Foster and Shorrocks, 1988b); others are, to the best of our knowledge, themselves a novel

methodological contribution to the literature on stochastic dominance with ordinal variables.
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There has been a recent surge in the literature on multidimensional poverty measurement,

especially within the counting framework. In this framework, however, it is still a usual

practice to dichotomise deprivations within each dimension when using existing counting

measures, ignoring the depth of deprivation across ordered categories. Future research could

focus on the development of counting measures that incorporate both the depth of depriva-

tions within dimensions and notions of precedence to the poorest among the poor.
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Appendices

Appendix A1. Proof of Theorem 2.1

It is straightforward to check that each poverty measure in Equation 2.1 satisfies the four

properties: OMN, SCD, FOC and SUD.

We now prove the necessary part, namely, if a poverty measure satisfies these four properties,

then it takes the functional form in Equation 2.1. First, we define S ∈ N \ {1} basis vectors:

es = (es1, . . . , e
s
S) ∈ P ∀s = 1, . . . , S, such that ess = 1 ∀s and ets = 0 ∀s 6= t. For a given

ck ∈ C−S, denote P (es, ck) = ωs for some ωs ∈ R+ for every s = 1, . . . , S.

Next, suppose a society with probability distribution p = (p1, . . . , pS) ∈ P is divided into

M = S mutually exclusive and collectively exhaustive sub-groups, such that the probability
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distribution of each subgroup is ps = (ps1, . . . , p
s
S) = es for every s = 1, . . . , S (= M). As

each subgroup contains the population in each category, naturally, the population share of

each subgroup is πs = ps for every s = 1, . . . , S (= M). Then, by SUD:

P (p, ck) =
S
∑

s=1

πsP (ps, ck) =
S
∑

s=1

psP (es, ck) =
S
∑

s=1

psωs. (A1)

Now, consider any two p,q ∈ P, such that ps = 1 for some s ≤ k and qs′ = 1 for some s′ > s.

Naturally, pt = qt = 0 for all t 6= {s, s′}. Clearly, by OMN, we have P (q, ck) < P (p, ck).

Combined with Equation A1, we then obtain:

ωs′ < ωs. (A2)

The relationship in Equation A2 holds for any s, such that s ≤ k and s < s′. In other words,

ωs−1 > ωs > ωs′ for all s = 2, ..., k and even for any s′ > k, whenever k ≥ 2. When S = 2,

then k = 1 and so ω1 > ω2.

We next use property SCD. Suppose, k = 1. Then, property SCD leads to P (p, ck) = p1

and Equation A1 yields

P (p, c1) =
S
∑

s=1

psωs = p1. (A3)

Note, by definition, that 0 ≤ p1 ≤ 1 and so 0 ≤ P (p, ck) ≤ 1. Consider some p ∈ P, such

that p1 = 1 and ps = 0 for all s 6= 1. Clearly, from Equation A3, ω1 = 1. Moreover, from

Equation A2, it follows that 1 > ωs > ωs′ for all s = 2, . . . , k and for any s′ > k whenever

k ≥ 2.
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In order to complete the proof, we need to show that ωs = 0 for all s > k. For this

purpose, consider some p,q ∈ P, such that pt = qu = 1 for some t > u > k. Certainly,

ps = qs = 0 ∀s ≤ k. By property FOC, we then require P (p, ck) = P (q, ck). Thus,

from Equation A1, we obtain P (p, ck) = ωt = ωu = P (q, ck) for t > u > k. Since,

ps = qs = 0 ∀s ≤ k, it follows that p1 = q1 = 0. Consider k = 1. Then, by property SCD,

we must have P (p, ck) = P (q, ck) = 0. Hence, it must be the case that ωs = 0 for all s > k,

which completes our proof.

Appendix A2. Proof of Theorem 3.1

The sufficiency part is straightforward. We prove the necessity part as follows.

Suppose k ≥ 2 and α ∈ N such that 1 ≤ α ≤ k − 1. Now, suppose, p′ and q′ are obtained

from p ∈ P as follows. Consider some s′ < t ≤ k < S. Now, p′ is obtained from p, such

that p′s′ = ps′ − ǫ while p′u = pu ∀u 6= {s′, s′ +1}. Naturally, p′s′+1 = ps′+1 + ǫ. Similarly, q′ is

obtained from p, such that q′t = pt− ǫ while q′u = pu ∀u 6= {t, t′} for some t′ = min{t+α, S}.

Naturally, again, q′t′ = pt′ + ǫ.

By property PRE-α, we know that

P (p′, ck) < P (q′, ck). (A1)

Combining Equation 2.1 and Equation A1, we get

ωs′+1 − ωs′ − ωt′ + ωt < 0.
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Substituting t = s′ + 1 = s for any s = 2, . . . , k, we obtain

ωs−1 − ωs > ωs − ωt′ . (A2)

First, suppose t′ = s+ α ≤ k < S or s ≤ k − α. Then, ωt′ = ωs+α > 0 by Theorem 2.1 and

Equation A2 can be expressed as ωs−1 − ωs > ωs − ωs+α for all s = 2, . . . , k − α. Second,

suppose t′ = min{s + α, S} > k or s > k − α. We know that ωs = 0 for all s > k by

Theorem 2.1 and so Equation A2 can be expressed as ωs−1 − ωs > ωs or ωs−1 > 2ωs for all

s = k − α + 1, . . . , k. This completes the proof.

Appendix A3. Proof of Proposition 3.1

Let us first prove the sufficiency part. Suppose k ≥ 2. We already know from Theorem

2.1 that ωs−1 > ωs > 0 ∀s = 2, . . . , k and ωs = 0 ∀s > k. Suppose additionally that

ωs−1 > 2ωs ∀s = 2, . . . , k. Alternatively, ωs−1 − ωs > ωs ∀s = 2, . . . , k.

For any p,p′,q′ ∈ P, for any ck ∈ C−S and for some ǫ ∈ (0, 1), let k ≥ t ≥ v+α and suppose

p′ is obtained from p, such that p′v = pv−ǫ and p′v+α = pv+α+ǫ, while p′u = pu ∀u 6= {v, v+α};

and q′ is obtained from p, such that q′t = pt − ǫ and q′t+β = pt+β + ǫ for some β ∈ N, while

q′u = pu ∀u 6= {t, t+ β}.

With the help of Equation 2.1, we get:

P (p′, ck)− P (q′, ck)] = ǫ[ωv+α − ωv − ωt+β + ωt] = ǫ[(ωt − ωt+β)− (ωv − ωv+α)]. (A1)

By assumption of the sufficiency part: ωs−1 − ωs > ωs ∀s = 2, . . . , k. Combining this

assumption with the weight restrictions from Theorem 2.1 we can easily deduce that (ωv −
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ωv+α) > (ωv − ωv+1) > ωv+1 > ωv+α. Hence, (ωv − ωv+α) > ωv+α. Since v + α ≤ t ≤ k and

ωs−1 > ωs > 0 ∀s = 2, . . . , k, it also follows that ωv+α ≥ (ωt − ωt+β). Hence, (ωv − ωv+α) >

(ωt − ωt+β) and P (p′, ck) < P (q′, ck).

Next we prove the necessity part starting with Equation A1. By property PRE-G, we know

that P (p′, ck) < P (q′, ck). Thus,

ωv − ωv+α > ωt − ωt+β. (A2)

Now the inequality in Equation A2 must hold for any situation in which t ≥ v+α, including

the comparison of the minimum possible improvement for the poorer person, given by ωv −

ωv+1 (i.e. with α = 1), against the maximum possible improvement for the less poor person,

given by ωt − ωt+β with t = v + 1 and t + β > k. Inserting these values into Equation A2,

bearing in mind that ωt+β = 0 when t+ β > k, yields

ωv − ωv+1 > ωv+1.

Substituting v = s− 1 for any s = 2, . . . , k yields ωs−1 − ωs > ωs. Hence, ωs−1 > 2ωs for all

s = 2, . . . , k.

Appendix A4. Proof of Theorem 4.1

We denote the difference operator by ∆ and use the following handy definitions: For some

p,p′ ∈ P, define ∆Pk ≡ P (p, ck)− P (p′, ck), ∆ps ≡ ps − p′s, and ∆Fs ≡
∑s

ℓ=1 ∆pℓ.

We first prove the sufficiency part. From Theorem 2.1, we know that ωs = 0 for all s > k.

Thus, Equation 2.1 may be presented using the difference operator as ∆Pk =
∑k

s=1 ωs∆ps.
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Using summation by parts, also known as Abel’s lemma (Guenther and Lee, 1988) or formula

(Fishburn and Lavalle, 1995, p. 518), it follows that

∆Pk =
k−1
∑

s=1

[ωs − ωs+1]∆Fs +∆Fkωk. (A1)

We already know from Theorem 2.1 that ωk > 0 and ωs − ωs+1 > 0 ∀s = 1, . . . , k − 1.

Therefore, clearly from Equation A1, the condition that ∆Fs ≤ 0 ∀s ≤ k and ∆Fs < 0 for

at least one s ≤ k is sufficient to ensure that ∆Pk < 0 ∀P ∈ P and for a given ck ∈ C−S.

We next prove the necessity part by contradiction. Consider the situation, where ∆Ft > 0

for some t ≤ k, ∆Fs ≤ 0 for all s ≤ k but s 6= t, and ∆Fs < 0 for some s ≤ k but s 6= t. For

a sufficiently large value of ωt − ωt+1 in Equation A1, it may always be possible to find that

∆Pk > 0. Or, consider the situation ∆Fs = 0 for all s ≤ k. In this case, ∆Pk = 0. Hence,

the necessary condition requires both ∆Fs ≤ 0 for all s ≤ k and ∆Fs < 0 for some s ≤ k.

This completes the proof.

Appendix A5. Proof of Theorem 4.2

Consider some k ≥ 2 and some α ∈ [1, k − 1] ⊆ N. Let Ωk
α be the set of all S-dimensional

ordinal weighting vectors corresponding to subclass Pα (see Theorems 3.1 and 2.1), so that:

Ωk
α =



























































(ω1, . . . , ωS) | ω1 = 1; ωs−1 > 2ωs − ωs+α ∀s = 2, . . . , k − α; ωs−1 > 2ωs > 0

∀s = k − α + 1, . . . , k; and ωs = 0 ∀s > k whenever α ≤ k − 2

(ω1, . . . , ωS) | ω1 = 1; ωs−1 > 2ωs > 0 ∀s = 2, . . . , k; and ωs = 0 ∀s > k

whenever α = k − 1

.
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Now define Ω̄k
α as:

Ω̄k
α =



























































(ω1, . . . , ωS) | ω1 = 1; ωs−1 ≥ 2ωs − ωs+α ∀s = 2, . . . , k − α; ωs−1 ≥ 2ωs ≥ 0

∀s = k − α + 1, . . . , k; and ωs = 0 ∀s > k for α ≤ k − 2

(ω1, . . . , ωS) | ω1 = 1; ωs−1 ≥ 2ωs ≥ 0 ∀s = 2, . . . , k; and ωs = 0 ∀s > k

for α = k − 1

.

For given values of k and α, Ω̄k
α is bounded by a set of linear constraints and it is a convex

hull of k extreme points or extreme ordering weighting vector, denoted by ω̄
1, . . . , ω̄k. For

the rth extreme point ω̄
r, where r ∈ {1, 2, . . . , k}, maximum feasible positive weights are

assigned to the first r elements and minimum feasible weights are assigned to the rest of

the elements (where feasibility refers to satisfying the linear constraints defining the set Ω̄k
α),

such that ωs = ω̄r
s > 0 for all s = 1, . . . , r and ωs = ω̄r

s = 0 for all s = r + 1, . . . , S.18 Any

ω ∈ Ω̄k
α is a convex combination of these k extreme ordering weighting vectors, such that

ω =
∑k

r=1 θrω̄
r, where

∑k

r=1 θr = 1 and θr ≥ 0 for all r = 1, . . . , k.

The restrictions on the aforementioned θr’s may be verified as follows. Since, ω1 = 1 and

ω̄r
1 = 1 for all r by Theorem 2.1, then plugging these values in ω1 =

∑k

r=1 θrω̄
r
1 yields

∑k

r=1 θr = 1. Next, define:

us =







































ωs − 2ωs+1 + ωs+α+1 ∀s = 1, . . . , k − α− 1 and ωs − 2ωs+1

∀s = k − α, . . . , S − 1 whenever α ≤ k − 2

ωs − 2ωs+1 ∀s = 1, . . . , S − 1 whenever α = k − 1

.

18The proof is similar in spirit to the proof of Proposition 1 in Seth and McGillivray (2018).
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Since, ωs =
∑k

r=1 θrω̄
r
s for all s and ω̄r

s = 0 for all s > r, we obtain:

us =



















∑k

r=s θrω̄
r
s − 2

∑k

r=s+1 θrω̄
r
s+1 +

∑k

r=s+1+α θrω̄
r
s+1+α when s ≤ k − α− 1

∑k

r=s θrω̄
r
s − 2

∑k

r=s+1 θrω̄
r
s+1 otherwise

.

Rearranging the right hand side of us yields:

us = θsω̄
s
s +

s+α
∑

r=s+1

θr[ω̄
r
s − 2ω̄r

s+1] +
k
∑

r=s+1+α

θr[ω̄
r
s − 2ω̄r

s+1 + ω̄r
s+1+α], (A1)

where the third component on the right hand side of Equation A1 exists only when s+α+1 ≤

k. Given that the extreme weighting vectors satisfy the equality restrictions in Ω̄k
α, the second

component and the third component (whenever in existence) on the right-hand side must be

equal to zero. Hence, us = θsω̄
s
s for all s, which is unrelated to the restrictions of Theorem

3.1. Given that us ≥ 0 for all s = 1, . . . , k by the definition of Ω̄k
α and also ω̄s

s > 0 (i.e.,

s = r) for all s = 1, . . . , k by the definition of extreme weighting vectors, then, substituting

r = s, it must be the case that θr ≥ 0 for all r = 1, . . . , k.

The primary difference between Ωk
α and Ω̄k

α is that the elements of Ω̄k
α satisfy the non-strict

versions of the inequality restrictions prescribed by Theorem 3.1. Clearly, Ωk
α ⊂ Ω̄k

α and

therefore any ω ∈ Ωk
α is also a convex combination of ω̄1, . . . , ω̄k, i.e., ω =

∑k

r=1 θrω̄
r, such

that
∑k

r=1 θr = 1. However, the strict inequality constraints in Ωk
α require that us > 0 for

all s = 1, . . . , k, which implies that θr > 0 for all r = 1, . . . , k for Ωk
α.

For any p ∈ P, let us denote the poverty level evaluated at some ω as P (p, ck;ω) and, given

additive decomposability, we must have P (p, ck;ω) =
∑k

r=1 θrP (p, ck; ω̄
r), where

∑k

r=1 θr =

1 and θr > 0 for all r = 1, . . . , k. Clearly, for some p,q ∈ P, if P (p, ck; ω̄
r) ≤ P (q, ck; ω̄

r)

for all r = 1, . . . , k, with one strict inequality, then it follows directly that P (p, ck;ω) <
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P (q, ck;ω) for any ω ∈ Ωk
α or, equivalently, for all P ∈ Pα for a given ck. This proves

sufficiency.

In order to prove necessity, suppose P (p, ck; ω̄
r) > P (q, ck; ω̄

r) for some r ∈ {1, 2, . . . , k}.

Then, for a sufficiently large value of θr (i.e., for θr → 1), it is always possible to have

P (p, ck;ω) > P (q, ck;ω). Furthermore, in case P (p, ck; ω̄
r) = P (q, ck; ω̄

r) for all r =

1, . . . , k, then certainly P (p, ck;ω) = P (q, ck;ω) for all ω ∈ Ωk
α. Hence, the conditions,

P (p, ck; ω̄
r) ≤ P (q, ck; ω̄

r) for all r = 1, . . . , k, with one strict inequality, are also necessary.

Finally, the solutions for the k extreme points are obtained as follows. By Theorem 2.1,

ω̄r
1 = 1 for all r = 1, . . . , k. From above, we already know that ω̄r

s = 0 for all s = r+1, . . . , S

and for every r. Therefore, for every r ∈ {1, . . . , k}, ω̄r
s = 0 for all s > r. We also know that

ω̄r
s > 0 for all s ≤ r. Now, for any α and for every r ∈ {2, . . . , k}, we obtain the following

system of (r − 1) equations: ω̄r
1 = 2ω̄r

2 − ω̄r
2+α, ω̄

r
2 = 2ω̄r

3 − ω̄r
3+α, . . . , ω̄

r
r−α−1 = 2ω̄r

r−α − ω̄r
r ,

ω̄r
r−α = 2ω̄r

r−α+1, . . . , ω̄
r
r−2 = 2ω̄r

r−1, ω̄
r
r−1 = 2ω̄r

r . There are (r − 1) unknowns: ω̄r
2, . . . , ω̄

r
r ,

since ω̄r
1 = 1. Solving the system of equations, we obtain ωr

s = ω̄r
s for all s = 2, . . . , r and for

all r = 1, . . . , k in Equation 4.1. This completes the proof of the theorem.

Appendix A6. Proof of Corollary 4.2

We use the difference operators defined in Appendix A4. Summing by parts the first com-

ponent on the right-hand side of Equation A1 and then rearranging the terms, we obtain:

∆Pk =
k−1
∑

s=1

(

{[ωs − ωs+1]− [ωs+1 − ωs+2]}
s
∑

ℓ=1

∆Fℓ

)

+ ωk

k
∑

s=1

∆Fs. (A1)
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We know from Corollary 3.1 that [ωs − ωs+1]− [ωs+1 − ωs+2] > 0 ∀s = 1, ..., k− 1. Likewise,

by Theorem 2.1, ωk > 0. Therefore
∑s

ℓ=1 ∆Fℓ ≤ 0 for all s = 1, ..., k with at least one strict

inequality is sufficient to ensure that, for any p,q ∈ P, P (p, ck) < P (q, ck) ∀P ∈ P1. On the

contrary, suppose
∑s

ℓ=1 ∆Fℓ > 0 for some s ∈ {1, . . . , k}. Now, note that there is no further

restriction on whether any of the weight functions in Equation A1 is strictly greater than

the others. Then, attaching a sufficiently large weight to this component (i.e.
∑s

ℓ=1 ∆Fℓ > 0

for some s ∈ {1, . . . , k}) may result in P (p, ck) > P (q, ck) for some P ∈ P1. Hence, the

conditions are also jointly necessary, which completes the proof.
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