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a b s t r a c t 

Patient-specific computational models of structure and function are increasingly being used to diagnose 

disease and predict how a patient will respond to therapy. Models of anatomy are often derived after seg- 

mentation of clinical images or from mapping systems which are affected by image artefacts, resolution 

and contrast. Quantifying the impact of uncertain anatomy on model predictions is important, as models 

are increasingly used in clinical practice where decisions need to be made regardless of image quality. 

We use a Bayesian probabilistic approach to estimate the anatomy and to quantify the uncertainty about 

the shape of the left atrium derived from Cardiac Magnetic Resonance images. We show that we can 

quantify uncertain shape, encode uncertainty about the left atrial shape due to imaging artefacts, and 

quantify the effect of uncertain shape on simulations of left atrial activation times. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Patient-specific models of the heart are increasingly used to 

diagnose and treat patients ( Niederer et al., 2019; Colli Franzone 

et al., 2006 ). Personalised cardiac models are routinely developed 

from clinical images. Segmentation of these images defines the car- 

diac anatomy, and meshing these segmentations provides a math- 

ematical description of the shape of the heart. The equations de- 

scribing cardiac function can then be solved over the mesh to pre- 

dict the response to the treatment. 

If cardiac models are to be used routinely in the clinic it will 

be increasingly important to understand the effects of data uncer- 

tainty on model predictions, as well as what level of data qual- 

ity is required to make models with sufficient accuracy to in- 

form patient care ( Mirams et al., 2016; Gray and Pathmanathan, 

2018 ). Recent studies have considered the impact of uncertainty 

in determining local tissue excitability ( Dhamala et al., 2018 ), 

in the activation map in the presence of an uncertain conduc- 

tivity tensor ( Quaglino et al., 2018 ), and on the distribution of 

the epicardial extra-cellular potential including the ST duration 
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( Johnston et al., 2018 ). However, the effect of uncertainty in model 

shape on simulation predictions has not been addressed. 

Clinical images of the heart from echocardiography, computed 

tomography scans (CT), magnetic resonance imaging (MRI) or pa- 

tient anatomies recorded using electro-anatomical mapping sys- 

tems are affected by noise, limited by resolution, and susceptible 

to artefacts. These will all affect the quality of the image, the seg- 

mentation, the mesh and finally the simulation predictions. 

In this study, we consider the specific case of left atrial elec- 

trophysiology simulations. However, the approach could be gener- 

alised to the ventricles or other organ systems. Previous atrial elec- 

trophysiology models have been created from CT data ( Fastl et al., 

2018 ), MRI data ( Roney et al., 2018 ) and electro-anatomical map- 

ping data ( Corrado et al., 2018a ). However, the uncertainty in these 

images and mapping systems have not been considered when in- 

terpreting simulation predictions. In this paper, we first derive a 

method for estimating the left atrium anatomy in a probabilis- 

tic way; our approach quantifies the shape uncertainty. We de- 

scribe the uncertainty that is generated by the composition of sev- 

eral sources (artefacts, inter- and intraobserver variability ...) with 

a single term and estimate its distribution. Then, we validate the 

method using images from 130 clinical cases: 70 for training and 

https://doi.org/10.1016/j.media.2019.101626 
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60 for testing. Finally, we quantify the effect of uncertain shape on 

simulations of local activation time. 

2. Methodology 

In this section, we introduce a method to characterise the 

uncertainty about the true anatomy X given an observation 

X obs . Atrial shapes are often represented using a 2D Delaunay 

triangulation formed from thousands of points. Previous work 

( Lewandowski et al., 2013; Varela et al., 2017; Bieging et al., 2018 ) 

has shown that variability in atrium and ventricular anatomies can 

be accurately described through 10–20 parameters using principal 

components ( Hotelling (1933) ). We adopt this approach and char- 

acterise the shape X through the use of a projection into the space 

defined by the principal components ( Hotelling, 1933 ), and de- 

scribe uncertainty about the shape using a statistical model which 

we analyse in a Bayesian framework, i.e., we find the posterior 

probability p ( X | X obs ). Unknown hyper-parameters and the reduced 

dimensional subspace, are estimated from a library of atrial MRI 

measurements. 

2.1. Description of left atrium anatomy library 

We collected atrial MRI data from 130 patients with in-plane 

resolution of 0.94 mm and slice thickness of 2 mm, and seg- 

mented the left atrium (LA) using a semiautomatic work-flow 

( Razeghi et al., 2017 ). With the same platform, we cropped the 

left atrial appendage and pulmonary veins at the ostium and re- 

moved the mitral valve from the shell. The atrial shapes do not in- 

clude the left atrial appendage. A rounder LA shape with a shorter, 

more laterally rotated appendage is predictive of AF recurrence, 

( Bieging et al., 2018 ); however, the lack of full coverage using MRI 

and the large variability of the appendage morphology, made it dif- 

ficult to include its variability within the model. We chose to in- 

crease the number of images available to us at the expense of not 

including the left atrial appendage. Hence, we currently focus on 

the left atrial body shape only. For each cropped segmentation, we 

next generated a 2D triangle element shell mesh using a march- 

ing cube algorithm within the MIRTK as opposed to group. We 

then built an atlas mesh formed by N p points and registered each 

patient’s atria to the atlas by minimising the distance between 

the two manifolds using the diffeomorphism method implemented 

in Deformetrica ( Durrleman et al., 2014 ). Deformetrica uses the 

large deformation diffeomorphism metric mapping (LDDMM) algo- 

rithm ( Beg et al., 2005 ) to compute deformations. Briefly, LDDMM 

computes the diffeomorphic transformation between the ambient 

spaces embedding the objects that minimises the distance be- 

tween them. LDDMM parametrises the ambient spaces and the de- 

formation using a set of control points and applied vectors (mo- 

menta). Deformetrica adopts the varifold distance between spaces 

defined in Durrleman et al. (2014) , (eq 14). This provides a con- 

sistent mesh topology for representing all patient anatomies. Each 

patient’s anatomy is then described by the same number of nodes 

N p by a vector [ x 1 , . . . , x N p , y 1 , . . . , y N p , z 1 , . . . , z N p ] 
⊤ of the x, y and 

z coordinates of the deformed atlas obtained by unrolling the point 

coordinates. We define by X obs ∈ R 3 N p the point coordinates of the 

atlas mesh after registration onto the reference mesh topology. 

We then divide the data in a training set of M = 70 anatomies 

and a test set of M test = 60 anatomies. This gives us our libraries 

X 1 
obs 

, . . . , X M 
obs 

and X 
M+1 
obs 

, . . . , X 
M+M test 
obs 

of observed atrial anatomies. 

We use μ to denote the average atrial anatomy (the population 

mean) and estimate this by the sample mean shape 

ˆ μ = X obs = 
1 

M 

M ∑ 

m=1 

X 
m 
obs . 

2.2. Statistical model of atrial anatomy 

We assume the measured anatomy X obs is a noisy version of 

the true anatomical shape 

X obs = X + e (1) 

where e is a random error, here assumed to be normally dis- 

tributed with zero mean and (unknown) covariance �X . The aim 

of our analysis is to characterise the uncertainty about X given the 

measurement X obs . We take a Bayesian approach and compute the 

posterior 

π (X | X obs ) ∝ π (X obs | X ) π (X ) 

where π ( X ) is a prior distribution over left atrium shapes, and 

π ( X obs | X ) is the likelihood of observing measurement X obs if the 

true shape is X . The resolution of the measurements means that 

the space of possible shapes is high dimensional (3 N p ≈ 40, 0 0 0) 

making it difficult to characterise the uncertainty about the shape 

naively in this high dimensional space (with only M = 70 mea- 

surements), and so we seek to reduce the dimension of the prob- 

lem. We work in a reduced subspace of dimension N modes ≪ 3 N p 

and suppose that this subspace has a basis { u 1 , . . . , u N modes 
} where 

u j ∈ R 3 N p . We then represent X as 

X = μ + 

N modes ∑ 

i=1 

λi u i + e ⊥ 

= μ + U λ + e ⊥ (2) 

where λ = (λ1 , . . . , λN modes 
) ⊤ is the coordinate of X in the sub- 

space, U = [ u 1 , . . . , u N modes 
] ∈ R 3 N p ×N modes , and e ⊥ is an error term 

representing the error that arises from restricting our attention to 

this reduced space of anatomies. 

We assume the following prior distribution on λ

λ ∼ N ( 0 , �λ) . (3) 

From the definition (2) , it follows that also e ⊥ can be repre- 

sented as a linear combination of modes: e ⊥ = U ⊥ λ⊥ . Here U ⊥ = 

[ u N modes +1 , . . . , u N modes +3 N p ] is a basis of the subspace that is or- 

thogonal to the subspace generated by U , while λ⊥ are the coordi- 

nates of X in this subspace. As in Eq. (3) , we make the assumption 

λ⊥ ∼ N(0 , �λ⊥ 
) . Combining these assumptions, we obtain: 

e ⊥ ∼ N ( 0 , �e ⊥ ) , �e ⊥ = U ⊥ �λ⊥ U 
⊤ 
⊥ . 

It is conceptually possible to determine �λ⊥ 
following the pro- 

cedure we propose in Section 2.5 . However, this would require a 

training set with M ≥ 3 N p samples (for the current shape model 

this would be 40,707 segmentations). 

Combining Eqs. (1) and (2) gives 

X obs = μ + U λ + e TOT (4) 

where e TOT = e ⊥ + e , which has a zero-mean Gaussian distribution 

e TOT ∼ N ( 0 , �e TOT ) (5) 

where �e TOT is a covariance matrix we define below. 

Eqs. (3)–(5) define our statistical model. We use the training li- 

brary of observed atrial anatomies to estimate all of the unknown 

parameters, �λ, �e TOT , and μ, as well as the reduced order ba- 

sis U (see Section 2.3 ). Given values for these parameters, we can 

then solve the Bayesian updating problem to compute the poste- 

rior distribution for the unknown coordinates in the reduced space 

π ( λ| X obs ) = π (X obs | λ) π ( λ) /π (X obs ) and then compute the un- 

certainty about the unknown shape X via 

π (X | X obs ) = 

∫ 
π (X | λ) π ( λ | X obs )d λ. 

This is described in Section 2.5 . 
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2.3. Estimation of the reduced space 

We limit our interest to the affine space formed by the columns 

of U , i.e., we consider shapes of the form 

μ + 

N modes ∑ 

i =1 

λi u i 

for all possible values of λ. We use the training library of the mea- 

sured anatomies to select the basis vectors U using principal com- 

ponent analysis (PCA). If 

̂ � = 
1 

M − 1 

M ∑ 

k=1 

(X 
k 
obs − ˆ μ)(X 

k 
obs − ˆ μ) ⊤ 

is the sample covariance matrix of the M library shapes, then the 

principal components are the eigenvectors of ̂ �. For reasons of nu- 

merical stability and efficiency, we work with the singular value 

decomposition of 

A obs : = [ X 
1 
obs − ˆ μ . . . X 

M 
obs − ˆ μ] 

= U�V ⊤ . (6) 

Here U = [ u 1 . . . u M ] is the 3 N p × M matrix containing the princi- 

pal components (PCs), which we truncate to only include the first 

N modes modes of the decomposition. The PCs are ordered in order 

of decreasing singular values, so that u 1 is the direction in the data 

in which the data are most variable. This truncation is the optimal 

compression of A obs in terms of minimizing the Frobenius norm 

(essentially the L 2 -norm for matrices) of the approximation error. 

The number of modes, N modes , for describing the atrial anatomy 

was set to capture ≈ 95% of the shape variance. 

2.4. Variance matrices 

We need to specify the covariance matrix �e TOT for the error 

term in Eq. (5) . This error term consists of the observation error 

and the truncation error that occurs due to restricting our atten- 

tion to the subspace span (U) . Instead of using the structure in e ⊥ , 

which is computationally burdensome to deal with, we model the 

covariance structure of e TOT using a standard covariance model. We 

make the assumption that the correlation between errors at differ- 

ent locations is a monotone decreasing function of the (geodesic) 

distance between the locations. In particular, we use a Matérn 

covariance ( Minasny and McBratney (2005) ) function to charac- 

terise �e TOT , as this gives an error that is spatially continuous, but 

nowhere differentiable (i.e., not smooth). This covariance function 

has two parameters: 

�
i x k , j x l 
e TOT = ν2 exp 

(
−
d ij 

l 

)
δx k ,x l (7) 

Here, ν2 represents the variance of the error, l the characteristic 

length of the spatial correlation, and d ij the geodesic distance be- 

tween points i and j evaluated on the mean shape μ. δx k ,x l is the 
Kronecker delta between the space components x k and x l , and in- 

dex i x k represents the entry in �e TOT corresponding to node i and 

component x k . 

To simplify the calculation we definex 

X 
reduced 
obs = U 

⊤ (X obs − μ) 

to be the projection of X obs into the reduced space. Then 

X 
reduced 
obs | λ ∼ N 

(
λ, U 

⊤ �e TOT U 
)

by Eq. (5) . If we assume λ ~ N ( 0 , �λ) then marginalising out the 

dependence on λ gives 

X 
reduced 
obs ∼ N 

(
0 , U 

⊤ �e TOT U + �λ

)
. 

We then estimate ν2 and l by their maximum likelihood esti- 

mates 

ν2 , l = arg max log L (ν2 , l;X 
reduced 
obs ) 

which we compute using STAN ( Carpenter et al., 2017 ) after first 

transforming to 

p l = log (l) p ν2 = log (ν2 ) 

to ensure positivity. 

2.5. Bayesian inference of the posterior distribution for λ and X 

The uncertainty in the shape is characterised by the uncertainty 

on the λ values. We infer the λ values within a Bayesian frame- 

work, updating a prior distribution with observations to obtain the 

posterior distribution for λ. A priori, we assume the components 

of λ are mutually independent and normally distributed ( Eq. 3 ). 

To specify �λ we use �, the matrix of singular values obtained 

in Eq. (6) . These values are proportional to the standard deviation 

associated with each principal component. We set 

σ 2 
i = 

�2 
i 

M − 1 

and let � = diag (σ1 , . . . , σN modes 
) . We set �λ = �⊤ � and use ˆ λ = 

�−1 λ to denote the standardised coordinates so that if λ ~ N ( 0 , 

�λ) then 
ˆ λ ∼ N ( 0 , I ) . We test the reasonableness of this prior dis- 

tribution by estimating the coordinates using 

ˆ λ
i 
= �−1 U 

⊤ 
(
X 

i 
obs − μ

)
, i = 1 . . . M 

for the atrial library, and then testing whether the ˆ λi 
j are indistin- 

guishable from a sample of independent N (0, 1) random variables 

using a Kolmogorov Smirnov test. 

We experimented with adding an additional degree of freedom 

into the model to inflate or deflate the prior variance by using the 

prior distribution ˆ λ ∼ N(0 , α2 I) , and determine α using the train- 

ing set. In this case, we obtain �λ = α2 �T �. (See Appendix A for 

details.) 

To compute the posterior distribution, we note that the prior 

distribution and the likelihood are both Gaussian, hence the prob- 

lem is conjugate and we obtain a normal distribution for the pos- 

terior distribution. To see this, note that 

π ( λ) ∝ exp 
(
−
1 

2 
λ

⊤ 
�−1 

λ
λ
)

π (X obs | λ) ∝ exp 
(
−
1 

2 
(X obs − μ −U λ) ⊤ �−1 

e TOT 
(X obs − μ −U λ) 

)
. 

Hence 

π ( λ| X obs ) ∝ exp 
(
−
1 

2 
λ

⊤ 
�−1 

λ
λ
)
exp 

(
−
1 

2 
(X obs − μ −U λ) ⊤ �−1 

e TOT 

× (X obs − μ −U λ) 

)

∝ exp 
(
−
1 

2 

(
λ

⊤ 
�−1 

λ
λ + (X obs − μ −U λ) ⊤ �−1 

e TOT 

× (X obs − μ −U λ) 
))

∝ exp 
(
−
1 

2 

(
λ

⊤ (
�−1 

λ
+ U 

⊤ �−1 
e TOT 

U 
)
λ − 2 λ

⊤ 
U 

⊤ �−1 
e TOT 

× (X obs − μ) + const 
))

∝ exp 
(
−
1 

2 

(
λ

⊤ 
�−1 

λ, post 
λ − 2 λ

⊤ 
�−1 

λ, post 
μpost + const 

))

where const represents the integration constant. We thus obtain 

the posterior distribution for λ: 

λ| X obs ∼ N 
(
μpost , �λ, post 

)
(8) 
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where 

�λ, post = 
(
�−1 

λ
+ U 

⊤ �−1 
e TOT 

U 
)−1 

μpost = �λ, post U 
⊤ �−1 

e TOT 
(X obs − μ) . 

Finally, we obtain: 

X | X obs ∼ N 
(
ˆ μ + U μpost , U �λ, post U 

⊤ 
)

by marginalising out the dependence on λ. We provide details on 

the inversion of �e TOT in Appendix B . 

2.6. Quantification of the uncertainty on simulations 

Anatomy uncertainty affects numerical simulations of cardiac 

electrophysiology as the anatomical mesh may change size and 

shape. Denoting by y = f (X ) the generic solution of a numerical 

simulation defined on the uncertain domain X , we can evaluate the 

expected value E [ y | X obs ] and the variance V ar [ y | X obs ] using Monte 

Carlo. Once a new anatomy X obs is measured with MRI, we first 

evaluate the posterior distribution (8) ; next, we draw N samples in- 

dependent and identically distributed (i.i.d.) random samples from 

π ( λ| X obs ) and we obtain the anatomy samples (X 1 , ., X 
N samples ) as 

X k = μ + U λ
k 
. We then check the consistency of each sample X k 

using the following methodology: for each triangle T k 
j 

forming the 

2D manifold, we evaluate 1) the ratio A k 
j 
/A REF 

j 
between the area 

A k 
j 
of the jth triangle in the kth sample and the area A REF 

j 
of the 

jth triangle on the mean shape. Whenever A k 
j /A 

REF 
j approaches 0, 

the jth triangle degenerates and the sample is inconsistent and 

thus discarded. We then evaluate 2) the dot product � N k 
j 

· � N REF 
j 

be- 

tween the normal � N k 
j 

of the jth triangle in the kth sample and 

the normal � N REF 
j 

of the jth triangle on the mean shape. Whenever 

� N k 
j 

· � N REF 
j 

becomes negative, at least one point in the jth triangle 

is displaced into another element: the sample is inconsistent and 

thus discarded. This ensures that each sample is a consistent mesh. 

On each sample anatomy we evaluate the sample solution y i = 

f (X i ) , and finally we use the Monte Carlo approximations 

E [ y | X obs ] ≈
1 

N samples 

N samples ∑ 

i=1 

y i , 

V ar [ y | X obs ] ≈
1 

N samples − 1 

N samples ∑ 

i=1 

(y i − E [ y | X obs ]) 
2 

to compute the estimated posterior mean and variances. 

3. Results 

3.1. Generating the left atrium mean shape 

Table 1 summarises the characteristics of the patients included 

in this study. Following the procedure described in Section 2.1 , we 

Table 1 

Patient statistics. (BMI = Body mass index. EDV = end diastolic vol- 

ume. ESV = End systolic volume. PAF = Paroxysmal atrial fibrillation. 

PsAF = Persistent atrial fibrillation.). 

Quantity training set (70 patients) test set (60 patients) 

Female 45% 31% 

PAF 43.33% 50% 

PsAF 23.33% 50% 

Control 33.33% 0% 

age 61( ± 11) 64( ± 10) 

weight(kg) 82( ± 15) 87( ± 15) 

height(cm) 172( ± 11) 175( ± 9) 

BMI 28( ± 7) 29( ± 5) 

LA EDV(ml) 63( ± 27) 81( ± 33) 

LA ESV(ml) 104( ± 29) 119( ± 27) 

first generated 130 meshes (19,359 ± 8,047 vertices) from clini- 

cal MRI images; next, we registered all the 130 meshes to an atlas 

formed by N p = 13 , 569 vertices. 

Fig. 1 shows the sample mean shape generated from the 70 

atrial anatomies used as a training set. On the same figure, we 

marked the left atrial appendage (LAA), the mitral valve (MV) and 

each of the four pulmonary veins (PV). 

3.2. Anatomical model reduction 

We applied PCA to reduce the number of parameters describ- 

ing the shape. Fig. 2 -A shows the ratio between σ 2 
i 

captured by 

each component and the largest value of σ 2 that corresponds to 

the first component. Using 15 modes we captured ≈ 95% of the 

shape variance. 

To provide a representation of each mode, we cal- 

culated the displacement of the i − th mode at each 

vertex as: d = σi u i , obtaining the unrolled vector: 

([ d x 1 , . . . , d 
x 
N p 

, d 
y 
1 , . . . , d 

y 
N p 

, d z 1 , . . . , d 
z 
N p 

] ⊤ ) ∈ R 3 N p . Fig. 3 shows the 

map of the displacement magnitude for each of the 15 modes. 

We then checked whether the chosen number of modes was 

independent of the training set size, as described in Section 2.3 . 

Fig. 2 -B shows the values of σ 2 
i 
/σ 2 

1 and their confidence intervals 

when the training set is formed by 31, 41, 51 or all patient cases. 

For all the sample sizes tested, we capture ≈ 95% of the shape 

variance using 15 modes. 

3.3. Validation of reduced anatomy representation 

We tested the suitability of the proposed reduced representa- 

tion model using k-fold cross-validation ( Stone, 1974 ). First, we di- 

vide the training set into k = 10 folds, each one formed by M / k = 7 

samples. Next, we train the model using the samples arising from 

(k − 1) folds and we evaluate the truncation error on each sam- 

ple in the fold that has not been used for training. We repeat the 

procedure k times selecting each fold as a test set. Once all the k 

folds have been tested, we then shuffle the samples in the data set 

Fig. 1. Sample mean evaluated from 70 meshes used for training data. On the same shape, we marked the left atrial appendage (LAA), the left superior pulmonary vein 

(LSPV), the left inferior pulmonary vein (LIPV), the right superior pulmonary vein (RSPV), the right inferior pulmonary vein (RIPV) and the mitral vale (MV). 
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Fig. 2. A: logarithmic plot of σ 2 
i /σ

2 
1 when considering all 70 data sets. B:logarithmic plot of σ 2 

i /σ
2 
1 , evaluated by varying the number of samples; dashed lines represent 

the confidence interval. 

Fig. 3. Map of the magnitude of the displacement d = σi u i for each of the 15 modes. 

Fig. 4. A: plot of the distribution of the truncation error. B: Magnitude field of the mean of the truncation error evaluated when describing the anatomy with 15 modes. We 

marked the left atrial appendage (LAA), the left superior pulmonary vein (LSPV), the left inferior pulmonary vein (LIPV), the right superior pulmonary vein (RSPV), the right 

inferior pulmonary vein (RIPV) and the mitral vale (MV). 

with a random permutation and we repeat the procedure. We test 

a total of N perm = 20 random permutations; at the end, we obtain 

N perm × (M / k) × k = N perm × M = 1400 truncation error vectors. Fi- 

nally, we collect all the entries of the truncation error vectors in 

a unique set, hence formed by N perm × M × 3 N p samples and 

we evaluate the sample mean and the sample standard deviation. 

Fig. 4 - A shows the distribution of the truncation error for 10, 15, 

30 and 60 modes. This test demonstrates that the truncation error 

converges to a distribution that has a zero mean and a standard 

deviation that decreases when increasing the number of modes. 

Table 2 

Mean and standard deviation of the truncation error 

using 10, 15, 30 and 60 modes respectively. 

nb of modes 10 15 30 60 

mean 0.0 0.0 0.0 0.0 

standard deviation 1.64 1.4 1.01 0.66 

Table 2 reports the mean and standard deviation of the truncation 

error using 10, 15, 30 and 60 modes. 
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Fig. 5. Parameter values evaluated with the maximum joint posterior estimation 

algorithm (red dots) fitted expression (black line). Left panel represents the charac- 

teristic distance l ; right panel the typical standard deviation, ν . The green diamonds 

represent the fitting with N modes = 15 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Next, we evaluated the vector field of the mean of the trunca- 

tion error for a shape description with 15 modes and we plotted 

the vector magnitude field onto the reference atlas ( Fig. 4 - B). 

3.4. Fitting the combined truncation error and measurement 

uncertainty model 

We evaluated the value of the parameters ( l, ν) that charac- 
terise the covariance matrix (7) using the procedure described 

in Section 2.4 . Next, we fitted exponential functions to charac- 

terise the parameter values as a function of the number of modes. 

Fig. 5 shows the parameter values evaluated using the maxi- 

mum joint posterior estimation algorithm implemented in STAN 

( Carpenter et al., 2017 ) (red dots) and the fitted expression (black 

line). Asymptotically, the two parameters approach l → 41.34 mm 

and ν → 4.51 mm. 

When we approximate the shape using 15 modes, we found l = 

20 . 91 mm and ν = 6 . 28 mm . Fig. 5 shows the value of the fitting 

when N modes = 15 (green diamonds). 

3.5. Reduced dimensionality shape prior 

To test if the shape population can be represented using the 

distribution ˆ λ ∼ N ( 0 , I ) , we first calculated ˆ λ for each of the 70 

training set cases and evaluate the sample mean and the sam- 

ple standard deviation giving μˆ λ
≈ 1 e −17 and σˆ λ

≈ 0 . 99 . Testing 

for normality we found no evidence to reject the null hypothesis 

Fig. 7. Distribution of the discrepancy between the measurements and the posterior 

anatomies (blue bars) and of the discrepancy between the measurements and the 

mean shape (red bars). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

(p = 0.30). The histogram plot ( Fig. 6 -A) and the QQ plot ( Fig. 6 -B) 

for ˆ λ showed excellent agreement with a standard normal distri- 

bution. This confirms that we can represent the population distri- 

bution using a normal distribution. 

3.6. Estimating shape posterior 

We tested the performances of the algorithm presented here on 

the test set of M test = 60 clinical MRI datasets. None of the samples 

of the test set were used to train the model. We evaluated the dis- 

crepancies X k post − X k 
obs 

, k = 1 . . . M test between the measurements 

and the posterior anatomies and we compared with the discrep- 

ancies μ − X k 
obs 

between the measurements and the prior (mean) 

anatomy. Next, we compared the projection of the observations on 

the modes λobs = U ⊤ (X obs − μ) with the posterior expected value 

μpost and with the 95% confidence interval (CI), evaluated on the 

marginal distribution, as λ
post , ±95CI 
i 

= ( μpost ) i ± 1 . 96 
√ 

(�λ, post ) ii . 

Fig. 7 shows the overall distribution of the discrepancies, for 

all the M test cases and all the 3 N p components. We found dis- 

crepancies distributed with a null mean and a standard deviation 

of 2.34 mm (blue bars). The discrepancy with the mean shape 

has a distribution with a null mean and a standard deviation of 

3.51 mm (red bars). Fig. 8 shows the projection λobs of the ob- 

servations on the reduced space (black dots). On all the cases, 

Fig. 6. A: Histogram plot of the distribution of ̂  λ; the black line represents the normal distribution N (0, 1). B: QQ plot of the empirical cumulative density function (cdf) and 

the standard normal cdf. 
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Fig. 8. Projection λobs of the observations on the reduced space (black dots) and posterior mean μpost (blue dots) for all the M test test cases. The same figure depicts the 

95% confidence interval λ
post , 95CI 
i (blue bar). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Anatomies used to test the method in presence of artefacts. 

Fig. 10. Discrepancy distributions for each of the 3 cases when the mesh is obtained segmenting every second slice (blue bars) and every 8-th slice (red bars). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

λobs ∈ [ λ
post , −95CI 
i 

, λ
post , +95CI 
i 

] for the first 5 modes, while only 4 

cases showed larger discrepancies on higher modes. 

We then tested the performances of the method in the presence 

of artefacts with the 3 new anatomies of Fig. 9 obtained from MRI. 

On each of the 3 new cases, we first manually segmented ev- 

ery second slice and we generated the reference 2D shell meshes. 

We then introduced uncertainty generating the 2D shell meshes 

on the same images segmenting every 8-th slice, representing a 4 

fold decrease in image resolution. In the meshes generated from 

segmenting every second slice the discrepancies between posteri- 

ors and observations presented a null mean and a standard devi- 

ation of 2.55 mm (respectively 2.98 mm for case 1, 2.22 mm for 

case 2 and 2.38 mm for case 3). When we use meshes obtained 

from an image segmented every 8-th slice, the discrepancies be- 

tween posteriors and observations overall presented a null mean 

and a standard deviation of 2.83 mm (respectively 3.28 mm for 

case 1, 2.47 mm for case 2 and 2.65 mm for case 3). Fig. 10 plots 

the distribution of the discrepancies for a mesh obtained segment- 

ing every second slice (blue bars) and every 8-th slice (red bars). 

3.7. Calculating uncertainty due to shape in electrophysiology 

simulations 

We evaluated the impact of the shape uncertainty on electro- 

physiology simulations. We evaluated the expected value and the 

variance of the local activation times (LAT) on the 3 anatomies in- 
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Table 3 

Distribution (mean and standard deviation) of sample A k 
j /A 

REF 
j and � N k 

j ·
� N REF 
j 

for each case. 

Case (A k 
j /A 

REF 
j ) mean (A k 

j /A 
REF 
j ) std ( � N k 

j ·
� N REF 
j ) mean ( � N k 

j ·
� N REF 
j ) std 

Case 1 1.34 0.26 0.98 0.02 

Case 2 1.1 0.27 0.97 0.04 

Case 3 1.24 0.24 0.99 0.01 

troduced at the end of Section 3.6 , and shown in Fig. 9 , that were 

obtained by segmenting every second slice from the MRI dataset. 

For each case, we draw a total of 12,0 0 0 independent identically 

distributed (iid) samples from the distribution (8) and then we ob- 

tain the sample shape from (2) . We then tested the sample con- 

sistency with the procedure described in Section 2.6 , summarises 

the distribution of A k 
j 
/A REF 

j 
and � N k 

j 
· � N REF 

j 
for each case Table 3 . All 

of the samples produced a valid mesh. 

The l 2 norm of the difference between the expected value eval- 

uated with 12,0 0 0 samples and the expected value we obtained 

using 10,0 0 0 samples was 1.58ms ± 0.53ms or ~ 1% of the to- 

tal activation time. Hence, 12,0 0 0 samples are adequate to eval- 

uate the uncertainty on LATs evaluation when the atrial shape is 

affected by uncertainty. 

Next, we simulated the LATs using the combined eikonal solver 

( Corrado and Zemzemi, 2018 ) and modified Mitchell–Schaeffer 

model ( Corrado and Niederer, 2016 ). This solver allows the eval- 

uation of the conduction velocity directly from the model parame- 

ters. In this paper, we use the technique presented in Corrado and 

Zemzemi (2018) to compute LATs for a single heartbeat. The sim- 

ulation was initialised by defining an activated region. We chose 

τin = 0 . 1 , τout = 2 . 5 and v gate = 0 . 1 as model parameters and an 

isotropic diffusivity of σm = 1 . 0 cm 2 / s for the atrial tissue. No 

anatomically tailored fibres were generated. These parameters pro- 

duce a conduction velocity comparable with human atrial my- 

ocites, ( Corrado et al., 2016; 2017 ). On the termination of the pul- 

monary veins, we chose a diffusivity of σm = 10 −7 cm 2 / s to avoid 

propagation in these regions. To take into account of the effect of 

low mesh resolution on the propagation through a graph, we set 

the corrective coefficient to δ = 0 . 87 . This value provided the min- 

imum RMS on LATs between the solution of the eikonal model and 

the solution of a finite element discretization of the monodomain 

equations with a discretization size h � 300 μm . We assigned an 

initial activated region by setting the value of LAT to 0 ms at a 

mesh point that was manually chosen on the mean shape and lo- 

cated in the proximity of the coronary sinus. This reflects the acti- 

vation location routinely used in clinical pacing studies. Since the 

mesh topology is kept constant across all the samples, we auto- 

matically adopted the same mesh point as the onset for each of 

the eikonal model solves. We finally evaluate the expected value 

and the standard deviation of LATs with the formula introduced in 

Section 2.6 . 

For each of the 3 cases, Fig. 11 shows the expected value of 

LATs, while Fig. 12 shows the distribution of the standard devia- 

tion. 

4. Discussion 

In this work we have developed a theoretical framework for en- 

coding shape and shape uncertainty, we have applied this method 

to estimate left atrium (LA) shape and uncertainty from cardiac 

MRI images and used a statistical description of the LA shape to 

quantify how shape uncertainty affects cardiac activation simula- 

tions in the left atrium. 

Model description. We parametrised the anatomy using the prin- 

cipal component analysis; this description allows characterising 

anatomy with a small number of parameters. The same descrip- 

tion has been used in ventricles, ( Lewandowski et al., 2013 ) with 

an atlas of 1152 points and 6 principal components and in atria, 

( Varela et al., 2017 ), registering a sphere characterised by 1608 de- 

gree of freedom on the atrium and then adopting 8 principal com- 

ponents. The complexity of the atrial shape and the requirement of 

performing simulations of the electrophysiology, however, require 

a larger number of points; moreover, the larger inter-individual 

variability required a larger number of modes. Hence, in this pa- 

per, we adopted an atlas with 13,569 nodes and 15 modes. When 

the cumulative explained variance is considered, 15 modes allow 

to capture ~ 90%, whereas in Lewandowski et al. (2013) authors 

captured ~ 84% using 6 principal components. 

Probabilistic approach Previous studies described the left atrial 

shape either using a set of surface correspondence points 

( Bieging et al., 2018 ), or through cubic Hermite basis functions, 

( Lewandowski et al., 2013; Varela et al., 2017 ) and then reduced 

the space of the parameter of interest evaluating the shape prin- 

cipal components. All of these approaches are deterministic and 

therefore unable to estimate how image quality will manifest in 

shape uncertainty. In this paper, we determine the LA shape as 

the shape that maximises the posterior conditional probability. 

This allows us to quantify uncertainties such as image artefacts 

and to quantify the level of uncertainty affecting the anatomy. 

Bayesian Convolutional neural networks (BCNN) have been pro- 

posed as a potential solution to avoid the over-fitting affecting 

CNN when the training set is small ( Srivastava et al. (2014) ; 

Peretroukhin et al. (2017) ); BCNN treats network weights as a 

probability distribution rather than as deterministic numbers al- 

lowing the network to provide an uncertainty estimate. Whereas 

this approach quantifies uncertainty, it presents some limitations 

that make it inadequate for the purposes presented in this paper. 

First, BCNN provides the probability a voxel is/is not myocardial 

tissue, hence the granularity is restricted by the voxel size. Sec- 

ond, BCNN quantifies the uncertainty by sampling the network pa- 

rameters, then forward propagating the image on each sampled 

CNN and finally using a Monte Carlo (MC) approach. CNN used in 

Fig. 11. Expected LAT for cases 1,2,3. The grey sphere represents the activation starting point. 



C. Corrado, O. Razeghi and C. Roney et al. / Medical Image Analysis 61 (2020) 101626 9 

Fig. 12. Distribution of the standard deviation on LAT for cases 1,2,3. The grey sphere represents the activation starting point. 

atrial segmentation are characterised by a large number of weights 

( Xiong et al. (2019) ; de Vente et al. (2019) ): hence, MC may require 

a large number of samples to adequately represent the output un- 

certainty. Conversely, the approach we proposed in this paper pro- 

vides a closed form for the probability distribution of the LA shape 

and achieves a higher sampling efficiency. 

Error magnitude In this paper, we obtained MRI with the reso- 

lution of (0.94 mm, 0.94 mm, 2 mm), as reported in Section 2.1 . 

When describing the shape with 15 modes, the cross-validation 

test on the truncation error ( Section 3.3 ) showed a standard de- 

viation of 1.96 mm ( CI 95 = 2 . 74 mm ): this value is comparable with 

the image resolution. However, when we consider the truncation 

error as a 3D vector field, the vector magnitude of the mean of 

the truncation error does not exceeds 0.15 mm ( Fig. 4 - B), a value 

negligible if compared with the MRI resolution. 

Discrepancies between measured and computed anatomies 

( Section 3.6 ) presented a standard deviation of 2.34 mm ( CI 95 = 

4 . 58 mm ). This value has the same order of magnitude as the 

image resolution; however, it performs better than the mean 

shape (standard deviation 3.51 mm, CI 95 = 6 . 88 mm ). The perfor- 

mances are affected by the uncertainty model, since the param- 

eters were set using the training set. Discrepancies evaluated be- 

tween measured anatomies and computed anatomies either in ab- 

sence or in presence of an uncertainty along the z (slice) directions 

( Section 3.6 ) showed standard deviations of 2.55 mm and 2.83mm 

and hence demonstrate the robustness of the model. 

Uncertainty on simulations Stochastic collocation techniques, 

( Castrillón-Candás et al., 2016; Sankaran and Marsden, 2011 ) are 

widely used to determine the uncertainty on a computed solu- 

tion when the uncertainty affects the computational domain. The 

approach we presented is compatible with stochastic collocation 

techniques efficiently, as i) the principal directions capture the 

largest variability (in the statistical sense) using a smaller num- 

ber of parameters ii) the principal components are mutually inde- 

pendent and ordered: adding new components allows refinement 

of the representation of the anatomy. The uncertainty on local ac- 

tivation times evaluated in Section 3.7 is a cumulative function 

that increases in late-activated regions. In the 3 cases we tested 

in Section 3.7 , we found a maximum standard deviation on LATs 

of ~ 8ms: this value is comparable with the LATs stability of 4ms 

used in Roney et al. (2019a) . 

Applications of the proposed approach Personalised compu- 

tational models represent a novel framework for understand- 

ing the mechanisms that develop and sustain atrial fibrillation 

and for tailoring and optimising the treatment. Recent works 

( Prakosa et al. (2018) ; Boyle et al. (2019) ) propose to identify the 

optimal ablation target from cardiac clinical imaging and computa- 

tional models and then register this on the electroanatomical map- 

ping anatomy to inform the clinician. Quantifying the model uncer- 

tainty and its impact on the identification of the ablation outcome 

adds robustness to the process. The framework we propose in this 

study supports this goal, as it allows the quantification of the un- 

certainty on the numerical simulation output and the registration 

process. This increases the robustness of the entire process. Specif- 

ically, we showed that uncertainties in the atrial anatomy affect 

the predicted activation maps. 

5. Limitations 

Anatomies are evaluated from image segmentation, that is a 

semi-automated process; hence, this introduces uncertainty, as far 

as inter-operator variability is concerned. We have taken the seg- 

mented images as a ground truth, however, multiple segmenta- 

tions by the same or different operators would have provided a 

consensus and potentially better estimate of the underlying atrial 

shape. 

The technique presented here requires that anatomies are de- 

scribed with a Delaunay triangulation with a fixed number of 

points. This implies registering an atlas on measured anatomy. 

Hence, the registration process introduces uncertainty, especially 

in regions where the discrepancy between the deformed atlas and 

the measured anatomy is large. In this paper, we did not take into 

account this source of uncertainty. However, upon visual inspection 

we found no significant discrepancies. 

Overall, the process requires some manual steps, such as the 

segmentation and the alignment (rigid registration) between the 

atlas and the measured surface before registration; this poses a 

limit on scaling this current approach to very large data sets. 

The left atrium is a 3D structure, and varying thickness 

across the wall will potentially influence activation patterns 

( Song et al. (2017) ). In the current study, we focused on 2D shell 

models as the left atrial anatomy was obtained using MRI im- 

ages with a resolution of 0.94 × 0.94 × 2 mm 3 , this is insuf- 

ficient to measure the thin atrial wall, which can be < 1 mm 

( Whitaker et al. (2017) ). To capture the complex 3D atrial anatomy, 

models could be constructed from CT images, ( Fastl et al., 2018 ). 

The proposed method could be applied to these meshes by ei- 

ther treating the endocardial and epicardial as two shell meshes 

or treating the model as a closed surface. With either approach, it 

is possible to represent the 3D anatomy by a 2D surface that can 

be processed by our proposed method. However, this may require 

the addition of more modes to sufficiently capture both the endo- 

cardial and epicardial shape. 

In Section 3.7 we modelled the left atrium with a 2D isotropic 

model. This choice reflects the complexity of the clinical data avail- 

able as clinicians typically have access to the endocardial surface 

only during EP investigation. While fibre orientation can impact for 

local activation patterns ( Fastl et al. (2018) ) and fibrillation simu- 

lations ( Roney et al. (2019b) ), we have previously shown that we 

can create and validate models of atrial paced activation from clin- 

ical data using isotropic models that reflect the resolution of clini- 

cal data available ( Corrado et al. (2018a) ). When we evaluated the 



10 C. Corrado, O. Razeghi and C. Roney et al. / Medical Image Analysis 61 (2020) 101626 

Fig. A.13. A: Histogram plot of the distribution of ̂  λ; the black line represents the normal distribution N (0, α2 ). B: QQ plot of the empirical cumulative density function (cdf) 

and the standard normal cdf. 

statistics of the local activation times in Section 3.7 , we identified 

the source point for the eikonal model as a mesh point in the prox- 

imity of the coronary sinus. Then we adopted the same point as 

the source for each sample. Being a mesh point, the source will 

move, introducing uncertainty. In the present work, however, we 

did not take into account this source of uncertainty. 

Eq. (7) describes the covariance model for the uncertainty. This 

model is isotropic and depends on 2 parameters that have been 

evaluated using a maximum joint posterior estimation algorithm 

on the training set. Hence, the error model does not take into 

account the effects of anisotropic resolution on the MRI images. 

While the anisotropic orientation is constant if referred to the MRI 

reference frame, factors including anatomical variability between 

individuals and patient position within the MRI scanner lead to a 

directional distribution of the anisotropy. This represents an addi- 

tional error source that could be included in the error model but 

would require another term in the error model and further op- 

timisation. Strong artefacts, scanner type, modality of the image 

sequence, breath artefacts ... are all factors that affect the error 

model. The error model chosen and determined on a training set 

might not well represent some cases. 

6. Conclusions 

We have developed a method to sample from an anatomy 

probability distribution and to infer model uncertainty. We imple- 

mented a PCA decomposition for the anatomy, obtaining a method 

that is computationally efficient. 

Declaration of Competing Interest 

We wish to confirm that there are no known conflicts of inter- 

est associated with this publication and there has been no signifi- 

cant financial support for this work that could have influenced its 

outcome. 

Acknowledgements 

This work was supported by the EPSRC ( EP/P101268X/1 ), the 

Wellcome centre and the Department of Health via the National 

Institute for Health Research (NIHR) comprehensive Biomedical Re- 

search Centre award to Guy’s & St Thomas’ NHS Foundation Trust 

in partnership with King’s College London and King’s College Hos- 

pital NHS Foundation Trust. 

Appendix A. An equivalent representation for ˆ λ

In Corrado et al. (2018b) we represented the distribution 

λ∗
� N (0, �λ) with �λ = �T α2 �, α being a positive scalar value. 

Next, we proved the existence of variables ˆ λ ∼ N 
(
0 , α2 I 

)
, such that 

λ�ˆ λ. 

Following the same procedure presented in Section 2.5 , we first 

evaluate: 

ˆ λ
i 
= �−1 U 

⊤ 
(
X 

i 
obs − μ

)
, i = 1 . . . M 

If the null hypothesis holds, ˆ λi 
j , i = 1 . . . M , j = 1 . . . N modes rep- 

resent N modes × M realisations of N (0, α2 ) Approximating α2 with 

the sampling covariance, s 2 , we have: 

s 2 = 
1 

(N modes × M) − 1 

M ∑ 

i=1 

N modes ∑ 

j=1 

(
ˆ λi 
j − μˆ λ

)2 

, 

μˆ λ
= 

1 

(N modes × M) 

M ∑ 

i=1 

N modes ∑ 

j=1 

ˆ λi 
j 

Using the training set samples, we evaluated the sample mean 

and the sample standard deviation giving μˆ λ
≈ 1 e −17 and α ≈ 0.12, 

while the Kolmogorov Smirnov test found no evidence to reject the 

null hypothesis (p = 0.44). The histogram plot ( Fig. A.13 -A) and the 

QQ plot ( Fig. A.13 -B) for ˆ λ showed excellent agreement with a 

standard normal distribution. 

Appendix B. Reduced rank approximation of �e TOT 

The covariance matrix �e TOT is a 3 blocks block-diagonal matrix, 

as defined in (7) . Each block B consists of a dense ill-conditioned 

matrix with rank r 0 = 13569 and condition number ranging be- 

tween 0.410 9 (10 modes) and 4.210 9 (69 modes). 

Computing μpost and �λ,post defined in (8) requires inverting B : 

this amplifies the numerical errors. 

In this paper, we adopted a reduced rank (RR) representation 

for B , using the Matlab function decompose with a complete or- 

thogonal decomposition (COD) and setting a rank tolerance of 0.1. 

We have chosen this threshold proceeding as follows. First, we ap- 

plied the QR decomposition to B . Next, we evaluated the largest 

absolute value R max of the diagonal entries of R. Finally, we set the 

threshold to a value equal to 0.01% of R max . 

Fig. B.14 shows the absolute values of the diagonal entries of 

R for different choices of the number of modes. This approach 

https://doi.org/10.13039/501100000266
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Fig. B.14. Plot of the absolute values of the diagonal entries of matrix R for differ- 

ent choices of the number of modes. Markers represent the first element with a 

threshold below 0.1. 

removed the part of the spectrum delimited by the markers. All 

the markers are located in the proximity of the fast decaying of 

the spectrum. Overall, this approach removed 1 . 7 − 11 . 3% (rank: 

12305–13337) of the lowest matrix spectrum. 
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