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Abstract. The present paper deals with the formulation and implementation 

of a novel fatigue lifetime estimation technique suitable for designing 

notched components against multiaxial fatigue. This fatigue assessment 

procedure was devised by combining the Modified Manson-Coffin Curve 

Method and the Shear Strain-Maximum Variance Method with the elasto-

plastic Point Method. The accuracy of the approach being proposed was 

checked against a large number of experimental results that were generated 

by testing notched cylindrical samples of medium-carbon steel En8. These 

tests were run under proportional/non-proportional constant/variable 

amplitude biaxial loading, with the effect of non-zero mean stresses and 

different frequencies between the axial and torsional stress/strain 

components being also investigated. The results from this validation 

exercise demonstrate that the novel multiaxial fatigue assessment 

methodology being proposed is highly accurate, with its systematic usage 

resulting in predictions falling within an error factor of 2. This remarkable 

level of accuracy is very promising especially in light of the fact that this 

approach can be applied by directly post-processing the results from elasto-

plastic Finite Element (FE) models solved using commercial codes. 

1 Introduction 

Engineering components and structures are characterised by complex geometries that lead to 

localised stress/strain concentration phenomena. Further, during in-service operations, they 

are subjected to load histories that are not only multiaxial, but also vary over time randomly. 

This is the reason why systematic research work has been carried out worldwide since the 

beginning of the 1900s to formulate and validate reliable procedures suitable for addressing 

such complex design problem. 

As to the different fatigue assessment philosophies that are available to date, examination 

of the state of the art shows that, in general, stress-based approaches are used to estimate 

damage in the medium/high-cycle fatigue regime – i.e., when cyclic plasticity can be 
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neglected with little loss of accuracy. In contrast, strain-based approaches are usually 

preferred whenever metallic materials undergo large scale cyclic plastic deformations [1-3]. 

If attention is focussed on the problem of designing against multiaxial fatigue notched 

metallic materials failing in the low/medium-cycle fatigue regime, root stresses and root 

strains post-processed according to the critical plane concept are seen to return accurate 

estimates [4-6], with this holding true provided that the notches being designed are relatively 

blunt [5]. In contrast, when the geometrical features under investigation are sharp, strain-

based approaches return estimates that are somehow too conservative, with the level of 

conservatism increasing as the sharpness of the considered notch increases [7, 8]. 

In this scenario, to extend effectively the use of the strain-based approach to those 

situations involving stress/strain gradients resulting not only from blunt, but also from sharp 

geometrical features, this paper aims at formulating and validating a novel fatigue lifetime 

estimation technique based on the following three key ingredients: (i) the Modified Manson-

Coffin Curve Method (MMCCM) [3, 5, 9], (ii) the Shear Strain-Maximum Variance Method 

(-MVM) [3, 10, 11], and (iii) the elasto-plastic Point Method (PM) [7, 8]. 

 

Fig. 1. The modified Manson-Coffin diagram. 

2 Fundamentals of the MMCCM 

The MMCCM postulates that fatigue lifetime can be predicted accurately by using non-

conventional bi-parametrical Manson-Coffin curves [9]. The formulation of this criterion 

takes as a starting point the assumption that fatigue damage can be assessed in log-log 

diagrams that plot the shear strain amplitude, a, relative to that plane experiencing the 

maximum shear strain amplitude (i.e., the so-called critical plane) against the number of 

reversals to failure, 2Nf (Fig. 1). According to the schematic chart reported in Fig. 1, the 

equation describing any Modified Manson-Coffin curve can directly be expressed as [3, 9]: 𝛾𝑎 = 𝜏′𝑓(𝜌)𝐺 ∙ (2 ∙ 𝑁𝑓)𝑏(𝜌) + 𝛾′𝑓(𝜌) ∙ (2 ∙ 𝑁𝑓)𝑐(𝜌)        (1) 

where critical plane stress ratio  is defined as follows: 𝜌 = 𝜎𝑛,𝑚+𝜎𝑛,𝑎𝜏𝑎 = 𝜎𝑛,𝑚𝑎𝑥𝜏𝑎            (2) 

In Eq. (2) a is the shear stress amplitude relative to the plane of maximum shear strain 

amplitude, whilst n,m, n,a and n,max are the mean value, the amplitude and the maximum 

value of the stress perpendicular to the critical plane, respectively. It is worth recalling here 

that, thanks to the way it is defined, ratio  is sensitive not only to the degree of multiaxiality 
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and non-proportionality of the applied loading path, but also to the presence of superimposed 

static stresses [3, 9, 11]. Turning back to Eq. (1), functions 𝜏′𝑓(𝜌), 𝛾′𝑓(𝜌), 𝑏(𝜌) and 𝑐(𝜌) can 

be estimated using the following relationships [9]: 𝜏′𝑓(𝜌)𝐺 = 𝜌 ∙ (1 + 𝜈𝑒) 𝜎′𝑓𝐸 + (1 − 𝜌) 𝜏′𝑓𝐺 ; 𝛾′𝑓(𝜌) = 𝜌 ∙ (1 + 𝜈𝑝)𝜀′𝑓 + (1 − 𝜌)𝛾′𝑓        (3) 𝑏(𝜌) = 𝑏∙𝑏0(𝑏0−𝑏)𝜌+𝑏; 𝑐(𝜌) = 𝑐∙𝑐0(𝑐0−𝑐)𝜌+𝑐         (4) 

By following a fairly articulated reasoning, calibration functions (3) and (4) were derived 

by directly using the conventional fully-reversed uniaxial and torsional Manson-Coffin 

fatigue curves re-written in terms of maximum shear strain amplitude, i.e. [3, 9]: 𝛾𝑎 = (1 + 𝜈𝑒) 𝜎′𝑓𝐸 (2 ∙ 𝑁𝑓)𝑏 + (1 + 𝜈𝑒)𝜀′𝑓(2 ∙ 𝑁𝑓)𝑐 (Uniaxial case, =1)       (5) 

𝛾𝑎 = 𝜏′𝑓𝐺 (2 ∙ 𝑁𝑓)𝑏0 + 𝛾′𝑓(2 ∙ 𝑁𝑓)𝑐0  (Torsional case, =0)       (6) 

where e and p are Poisson’s ratio for elastic and plastic strain, respectively. 

 

Fig. 2. Critical plane Stress/strain components determined according to the -MVM. 

To estimate the orientation of those material planes experiencing the maximum shear 

strain amplitude, the MMCCM is recommended to be used along with the -MVM [10, 11]. 

The -MVM defines the orientation of the critical plane via that direction, MV, that is 

associated with the maximum variance of the resolved shear strain, MV(t) – see Figs 2a and 

2b. As far as variable amplitude (VA) load histories are concerned, the key advantage of the 

-MVM is that the shear stresses and shear strains relative to the critical plane are managed 

and quantified via resolved quantities MV(t) and MV(t), respectively (Fig. 2d). Since, by 

definition, these two quantities are monodimensional stress/strain signals, fatigue cycles 

under multiaxial fatigue loading can be counted rigorously and effectively by simply using 

the well-known Rain-Flow counting method that was originally formulated to specifically 

address the uniaxial fatigue problem. 

 

(b) 

(t), (t) 

Critical 

Plane 

n(t) 

O 

MV(t)
MV(t) 

MV 

(c) 

n(t) 

        t 

n,m 

n,a 

n,max 

n,min 

 

 min,MVmax,MVa

min,MVmax,MVm

2

1

2

1





 

 min,nmax,na,n

min,nmax,nm,n

2

1

2

1





T      t 

MV(t) 

a 

m 

MV,max 

MV,min 

        t 

MV(t) 

a 

m 

MV,max 

MV,min 

 

 min,MVmax,MVa

min,MVmax,MVm

2

1

2

1





Constant Amplitude Variable Amplitude 

   

 )t(Var2

dt)t(
T

1
)t(Var

dt)t(
T

1

MVa

T

0

2

mMVMV

T

0
MVm



 

 

   

 )t(Var2

dt)t(
T

1
)t(Var

dt)t(
T

1

MVa

T

0

2

mMVMV

T

0
MVm



 

 

   
 )t(Var2

dt)t(
T

1
)t(Var

dt)t(
T

1

na,n

T

0

2

m,nnn

T

0
nm,n



 

 

(d) 
MV(t) 

a 

m 

T      t 

MV(t) 

a 

m 

T      t 

n(t) 

T      t 

n,m 

n,a 

Fi(t) 

Fj(t) 

Fk(t) 

x 

y 

z 

O 

(a) 

3

MATEC Web of Conferences 300, 13004 (2019)  https://doi.org/10.1051/matecconf/201930013004

ICMFF12



 

3 Multiaxial notch fatigue assessment: the proposed approach 

The multiaxial fatigue life estimation methodology proposed in the present paper is based on 

the use of the MMCCM, the -MVM, and the elasto-plastic PM. The key features of this 

design approach will be explained in the following two sections by considering constant 

amplitude (CA) and variable amplitude (VA) load histories, respectively. For the sake of 

clarity, the multiaxial fatigue assessment approach being proposed will be formulated by 

assuming that the critical distance, L, needed to use the PM is known a priori, with the 

procedure suitable for determining L being explained in Section 3.3. 

3.1 Fatigue assessment under CA multiaxial fatigue loading 

Figure 3 summarises the design methodology that is proposed to estimate CA fatigue lifetime 

of notched components by applying the MMCCM along with the elasto-plastic PM. 

Consider the notched structural detail sketched in Figure 3a and assume that, during in-

service operations, it is subjected to a complex system of CA time-variable external forces 

and moments. 

 

Fig. 3. Procedure to design notched components against CA multiaxial fatigue loading. 

To use the MMCCM in conjunction with the PM, the first task is the determination of the 

elasto-plastic cyclic stress/strain fields along the so-called focus path. The focus path is 

defined as a straight line that emanates from the assumed crack initiation point (i.e., point A 

in Figure 3a) and is normal to the component surface at the hot spot itself [3]. According to 

the PM, the relevant stress/strain quantities needed to estimate fatigue lifetime have to be 

determined by post-processing the cyclic stress tensor and the cyclic stain tensor determined, 

along the focus path, at a distance from the assumed crack initiation point equal to L/2 (i.e., 

at point O in Figure 3a). The orientation of the critical plane is determined from the time-

variable strain tensor at point O via the -MVM. As soon as the direction, MV, of maximum 

variance of the resolved shear strain is known (Fig. 3b), a (Fig. 3c) and a (Fig. 3d) can be 

determined directly according to the standard definitions reported in Fig. 2c. In a similar way, 
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by post-processing stress signal n(t), the mean value and the amplitude of the stress 

perpendicular to the critical plane can be calculated unambiguously (Fig. 3e) by using the 

definitions summarised in Fig. 2c. 

The values for a, n,m, and n,a being determined via the -MVM are then used to quantify 

stress ratio  (Fig. 3f). By so doing, the corresponding modified Manson-Coffin curve, Eq. 

(1), can be estimated directly via calibration functions (3) and (4) – see Fig. 3g. Finally, as 

shown in the Modified Manson-Coffin diagram sketched in Figure 3h, it is straightforward 

to estimate the number of reversals to failure, 2Nf, via the modified Manson-Coffin curve 

being determined according to Eq. (1) and calibrated via relationships (3) and (4). 

3.2 Fatigue assessment under VA multiaxial fatigue loading 

Consider the notched structural detail sketched in Fig. 4a and assume that this component is 

subjected to a complex system of external VA forces and moments. As per the CA case, also 

in the presence of VA load histories the first problem to be addressed is the determination of 

the elasto-plastic cyclic stress/strain fields along the focus path so that the required 

stress/strain tensors can determined at a distance from the assumed crack initiation point 

equal to L/2 (Fig. 4a). Subsequently, the strain tensor being estimated is post-processed 

according to the -MVM in order to determine that direction, MV, which experiences the 

maximum variance of the resolved shear strain (Fig. 4b). 

 

Fig. 4. Procedure to design notched components against VA multiaxial fatigue loading. 

As soon as the orientation of the critical plane is known (Fig. 4b), the equivalent 

amplitude of the shear stress, a, as well as the mean value, n,m, and the equivalent amplitude, 

n,a, of the normal stress can directly be determined according to the definitions reported in 

Fig. 2d – see also Figs 4c and 4d. By so doing, equivalent stress components a and n,max 

[11] are used to determine, via definition (2), the value of the critical plane stress ratio, , 

characterising the VA fatigue load history being assessed (Fig. 4e). Stress ratio  together 

with functions (10) allow then the constants in the MMCCM’s governing equation to be 

estimated directly (Fig. 4f). 
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After estimating the modified Manson-Coffin curve to be used to assess fatigue damage 

(Fig. 4g), the subsequent task is employing the Rain-Flow method to identify and count the 

cycles from signal MV(t), with this allowing the shear strain spectrum associated with the 

load history under investigation to be determined unambiguously (Figs 4h and 4i). The 

obtained shear strain spectrum (Fig. 4j) together with the modified Manson-Coffin curve 

estimated via Eq. (1) are then used to quantify the extent of damage associated with the shear 

strain cycles being counted (Fig. 4g), with the number of cycles to failure being estimated as 

follows (Fig. 4k): 𝐷𝑡𝑜𝑡 = ∑ 𝑛𝑖𝑁𝑓,𝑖𝑗𝑖=1   𝑁𝑓,𝑒 = 𝐷𝑐𝑟𝐷𝑡𝑜𝑡∑ 𝑛𝑖𝑗𝑖=1      (7) 

To conclude, it is worth recalling here that in the above relationships, Dtot is the total value 

of the damage sum, whereas Dcr is the critical value for Dtot that results in the initiation of a 

fatigue crack in the notched component being assessed. 

3.3 Determination of the PM critical distance 

Figure 2c summarises the procedure we recommend as being used for the experimental 

determination of critical distance L. To do so, the uniaxial and torsional fatigue properties of 

the un-notched material under investigation are supposed to be known from the experiments. 

Consider now the notched specimen of Fig. 5 and assume that this sample is subjected to 

a fully-reversed nominal uniaxial loading. Under the applied CA loading path, this notched 

specimen is seen to fail at a number of cycles to failure equal to Nf,c. 

 

Fig. 5. Determination of the critical distance L according to the Point Method. 

The stress/strain-distance curves along the focus path associated with the investigated 

notched geometry are to be determined by directly post-processing the results from an elasto-

plastic Finite Element (FE) model. Subsequently, the stress and strain components along the 

focus path are re-analysed according to the -MVM so that the distribution of a, a, n,max, 

and  along the focus path itself can be determined unambiguously (Fig. 2c). Finally, 

according to the PM [7, 8], L/2 is the distance from the notch tip at which the shear strain 

amplitude, a
*, is equal to the shear strain amplitude estimated from the MMCCM, Eq. (1), 

that causes failure in the plain material at Nf=Nf,c (Fig. 5). 

4 Validation by experimental data 

To check the accuracy of the multiaxial notch fatigue design approach proposed in the present 

paper, an extensive experimental investigation involving both plain and U-notched 

specimens was carried out at the Structural Integrity Laboratory of the University of 
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Sheffield, UK. The specimens being tested were made of En8, i.e., a medium-carbon steel 

having ultimate tensile stress equal to 701 MPa, yield stress to 453 MPa, Young’s modulus 

to 210 GPa, and shear elastic modulus equal to 80 GPa. 

The notched cylindrical specimens being tested had net diameter equal to 18 mm, gross 

diameter to 38 mm and notch root radius, r, equal to 1.5 mm, to 3 mm, and to 6 mm. 

Both plain and notched specimens were tested by using a SCHENCK servo-controlled 

closed-loop axial-torsion fatigue machine with maximum axial load capacity of 400 kN and 

maximum torque capacity of 1000 Nm. The cylindrical specimens were clamped using two 

MTS 646.25S hydraulic collet grips. The strain-controlled tests as well as the force/torque-

controlled tests were run under CA/VA sinusoidal loading signals, with the frequency 

varying in the range 0.5-2 Hz. The experimental results obtained by testing the un-notched 

specimens were generated by controlling the axial and the shear strains via an Epsilon 3550-

025M bi-axial extensometer with gauge length equal to 25 mm. The number of cycles/blocks 

to failure was defined both for the plain specimens and the notched samples by 5% 

axial/torsional stiffness drop, with the stiffness decrease being estimated under the maximum 

amplitude of the strain/force applied in the loading path. 

By adopting the concave upwards spectrum with sequence length, SL, of 50 cycles that is 

shown in Fig. 6a, the VA fatigue behaviour of the plain and notched specimens being tested 

was investigated by controlling the axial/shear strain and the axial/torsional loading, 

respectively. In the spectrum of Fig. 6a, given either the axial force, the torque, the axial 

strain, or the shear strain, a,i denotes the amplitude of the reference strain/loading quantity 

characterising the i-th cycles, whereas a,max denotes the maximum value in the spectrum of 

the amplitude of the strain/loading quantity of interest. The tests under VA loading were run 

by applying the cycles in random order. 

The experimental values of the fully-reversed uniaxial cyclic mechanical properties of the 

carbon steel being tested were as follows: K’=971.5 MPa, n’=0.188, f’=852.3 MPa,  
b=-0.105, f’=0.477, and c=-0.554. The corresponding mechanical properties under fully-

reversed torsion were instead as follows: K0’=442.4 MPa, n0’=0.107, f’=460.6 MPa,  
b0=-0.068, f’=1.55, and c0=-0.648. These material constants were used to calibrate the 

MMCCM – i.e., relationships (3) and (4) - for the specific carbon steel being investigated. 

Having calibrated the MMCCM, initially we checked its accuracy in estimating fatigue 

lifetime in the absence of notches when the required stress/strain quantities relative to the 

critical plane are determined according to the -MVM. The results from this initial validation 

exercise are summarised in the experimental, Nf, vs. estimated, Nf,e, number of cycles to 

failure diagram reported in Fig. 6b. According to Palmgren and Miner [1, 2], the predictions 

under VA loading shown in Fig. 6b were obtained by taking the critical value of the damage 

sum, Dcr, invariably equal to unity. This error chart demonstrates that the use of our critical 

plane approach resulted in estimates falling within an error factor of 2, i.e., within a scatter 

band as wide as the one containing the fatigue results generated under axial and torsional CA 

fatigue loading and used to calibrate the MMCCM itself. 

In order to post-process the experimental results we generated by testing the notched 

specimens, FE code ANSYS® was used to estimate the time-variable elasto-plastic 

stress/strain fields being required to apply the PM. To this end, the notched specimens were 

modelled using three-dimensional 8-node structural element SOLID185, with the elasto-

plastic behaviour of the tested steel being simulated by using a multi-linear kinematic rule. 

After performing conventional convergence analyses, a very refined mesh was used to model 

the material in the vicinity of the tips of the notches being investigated. 

The critical distance value for the tested carbon steel was determined experimentally by 

applying the PM along with the MMCCM according to the procedure shown in Fig. 5. By so 

doing, the results generated by testing six sharply notched specimens under uniaxial fatigue 

loading returned an average value for L/2 of 0.78 mm. 
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Fig. 6. Overall accuracy of the proposed multiaxial fatigue life estimation technique (CA=Constant 

Amplitude; VA=Variable Amplitude; IPh=In-Phase; OoPh=90˚ Out-of-Phase; ZMS=Zero Mean 

Stress; N-ZMS=Non-Zero Mean Stress; f= ratio between the frequencies of the axial and torsional 

loading channels). 

The accuracy of the design procedure schematically described in Figs 3 and 4 is 

summarised via the error charts of Figs 6c to 6f, where, as per the plain specimens, the VA 

fatigue lifetime of the notched specimens was estimated by taking the critical value of the 

damage sum, Dcr, invariably equal to unity [1, 2]. To conclude, it can be said that, according 

to these error chats, the use of our multiaxial fatigue life estimation technique was seen to 
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result in a very high level of accuracy, with all the experimental points falling within an error 

factor of 2. 

5 Conclusions 

The multiaxial fatigue assessment methodology proposed in the present paper was seen to be 

successful in estimating lifetime of notched metallic materials subjected to both CA and VA 

load histories. In particular, a remarkably high level of accuracy was systematically reached 

independently of sharpness of the notch being designed, degree of non-proportionality of the 

load history being post-processed, mean stress level, and ratio between the frequencies of the 

applied loading components. 

Accordingly, it is possible to conclude by saying that this novel approach can be treated 

as a powerful tool suitable for performing the multiaxial fatigue assessment of real notched 

structural components, the key advantage being that it can be applied by directly post-

processing the relevant stress/strain fields determined from elasto-plastic numerical models 

solved using commercial FE codes. 

References 

1. R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in Engineering, 2nd 

Edition, John Wiley & Sons, USA (2001) 

2. D.F. Socie, G.B. Marquis, Multiaxial Fatigue, SAE, Warrendale, PA, USA (2000) 

3. L. Susmel, Multiaxial Notch Fatigue: from nominal to local stress-strain quantities. 

Woodhead & CRC, Cambridge, UK (2009) 

4. S.M. Tipton, J.W. Fash, Multiaxial fatigue life prediction for the SAE specimen using 

strain based approaches. In: Multiaxial fatigue: analysis and experiments, Edited by G. 

E. Leese and D. F. Socie, SAE AE-14, pp. 67-80 (1989) 

5. L. Susmel, G. Meneghetti, B. Atzori, A novel Multiaxial Fatigue Criterion to predict 

Lifetime in the Low/Medium-Cycle Fatigue Regime. Part II: Notches. Trans ASME, J 

Eng Mater Technol, 131: 021010-1/8 (2009) 

6. N. Gates, A. Fatemi, Notched fatigue behavior and stress analysis under multiaxial states 

of stress. Int J Fatigue, 67: 2-14 (2014) 

7. L. Susmel, D. Taylor, An elasto-plastic reformulation of the Theory of Critical Distances 

to estimate lifetime of notched components failing in the low/medium-cycle fatigue 

regime. Trans ASME, J Eng Mater Technol, 132: 021002-1/8 (2010) 

8. L. Susmel, D. Taylor, Estimating lifetime of notched components subjected to variable 

amplitude fatigue loading according to the elasto-plastic Theory of Critical Distances. 

Trans ASME, J Eng Mater Technol 137: 011008-1/15 (2015) 

9. L. Susmel, G. Meneghetti, B. Atzori, A simple and efficient reformulation of the 

classical Manson-Coffin curve to predict lifetime under multiaxial fatigue loading. Part 

I: plain materials. Trans ASME, J Eng Mater Technol, 131: 021009-1/9 (2009) 

10. L. Susmel, A simple and efficient numerical algorithm to determine the orientation of 

the critical plane in multiaxial fatigue problems. Int J Fatigue, 32: 1875–1883 (2010) 

11. Y. Wang, L. Susmel, The Modified Manson-Coffin Curve Method to estimate fatigue 

lifetime under complex constant and variable amplitude multiaxial fatigue loading. Int J 

Fatigue, 83: 135-149 (2016) 

9

MATEC Web of Conferences 300, 13004 (2019)  https://doi.org/10.1051/matecconf/201930013004

ICMFF12


