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Abstract A severe, spurious dependence of numerical simulations on the mesh
size and orientation can be observed in elasto-plastic models with a non-associated
flow rule. This is due to the loss of ellipticity, and may also cause a divergence in the
incremental-iterative solution procedure. This paper first analyses the dependence
of the shear-band inclination in a biaxial test on the mesh size as well as on the
mesh orientation. Next, a Cosserat continuum model, which has been employed
successfully for strain-softening plasticity, is proposed to prevent loss of ellipticity.
Now, numerical solutions result for shear-band formation which are independent
of the size and the orientation of the discretisation.

Keywords Non-associated plasticity · Cosserat continuum · Mesh bias · Strain
localisation · Shear band · Ellipticity

1 Introduction

Localisation commonly occurs in geomaterials in the form of narrow, highly de-
formed zones, known as shear bands [39, 42, 52, 53]. Shear bands are considered
to emerge from a material instability, i.e. as a bifurcation from a homogeneous de-
formation into a deformation mode that involves a discontinuity. Hadamard was
the first to conduct an analytical study into localisation for elastic solids and has
identified the loss of ellipticity as the underlying reason [20]. Extensions to plastic
deformations have been made by Hill [22], Mandel [25] and Thomas [46], and it
has been established that in addition to strain softening, constitutive features such
as the existence of a vertex-like effect in the yield surface, or non-normality of the
plastic flow can have a destabilising effect [31, 37, 38, 40, 48, 49].
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Numerical simulations of localised deformation can run into problems, in par-
ticular a pathological mesh dependence, and severe difficulties, or even an impos-
sibility, to obtain converged solutions. In the limiting case of an infinitely dense
mesh, failure can occur without energy dissipation, which is physically unrealistic
[12]. This pathological mesh dependence happens for any discretisation method as
the underlying reason is not the discretisation method, but the ill-posedness of the
boundary-value problem due to loss of ellipticity [33, 36]. As said, loss of ellipticity
can occur not only due to the strain softening, but it has been shown to also occur
for strain-rate softening [51] and for non-associated plasticity [9, 31, 41].

Various approaches have been proposed to regularise the problem of strain lo-
calisation. Non-local models [5, 6, 35] or gradient continua [13, 29, 34, 47] are reg-
ularisation methods which can avoid local loss of ellipticity. Inclusion of viscosity
and rate effects have also been proven effective in regularising the boundary-value
problem [15, 24, 32]. The Cosserat model [7] is particularly applicable to granular
materials as it is capable of taking the microstructure of the material into account
via a microrotation, representing the average spin of the particles, as an additional
degree of freedom. It has subsequently been used to regularise constitutive models
of granular materials [10, 14, 11, 30, 28]. We have recently shown that the use
of a Cosserat continuum model also successfully removes mesh size dependency
which results from a non-associated plastic flow rule, which is typically used for
pressure-sensitive materials [41].

Herein we consider the dependence of numerical results on the mesh orien-
tation. While the effect of mesh orientation has received less attention than the
effect which mesh densification can have in localisation problems, its relevance has
been documented for strain softening [44], for strain-rate softening in the forma-
tion of Portevin-Le Chatelier bands [51] and for softening-rehardening as occurs
in Lüders band formation [27]. Now, we focus on the case where the orientation
dependence results from the application of a non-associated flow rule. In order to
investigate the effect of non-associativity, we exclude all other possible destabil-
ising effects, such as the explicit inclusion of strain softening in the constitutive
model, or geometrically destabilising factors. We first recall the underlying mathe-
matical condition which causes loss of ellipticity and it is shown how this condition
can be satisfied for a Mohr-Coulomb plasticity model with a non-associated flow
embedded in a standard continuum. Next, a numerical example of a biaxial test
under compression is considered. Numerical simulations show the dependence of
the deformation on the spatial discretisation both in terms of its density and of
the direction of the mesh lines. The Cosserat continuum is reviewed next and is
used in simulations of the same biaxial test, which now result in objectivity with
respect to the mesh size as well as the mesh orientation.

2 Analysis of localisation

2.1 Loss of ellipticity

A mathematical model of a physical problem is reliable only when the initial
or boundary value problem is well-posed, since the solution then continuously
depends on the data. For quasi-static loading conditions this translates into the
requirement that the governing differential equations are elliptic at each point of
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the continuous medium. We now investigate conditions under which a body which
is modelled using non-associated elasto-plasticity, locally loses ellipticity, therefore
opening up the possibility of strain localisation to occur. We consider quasi-static
loading conditions and postulate the existence of a solution which is discontinuous
across a (possibly curved) plane Γd. Assuming a linear comparison solid [21], so
that the tangential stiffness tensor D is identical at both sides of the discontinuity,
the jump in the stress rate is related to the jump in the strain rate as:

[[σ̇σσ]] = D : [[ǫ̇ǫǫ]] (1)

The jump in the traction rate, [[ṫd]], across the plane is expressed as:

[[ṫd]] = nΓd
· [[σ̇σσ]] (2)

where nΓd
is the normal vector to the discontinuity Γd. Using the expression for

[[σ̇σσ]] given by Eq. (1), the jump in the traction rate jump reads:

[[ṫd]] = nΓd
·D : [[ǫ̇ǫǫ]] (3)

A velocity field u̇ which contains a discontinuity at Γd can generally be expressed
as:

u̇ = ˙̄u+HΓd

˙̃u (4)

where HΓd
is the Heaviside function, and ˙̄u and ˙̃u are continuous velocity fields

on both sides of the discontinuity. Differentiating Eq. (4) results in the strain rate
field:

ǫ̇̇ǫ̇ǫ = ∇sym ˙̄u+HΓd
∇sym ˙̃u+ δΓd

( ˙̃u⊗ nΓd
)sym (5)

where (.)sym refers to the symmetrised part of the operator and δΓd
denotes the

Dirac function at Γd. The strain rate jump at Γd can be written as:

[[ǫ̇ǫǫ]] = ζ
(

˙̃u⊗ nΓd

)sym

(6)

with ζ a non-zero scalar representing the magnitude of the difference in the strain
rate jump. Substitution into Eq. (3) and exploiting the minor symmetry of D

yields:

[[ṫd]] = ζ (nΓd
·D · nΓd

) · ˙̃u (7)

A non-trivial solution (ζ 6= 0) to Eq. (7) exists if and only if the acoustic tensor is
is singular:

det (nΓd
·D · nΓd

) = 0 (8)

Eq. (8) is the condition for the existence of discontinuous, localised solutions. It
violates the ellipticity condition of the tangential stiffness operator [26]. Eq. (8)
also determines the speed at which plane acceleration waves in solids vanish[22].
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2.2 Application to non-associated plasticity

The Mohr-Coulomb plasticity model has frequently been used in analyses of strain
localisation in geomaterials and the yield function is given by:

f =
1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sinφ− c cosφ (9)

while the following expression is normally used as plastic potential:

g =
1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sinψ (10)

Herein, σ1 and σ3 are the smallest and the largest principal stresses, respectively,
while φ, ψ and c are the friction angle, the dilation angle and the cohesion, respec-
tively.

For a Mohr-Coulomb plasticity model with a non-associated flow rule as above,
the hardening modulus h has been derived as [4, 40, 50]:

h

µ
=

(sinφ− sinψ)2 − (2 cos 2θ − sinψ − sinφ)2

8(1− ν)
(11)

where µ and ν are the shear modulus and Poisson’s ratio, respectively, and θ is
the angle between the most compressive principal stress and the localised shear
band. Eq. (11) is a relation between the hardening modulus and the orientation
of a discontinuity in the solution for a given set of material parameters µ, ν, φ, ψ.
At peak, ellipticity is lost and shear bands can form:

hcrit
µ

=
(sinφ− sinψ)2

8(1− ν)
(12)

With Eq. (12), we can examine the conditions which lead to a real solution for
hcrit with loss of ellipticity, opening up the possibility of mesh sensitive solutions.

For the particular case of a non-associated Mohr-Coulomb elastic-perfectly
plastic model, we have h = 0 and since µ > 0 and ν ≤ 1/2, a range of angles θ
can be found for which h < hcrit for non-associated flow, i.e. when ψ < φ. These
angles are usually bounded by the classical Coulomb and Roscoe angles [8, 39]
which are the roots of the hardening modulus. This is visualised in Figure 1 for a
given set of material parameters (ν = 0.25 and φ = 25o).

2.3 The orientation of shear bands

There are three main approaches to compute the inclination angle of the shear
bands. Coulomb [8] considered the orientation angle to be θ = 45o − φ/2. Roscoe
[39] has derived another solution, namely θ = 45o − ψ/2, which gives prominence
to role of the dilatancy. Another relation, θ = 45o − (ψ + φ)/4, was based on
experimental data [3]. This relation was also found in experiments on Karlsruhe
sand and in an accompanying bifurcation analysis [48]. Considering a wide range
of experimental data, Arthur and Dunstan [2] concluded that the shear band
varies between the Roscoe and the Coulomb solutions depending on the mean
particle size. For coarse-grained sands the Roscoe solution is approached, while
for finer grains the Coulomb solution tends to be favoured. These findings were
corroborated theoretically [49], and experimentally for specimens with coarse-sized
particles [18] and for fine sands [16].
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Fig. 2 Geometry with boundary conditions and imperfection

3 Numerical simulations

3.1 Model set-up

A compression biaxial test is considered in order to investigate the influence of the
mesh density and the mesh orientation during shear banding. The geometry and
the boundary conditions are shown in Figure 2. The dimensions of the specimen
are L = 20 cm and W = 10 cm, respectively. A compressive stress field results
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from a smooth, rigid platen being moved downwards uniformly at the top of the
specimen.

3.2 Drucker-Prager plasticity model

The Drucker-Prager yield contour shares the pressure dependence with the Mohr-
Coulomb yield contour, but has the advantage in numerical computations that it
is only singular at the apex. It is characterised by the yield function [17]:

f =
√
3J2 + αp− k (13)

and by the resembling plastic potential:

g =
√
3J2 + βp (14)

where J2 is the second invariant of deviatoric stresses and p is the hydrostatic
pressure. α and β are the friction coefficient and the dilatancy factor, respectively,
while k is related to the cohesive strength. Under plane-strain conditions, the
material parameters in the Drucker-Prager model can be related to those of the
Mohr-Coulomb model through:

α =
6 sinφ

3− sinφ
, β =

6 sinψ

3− sinψ
(15)

The evolution of the plastic strains is governed by a flow rule, as usual:

ǫ̇ǫǫp = λ̇
∂g

∂σσσ
(16)

The plastic multiplier λ̇ is obtained from the consistency condition (ḟ = 0) as
follows:

λ̇ =
∂f
∂σσσ

: De : ǫ̇ǫǫ
∂f
∂σσσ

: De : ∂g
∂σσσ

(17)

where De is the elastic stiffness tensor. The rate equations are integrated with a
standard implicit return algorithm with a special treatment of the stresses near the
apex of the yield surface. A consistent tangent operator has been used to ensure
the quadratic convergence rate [12, 45].

A non-associated elastic-ideally plastic Drucker-Prager type material model is
considered in the remainder of this paper. The elasticity parameters read: Young’s
modulus E = 100 kPa and Poisson’s ratio ν = 0.25. With a friction angle φ = 25o

and a dilatancy angle ψ = 5o, Eq. (15) can be used to compute α = 0.984 and
β = 0.18. For the cohesive strength the parameter value k = 0.06 kPa has been
taken.
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53.1°

(a) Model A

69.4°

(b) Model B

Fig. 3 Two discretisations with different mesh directions

3.3 Mesh arrangements

In the numerical analyses two different mesh arrangements, model A and model
B, have been used, each composed of quadratic triangular elements in a crossed
lay-out. Use of these elements avoids the problem of volumetric locking and makes
it more convenient to study directional mesh bias. Model A has been analysed for
three different mesh sizes, 4 × 6, 8 × 12 and 16 × 24 elements. In model A, the
elements have been arranged such that the angle of the element boundaries is at
53.1o, which is close to the expected direction of shear banding according to the
Arthur solution, i.e. 52.5o for the chosen parameter set, see Section 2. In model
B, the diagonals of the mesh are very different at a value of 69.4o, see Figure 3.
Three different discretisation levels have also been considered now, 8× 6, 16× 12
and 32× 24.

To induce a non-homogeneous stress field and hence to trigger localisation,
an imperfect element with a 16.7% reduction in the cohesive strength has been
inserted at the left boundary, just above the centre line in both models.

4 Shear banding in a standard elasto-plastic continuum

4.1 Sensitivity to mesh size

Localisation zones develop starting from the imperfection and continue to grow
until a peak in the load-displacement curve, Figure 4, has been reached. At this
point loss of ellipticity occurs and the boundary-value problem becomes ill-posed.
A post-peak structural softening is observed for all discretisations of model A. The
slope of the softening becomes steeper upon mesh refinement. It is emphasised that
the structural softening is here purely a consequence of the use of a non-associated
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Fig. 4 Load-displacement curve for model A using a standard Drucker-Prager model

(a) 4× 6 elements (b) 8× 12 elements (c) 16× 24 elements

Fig. 5 Equivalent plastic strain for model A, a) and b) at v = 0.2 cm, c) shortly before the
iterative solution fails, at v = 0.06 cm
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Fig. 6 Load-displacement curve for model B using a standard Drucker-Prager model

(a) 8× 6 elements (b) 16× 12 elements (c) 32× 24 elements

Fig. 7 Equivalent plastic strain for model B, at v = 0.2 cm, using a standard Drucker-Prager
model

flow rule, and has been observed before in computations [9] and has been analysed
in depth [23, 41].

Since the boundary-value problem becomes ill-posed at this point obtaining a
converged solution becomes difficult. Indeed, for the fine mesh of model A diver-
gence occurs shortly after the peak load even for extremely small load steps. A
possible reason is that snap-back behaviour may occur which cannot be resolved
under displacement control.

From Figure 5 it can be seen that in model A a highly localised shear band is
formed and that the size of the shear band is dominated by the mesh size. The shear
band is confined to a single band of elements. If the element size approaches zero,
the shear band width would also becomes zero and the load-displacement curve
would double back on the loading branch, resulting in a physically meaningless
solution with zero energy dissipation [12].

The results for model B also show post-peak structural softening, but only for
the finer discretisations (16 × 12 and 32 × 24), see Figure 6. A poor convergence
behaviour with severe oscillations is observed upon mesh refinement. Indeed, for
the finest mesh the solution procedure breaks down after reaching a plateau. The
residual load level, i.e. the load level which is reached after structural softening, is
slightly higher in model B than in model A. A shear band also forms in model B,
but is considerably more diffuse than in model A, see Figure 7.
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~53°

(a) Model A

~60°

(b) Model B

Fig. 8 Shear band orientation in model A vs model B

4.2 Sensitivity to mesh alignment

Figure 8 shows the bias of the initial element arrangement on the shear band.
In model A shear band formation occurs along the edges of the elements, and
therefore, the orientation is dominated by the mesh diagonals, i.e. at ω = 53o,
which is close to the Arthur solution, ω = 45o + (φ + ψ)/4 = 52.5o [3]. It is
emphasised that this correct inclination has been helped by the initial mesh lay-
out, with diagionals at ω = 53.1o, cf. Section 3. For model B the angle at which
the shear band forms is also influenced by the mesh orientation, and shear bands
form at ω = 60o degrees. This difference shows how the mesh orientation can bias
the solution for ill-posed boundary value problems.

5 Cosserat elasto-plasticity

In the preceding it has been demonstrated how a standard continuum suffers from a
local loss of ellipticity at the onset of localisation, which leads to mesh dependence
both in terms of the size and the orientation. A Cosserat continuum model has
been used before to eliminate mesh dependence due to strain softening in the
constitutive model, [10, 11, 14] and has also been used to predict the thickness
of shear bands as a function of the grain size [30]. Herein, we examine whether
a Cosserat continuum model is also effective in preventing loss of ellipticity and
ensuing mesh alignment dependency for non-associated plasticity.
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5.1 Model summary

In the absense of inertia terms and body forces the balance of linear momentum
and of moment of momentum of a Cosserat continuum can be formulated as [1, 43]:

divσσσT = 0 (18)

and
divmT + eee : σσσ = 0 (19)

respectively, where σσσ is the Cauchy stress tensor, m is the couple-stress tensor,
and eee is the permutation tensor.

From the the usual displacement vector u and a micro-rotation vector ωωω the
strain tensor ǫǫǫ and a micro-curvature tensor κκκ can be derived, which are conjugate
to the Cauchy stress tensor and the couple-stress tensor, respectively,

ǫǫǫ = ∇u− eee ·ωωω (20)

and
κκκ = ∇ωωω (21)

Under the usual small-strain assumption, the strain tensor is decomposed ad-
ditively into an elastic and a plastic part,

ǫǫǫ = ǫǫǫe + ǫǫǫp (22)

augmented by a similar relation for the micro-curvatures:

κκκ = κκκe + κκκp (23)

A linear relationship exists between the elastic parts of the strain and the micro-
curvature tensors on one hand, and the stress and couple-stress tensors on the
other hand:

σσσ =
2ν µ tr(ǫǫǫe)

1− 2ν
I+ (µ+ µc) ǫǫǫ

e + µ (ǫǫǫe)T (24)

and
m = µ

(

ℓ21 κκκ
e + ℓ22 (κκκ

e)T + ℓ23 tr(κκκ
e) I

)

(25)

where I is the second-order identity tensor, and µc, ℓ1, ℓ2 and ℓ3 are additional
material parameters. The last two terms in Eq. (25) cancel in case of planar de-
formations, and a reduced expression is obtained:

m = µℓ2 κκκe (26)

where ℓ1 = ℓ is an internal length parameter which influences the width of the
localisation zone.

A non-associated Drucker-Prager type perfect-plasticity model is considered as
in Eq. (13), with a generalised form of the second invariant of deviatoric stresses
as [30]:

J2 = a1 s
T : s+ a2 s : s+ a3 m

T : m/ℓ2 (27)

where sij are the components of the deviatoric stress tensor, and the constraint
a1 + a2 = 1

2
must hold for the classical expression for J2 to be retrieved in the

absence of couple-stress tensors. It has been shown that the values a1 = 1
4
, a2 = 1

4
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Fig. 9 Load-displacement curve for model A using Cosserat plasticity

and a3 = 1
2
result in a particularly simple numerical algorithm [10, 11]. The plastic

potential is similar to that introduced in Eq. (14), now employing the generalised
J2, Eq. (27). The stress integration procedure is carried out in a similar fashion
as in classical plasticity.

Here, another advantage of using the Drucker-Prager yield contour becomes
apparent. The extension from a standard continuum to a Cosserat continuum
model is simple and straightforward, and merely requires the re-definition of some
stress and plastic strain invariants.

5.2 Computations with Cosserat elasto-plasticity

The biaxial test considered in Section 3 has bee re-analysed using Cosserat elasto-
plasticity. The set-up and material parameters are as before. Two additional ma-
terial parameters, µc = 20 kPa and a characteristic length ℓ = 1 mm have been
adopted for the Cosserat model. The parameter values have been chosen such that
they properly bring out the regularising effect without requiring an overly dense
discretisation. A procedure to determine the additional material parameters in a
Cosserat continuum has been described in [19].

Model A has been analysed with four different levels of mesh refinement, 4×6,
8 × 12, 16 × 24, 32 × 48 elements and model B has been analysed for the same
discretisations as before.

5.3 Objectivity with respect to the mesh density

The load-displacement curves for models A and B are shown in Figures 9 and
10, respectively. They show that in both models the results converge to a unique
solution upon refinement of the discretisation, which is in contrast to the results
for standard non-associated Drucker-Prager plasticity. For a sufficient refinement
level, the width of the shear bands is not affected by the mesh size, neither in
model A, nor in model B. Figure 11 also shows that the solutions of models A and
B then agree well. For the assumed characteristic length scale, a mild structural
softening occurs, but this is no longer mesh-dependent after a converged solution
has been obtained. The equivalent plastic strain contours, see Figures 12 and 13,
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Fig. 10 Load-displacement curve for model B using Cosserat plasticity
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Fig. 11 Load-displacement curve using Cosserat plasticity

also show that strains are not localised over a single layer of elements, but over
a shear band with a finite width of approximately 16 mm, which makes that the
ratio of the shear band width over the internal length scale is in the range of
established theoretical values [30] and experimental observations [48].
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(a) 4× 6 elements (b) 8× 12 elements

(c) 16× 24 elements (d) 32× 48 elements

Fig. 12 Equivalent plastic strain for model A, at v = 0.2 cm, using Cosserat Drucker-Prager
plasticity

(a) 4× 6 elements (b) 8× 12 elements (c) 16× 24 elements

Fig. 13 Equivalent plastic strain for model B, at v = 0.2 cm, using Cosserat Drucker-Prager
plasticity
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Fig. 14 Shear band angles for both models (A and B) using Cosserat plasticity

5.4 Objectivity with respect to the orientation of the mesh lines

Comparing Figures 12 and 13 reveals a very similar shear band pattern and ori-
entation angle for both models after sufficient refinement. Upon mesh refinement
each model converges to a unique solution, and there is a very good agreement
in terms of the inclination angle of the shear band. The observed shear band
patterning is characteristic for the use of a Cosserat continuum model.

5.5 Shear-band orientation

The shear bands form at approximately ω = 48o both in model A and in model
B when using Cosserat Drucker-Prager plasticity, as shown in Figure 14. This is
different from the shear band inclination angles from classical bifurcation theory,
which rather suggest ω = 52.5o. In fact, they closer match the Roscoe solution
(ω = 45o+ψ/2 = 47.5o). This suggests that the introduction of an internal length
scale to represent the grain size can result in a reproduction of the experimental
observation that the inclination angle depends on the grain size [16, 18].

6 Concluding remarks

Non-associated plasticity can lead to loss of ellipticity at a generic stage in the
loading process. This leads to mesh-dependent solutions. Herein, we have shown
that this mesh dependence not only relates to the mesh density, but also to the
orientation of the mesh lines, as shear bands tend to follow the mesh lines.

Regularisation, in this case by means of a Cosserat continuum which is very
applicable to granular materials, prevents loss of ellipticity to occur. As a result,
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computations become independent of the discretisation, and shear bands are no
longer biased by the discretisation, neither in terms of density, nor in terms of ori-
entation of the mesh lines. As an added benefit, computability and convergence of
the iterative procedure to solve the set of non-linear equations are vastly improved.
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simulation of Lüders band formation and propagation. Continuum Mechanics
and Thermodynamics 27, 83–104 (2015)
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