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Topological phases of matter are distinguished by topological invariants, such as Chern numbers
and topological spins, that quantize their response to electromagnetic currents and changes of am-
bient geometry. Intriguingly, in the ν = 2/5 fractional quantum Hall effect, prominent theoretical
approaches – the composite fermion theory and conformal field theory – have constructed two dis-
tinct states, the Jain composite fermion (CF) state and the Gaffnian state, for which many of the
topological indices coincide and even the microscopic ground state wave functions have high overlap
with each other in system sizes accessible to numerics. At the same time, some aspects of these
states are expected to be very different, e.g., their elementary excitations should have either Abelian
(CF) or non-Abelian (Gaffnian) statistics. In this paper we investigate the close relationship be-
tween these two states by considering not only their ground states, but also the low-energy charged
excitations. We show that the low-energy physics of both phases is spanned by the same type of
quasielectrons of the neighbouring Laughlin phase. The main difference between the two states
arises due to an implicit assumption of short-range interaction in the CF approach, which causes
a large splitting of the variational energies of the Gaffnian excitations. We thus propose that the
Jain phase emerges as an effective Abelian low-energy description of the Gaffnian phase when the
Hamiltonian is dominated by two-body interactions of sufficiently short range.

I. INTRODUCTION

The fractional quantum Hall (FQH) states are a family
of strongly correlated electronic states realized in experi-
ments on two-dimensional (2D) semiconductors in strong
magnetic fields1. Their distinct experimental signature –
the robust quantization of Hall conductance – is a con-
sequence of the underlying topological invariant2, which
also represents the electronic filling factor ν of the rel-
evant partially-occupied Landau level3. FQH states are
paradigmatic examples of topological phases of matter4

whose low-energy description is governed by topological
quantum field theory5,6. Apart from filling factors, these
phases are further characterized by non-trivial ground
state degeneracy7, modular matrices8, protected edge ex-
citations9, topological spin or “shift”10 (which quantizes
the dissipationless Hall viscosity11–13) and chiral central
charge, which characterizes their response in the thermal
Hall effect14–16.

The focus of this paper is the FQH state at filling fac-
tor ν = 2/5, which is typically the state with the second
largest incompressibility gap after the ν = 1/3 Laugh-
lin state and its particle-hole conjugate17. In most ex-
periments performed at fairly large magnetic fields, it
is generally believed that the ν = 2/5 FQH state is a
spin polarized state18–20. The underlying physics of the
ν = 2/5 state was phenomenologically first explained as a
hierarchical state21,22, i.e., a condensate of quasielectron
excitations of the ν = 1/3 Laughlin state. An alterna-
tive interpretation of the ν = 2/5 state comes from the
composite fermion (CF) theory23,24), by which the state

can be understood as an integer quantum Hall fluid of
composite fermions – bound states consisting of one elec-
tron and two quantized vortices. The ν = 2/5 state of
electrons can be mapped onto two completely filled CF
levels which can be roughly viewed as analogs of Lan-
dau levels for electrons and they will be referred to as
“Λ” levels below. Both the hierarchical approach and
the CF approach produce trial wave functions21,23,25,26

for the ground state at ν = 2/5 which have high over-
laps with each other as well as with the exact ground
state of Coulomb interaction projected into the lowest LL
(LLL). Neutral excitation spectrum at ν = 2/5 consists of
a gapped collective mode27,28, while charged excitations
are also gapped and obey Abelian braiding statistics29.

Interestingly, another trial wave function under the
name “Gaffnian”30 has been constructed for the ν = 2/5
state. This wave function has many elegant algebraic
properties which the CF state lacks: (i) it is a corre-
lator of primary fields in a minimal model M(3, 5) in
conformal field theory (CFT)31; (ii) its first-quantized
representation is a Jack polynomial32 with parameters
(k = 2, r = 3) that encode the clustering condition
which allows exactly up to two electrons in every five
consecutive LL orbitals; (iii) the Gaffnian wave function
is exactly annihilated by a certain 3-body local Hamil-
tonian33. Properties (i)-(iii) are reminiscent of incom-
pressible FQH states, such as the Read-Rezayi states34,
which includes the Laughlin35 and Moore-Read36 states.
Similar to the Moore-Read case, the combination of (i)
and (iii) predicts that charged excitations of the Gaffnian
should have non-Abelian braiding statistics30 (see also
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Ref. 37). However, in contrast to these examples, the
Gaffnian CFT is non-unitary. This implies, via bulk-
boundary correspondence, anomalous behaviour at the
edge of the system38, which is clearly at odds with the
seemingly well-behaved bulk wave function. This “para-
dox” would be resolved if the Gaffnian parent Hamil-
tonian had gapless energy spectrum12, potentially aris-
ing as a critical point between two gapped FQH phases
(such as in a bilayer system with tunneling39). Recent
numerical tests on the sphere40 are indeed consistent
with the Gaffnian neutral gap vanishing with system
size, although similar results on the torus geometry have
been inconclusive41. Furthermore, it has been analyti-
cally established that in the so-called thin torus limit the
Gaffnian state is gapped42,43.

These differences between the Jain and Gaffnian states
suggest that they are different topological phases of mat-
ter. However, it was noted early on30 that the two states
have surprisingly large (in excess of 95%) overlap with
each other in finite systems where they can be exactly
compared44. Both of them also have high overlap with
the ground state of Coulomb interaction projected to
the LLL. Furthermore, they they share a dominant low-
lying part of the entanglement spectrum44,45, which de-
scribes virtual excitations across a bipartition of a system
in orbital space. Moreover, the so-called root partition,
which defines the structure of a FQH state under “squeez-
ing”32,46, is closely related for the Jain and Gaffnian
states44,47. Finally, an intriguing recent result48 suggests
that the topological entanglement entropy γ49,50, mea-
sured from the entanglement spectrum of the Gaffnian
state obtained using exact matrix product state repre-
sentation of the wave function51–53, takes the Abelian
value of the Jain state. (We note that similar conclusion
was reached for the Haldane-Rezayi spin-singlet state54

at ν = 1/2, which is also governed by a non-unitary
CFT55.) These observations raise the question precisely
how the two theories, Jain and Gaffnian, are different
from each other, in particular from the point of view of
data that can be measured in finite-size calculations.

In this paper we investigate in detail the connection
between Jain and Gaffnian states from a standpoint of
the effective Hilbert space structure that describes their
low-energy physics. As we explain in detail in Sec. II be-
low, our motivation is to avoid invoking the notion of a
parent Hamiltonian when we compare the two phases, be-
cause this would entail discussing the energetics of excita-
tions, which is fundamentally a non-topological property.
Instead, our approach will rely on the the recently in-
troduced notion of “local exclusion conditions” (LEC)56

that we briefly review in Sec. III. The analysis within the
LEC framework allows us to focus on topological indices
that can be computed from the wave functions them-
selves without referring to a specific model Hamiltonian.
In this particular sense, we argue that the Gaffnian phase
and the Jain phase at ν = 2/5 are “topologically equiv-
alent” upon restriction to the low-energy subspace. Our
extensive numerical analysis presented in Secs. IV and

V shows that the Gaffnian ground state and the Jain
ν = 2/5 state are made of the same type of Laughlin
quasielectrons. There is also a close relationship between
the Gaffnian quasihole states, and the quasihole states
constructed in the CF picture at ν = 2/5. In addition,
the low-lying quasielectron excitations of the Gaffnian
state can be defined from the Hilbert space algebra alone.
We show they qualitatively agree with the CF quasielec-
tron states obtained by adding CFs in the third Λ level
on top of the Jain state.
The analysis of the quasiholes and quasielectrons of the

Gaffnian phase also allow us to understand the incom-
pressibility and topological properties (e.g., the braiding
statistics of charged excitations) of the Gaffnian from a
microscopic perspective with realistic interactions. As
we discuss in Sec. VII, the results imply that the robust-
ness of a topological phase is not only determined by
the ground state gap in the thermodynamic limit, but
also by the energy splitting of the quasihole manifold
under realistic experimental conditions. The Gaffnian
phase is non-Abelian due to the structure of its quasi-
hole manifold, resulting in multiple linearly independent
states when the positions of quasiholes are fixed. The
Jain phase is an effective low energy description with re-
alistic interactions (e.g., the LLL-projected Coulomb in-
teraction), which captures only the low-lying part of the
Gaffnian quasiholes, thus effectively rendering the phase
Abelian.

II. THE NOTION OF TOPOLOGICAL

EQUIVALENCE BASED ON THE HILBERT

SPACE STRUCTURE

A traditional approach in condensed matter physics for
distinguishing phases of matter is adiabatic continuity,
which relies on the behaviour of the energy spectrum un-
der small variations of the Hamiltonian. An approximate
model Hamiltonian for the (LLL-projected) Jain state is
the V1 Haldane pseudopotential21, which is the leading
component of Coulomb interaction in the LLL. On the
other hand, the Gaffnian state has an exact Hamiltonian
which annihilates it, HGaff |ψGaff〉 = 0, and this Hamilto-
nian is explicitly given by

HGaff = c3H
M=3
3b + c5H

M=5
3b , (1)

where HM
3b is a projection operator33,57 onto states of

3 electrons with relative angular momentum M , and
c3, c5 > 0 are arbitrary positive constants. Numerics sug-
gest40 HGaff is gapless only in the thermodynamic limit,
while there is a gap in any finite size system. Increasing
the system size does not lead to level crossing, and the
Gaffnian model wave function is always the zero energy
ground state for the positive semidefinite Hamiltonian in
Eq. (1). On the other hand, adding any finite amount
of two-body V1 pseudopotential to HGaff appears to in-
crease the ground state gap40, and the Gaffnian and Jain
states can be smoothly deformed into each other in any
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finite system58. One may attempt to circumvent the diffi-
cult computation of the Hamiltonian gap by studying the
decay of correlations in the ground state wave function.
Extensive work on one-dimensional systems has shown
that when such systems are gapped, they generically ex-
hibit exponentially decaying correlations in the ground
state59, while gapless systems have power-law decaying
correlations60. Although these results are expected to
apply to two-dimensional systems, they have not been
rigorously proven. In addition, a much larger difficulty
of simulating 2D systems typically prevents to reliably
distinguish power law from exponential decay of correla-
tions.

In this paper we put aside the adiabatic continuity ap-
proach which is based on a difficult problem of bounding
the gap of many-body Hamiltonians, and instead we fo-
cus on the topological indices of the ν = 2/5 state. More
specifically, whether or not the Gaffnian state and the
Jain ν = 2/5 state are topologically equivalent can be
determined, at least in principle, in a precise manner:
we look at all topological indices that can be computed
from the wave functions alone. These topological indices
are all integers when measured in appropriate units. If
there exists a topological index that takes different values
when computed from the two wave functions, then we can
unambiguously claim that the Gaffnian state is topolog-
ically distinct from the Jain state. Two states with dif-
ferent topological indices also cannot be connected adia-
batically by smooth tuning of Hamiltonians in principle.

At this point, we would like to note a technical dif-
ference between two types of topological indices: those
that can be computed exactly in a finite system vs. those
that must be obtained via extrapolation to the thermo-
dynamic limit. Some examples of the former include the
filling factor ν = 2/5 and orbital shift S = −3, which
are identical for the Jain and Gaffnian states. The same
shifts imply, in particular, that the Jain and Gaffnian
states should have the same Hall viscosity12,61,62. An
example of a topological index that can be obtained via
extrapolation to the thermodynamic limit is the topolog-
ical entanglement entropy γ = lnD, which is given by the
logarithm of the so-called total quantum dimension D of
the CFT31. γ can be extracted from the scaling of the
bipartite entanglement entropy, S = αL − γ + O(e−L),
where L is the length of the bipartition and α is a non-
universal constant prefactor. The entanglement entropy
of the Gaffnian has been computed from an exact matrix-
product state representation of its wave function on an
infinite cylinder48, where “finite size” effects are conve-
niently replaced by a “finite entanglement” truncation
of the MPS. Careful scaling of γ as a function of en-
tanglement truncation revealed a value that surprisingly
matches that of the Abelian theory which describes the
Jain CF state. This result points to the need for closer
scrutiny of the relationship between Jain and Gaffnian
states. Apart from γ, there is another topological in-
dex that in principle distinguishes the Jain and Gaffnian
states: the chiral central charge, c

−
. This quantity can

also be obtained from the entanglement spectrum and we
will discuss it in more detail in Sec. VI.
In addition to topological quantum numbers, below

we will also examine the complete algebra of the Hilbert
space that describes the low-energy physics of Jain and
Gaffnian states. By this we mean the space spanned by
the ground states and low-lying excitations of the two
states, i.e., single and multiple quasihole/quasielectron
excitations. We emphasize that these can be obtained
without specifying a Hamiltonian. For example, within
the CF theory, these states are generated by explic-
itly promoting CFs into higher Λ levels, and by subse-
quently projecting into the LLL; these procedures can
be implemented without specifying the Hamiltonian (al-
though, as we will explain below, in practice they are of-
ten performed with an implicit assumption of the target
Hamiltonian whose properties the states are supposed to
model). On the other hand, in the Gaffnian case, we can
generate the relevant low-energy Hilbert space from the
clustering conditions using an approach of “local exclu-
sion conditions” (LECs), which was recently introduced
in Ref. 56 and which we briefly review in Sec. III. These
conditions are similar to the notion of clustering that is
used to define the root configurations of Jack polynomi-
als32, but they can also be applied to many FQH states
without a Jack description. Thus, the LEC framework
allows us to examine the properties of excitations more
generally, and to avoid talking about the energetics of
such excitations, which is a non-topological property. Fi-
nally, we note that ground state degeneracy on a torus
is also different for the Jain and Gaffnian states30. How-
ever, since the ground states on the torus correspond
to different types of anyons in a topological phase8, our
analysis of charged excitations within the LEC frame-
work will implicitly shed light on this aspect of the two
states.

III. BRIEF OVERVIEW OF LOCAL

EXCLUSION CONDITIONS

In this work we employ the recently introduced charac-
terization of FQH states via Local Exclusion Conditions
(LECs)56. Each LEC is defined by a triplet of integers

n̂ = {n, ne, nh}. (2)

This dictates that for a physical measurement on a cir-
cular droplet containing n magnetic fluxes anywhere in
the quantum Hall fluid, no more than ne electrons and
nh holes can be detected. This is formally a classical
constraint on the reduced density matrix of the circular
droplet within the bulk of the quantum Hall fluid. Im-
posing the LEC in Eq. (2) yields the wave functions of
the ground states and elementary excitations for a large
class of known and new FQH ground states63.
For finite systems, the LEC approach is most conve-

niently implemented on a spherical geometry, where im-
posing the constraint on the physical measurement any-
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where in the quantum Hall fluid translates into demand-
ing that states are also the highest weight eigenvectors
of the total angular momentum L

2 operator56,63 in the
Hilbert space truncated according to Eq. (2). When we
put the fractional quantum Hall states on the sphere with
a magnetic monopole of strength 2S at the center, the
many-body states can be expanded into second quan-
tised bases that are Slater determinants of Ne number of
electrons, and No number of orbitals (No = 2S+1+2N ,
where N is the Landau level index)21,32. The trunca-
tion can be implemented by looking at n orbitals cen-
tered at the north pole. These n orbitals naturally form
the droplet at the north pole with the physical area of
∼ 2πnl2B . Thus the imposition of an LEC in the form
of Eq.(2) dictates that no more than ne electrons or nh

number of holes can be contained in that droplet.
Taking the Hilbert space of Ne = 6, No = 16

and the total z-component angular momentum Lz =
0 as an example, all basis states are squeezed from
1110000000000111, and a few bases are listed as follows:

1110000000000111 (3)

1101000000001011 (4)

1011000000001101 (5)

...

0000011111100000 (6)

The string of numbers in the occupation bases from the
left to right correspond to orbitals on the sphere from
the north pole to the south pole, where 1/0 indicates
the corresponding orbital is occupied/unoccupied. If we
take n̂ = {2, 1, 2}, which implies the two orbitals at the
north pole cannot contain more than one electron, the
truncation of the Hilbert space is implemented by look-
ing at the two leftmost orbitals while scanning through
all bases in the Hilbert space. If the two leftmost or-
bitals are both occupied (e.g. (3),(4)), such bases will be
removed. In this particular case, there is only one high-
est weight state (by diagonalising the L

2 operator) in
the truncated Hilbert space. More generally, only when
No = 3Ne−2, we obtain a unique highest weight state in
the Hilbert space truncated by n̂ = {2, 1, 2}, which turns
out to be the Laughlin state. When No < 3Ne − 2, no
highest weight states exist in any such truncated Hilbert
space. This is also how we determine unambiguously the
topological indices (e.g the filling factor ν = 1/3, the
topological shift S = −2) for the Laughlin FQH phase.
In simple cases, the LEC approach produces FQH

states and their excitations that are identical to those
from the Jack polynomials approach. However, at general
filling factors the LEC construction also admits states
which do not coincide with any known Jacks. In this work
we focus on the Hilbert space at filling factor ν = 2/5,
with the number of orbitals set to No = 5Ne/2−3, where
Ne is the number of electrons and S = −3 is the or-
bital shift of the Jain and Gaffnian states. Explicit nu-
merical calculations show that the algebraic structure of

the Hilbert space that results from imposing the specific
LECs,

ĉG = {2, 1, 2} ∨ {5, 2, 5}, (7)

uniquely determines the ground state and the quasihole
manifold of the Gaffnian phase. Here the symbol ∨ im-
plies the FQH fluid satisfies {2, 1, 2} (any circular droplet
containing two fluxes does not contain more than one
electron) or {5, 2, 5} (any circular droplet containing five
fluxes does not contain more than two electrons). The
same LECs also defines the (5, 2)Type quasielectrons of
the Laughlin phase at ν = 1/3. The low-lying quasielec-
tron excitations of the Gaffnian phase, on the other hand,
can be defined by

ĉh = {2, 1, 2} ∨ {6, 3, 6}. (8)

We next present detailed comparisons of the ground state
and elementary excitations of the Gaffnian phase with
the Abelian Jain ν = 2/5 phase in the CF picture.

IV. GROUND STATES AND QUASIHOLES AT

ν = 2/5

As mentioned in Sec. I, the relationship between the
Gaffnian state and the Jain state at ν = 2/5 is quite
subtle. The Gaffnian has the root configuration32

1100011000 · · · 1100011, (9)

where · · · represent repeated patterns of 11000. In con-
trast, the Jain state has the root configuration44

110010010 · · · 010010011 (10)

where · · · represent repeated patterns of 10010, which
is “unsqueezed” from that of the Gaffnian44. In both
cases, the states only consist of basis vectors squeezed
from their respective root configuration and they have
very high overlap in finite systems. One important dif-
ference is that the root configuration Eq. (10) does not
uniquely specify the Jain state44.

Next, we present additional evidence that the two
states could be physically equivalent (in the sense of
our Sec. II) by looking at the quasihole states and their
connections to the quasielectron states arising from the
Laughlin state at ν = 1/3. The crucial insight discov-
ered in Ref. 63 is that the CF quasielectrons in the
second Λ level is qualitatively equivalent to the (5, 2)
Type Laughlin quasielectrons obtained from LEC con-
structions.64 We analyze this in more detail by studying
different Hilbert spaces indexed by (No, Ne), in which
various possible states live – see the summary in Fig. 1.
From the CF perspective, the Laughlin ground state

at ν = 1/3 occurs at No = 3Ne − 2, with the fully oc-
cupied lowest Λ level. For No < 3Ne − 2, the Laughlin
quasielectrons are constructed by keeping the lowest Λ
level fully occupied, and adding CFs to the first Λ level.
This is a particular type of quasielectron65 related to the
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= Jain quasihole

or
Laughlin quasielectron

FIG. 1. An illustration of possible quasihole subspaces of the
ν = 2/5 state when 5

2
Ne − 3 < No < 3Ne − 2. The subspace

of undressed Jain quasiholes (or Laughlin quasielectrons) QJ

is contained within the subspace of Gaffnian quasiholes, QG.
Intriguingly, the Gaffnian subspace itself is contained within
the generalized Jain quasihole subspace, Q̄J .

familiar magnetoroton or Girvin-MacDonald-Platzman66

neutral mode, in which each neutral excitation consists
of one quasihole and one quasielectron of this type. The
quasielectrons thus constructed are undressed quasielec-
trons. Dressed quasielectrons can be constructed by ex-
citing CFs in the lowest Λ level to the second Λ level,
so that the quasielectrons are dressed with neutral ex-
citations consisting of quasielectron-quasihole pairs67,68.
The maximum number of CFs to be added to the second
Λ level is also constrained by No ≥ 5Ne/2 − 3, beyond
which the second CF level is completely filled, and addi-
tional CFs can only be added to the third Λ level.
The Hilbert space of No = 5Ne/2 − 3 corresponds to

both the lowest and first Λ level completely filled, which
is mapped to the Jain ν = 2/5 ground state. It is impor-
tant to note that Hilbert spaces with 3Ne − 2 > No >
5Ne/2−3 correspond to both the Laughlin quasielectrons
and the Jain ν = 2/5 quasiholes. In particular, every un-
dressed Laughlin quasielectron state (which may contain
multiple quasielectrons) is equivalent to a Jain ν = 2/5
quasihole state (which may contain multiple quasiholes)
in the CF picture. This is because a Jain ν = 2/5 quasi-
hole state only involves the removal of CFs in the second
Λ level58. We denote the Hilbert space of all Jain ν = 2/5
quasielectrons as QJ . We can also define the family of
“generalized Jain ν = 2/5 quasiholes”, which allows the
removal of CFs from either the lowest or the first Λ level
of the Jain ν = 2/5 ground state. The generalized Jain
ν = 2/5 quasiholes are equivalent to Laughlin quasielec-
tron states, both dressed and undressed by neutral ex-
citations, and we denote the spanned Hilbert space as
Q̄J . We obviously have QJ ⊂ Q̄J , and the generalized
Jain ν = 2/5 quasiholes are microscopically well-defined
objects.
We now analyze the Hilbert spaces in Fig. 1 from the

LEC perspective. At No = 3Ne − 2, the unique highest
weight state after imposing ĉL = {2, 1, 2} is the trans-
lationally invariant Laughlin state, which exactly agrees
with the CF construction. AtNo = 5Ne/2−3, the unique

translationally invariant state can be obtained by impos-
ing the constraint in Eq. (7), and the resulting state is
the exact Gaffnian state. The important observation here
is that for 3Ne − 2 > No > 5Ne/2 − 3, the imposition
of ĉG defines a manifold of highest weight states, which
can be identified as the (5, 2)Type Laughlin quasielec-
tron manifold63. Each state consists of local charge ex-
citations from the Laughlin ν = 1/3 ground state. This
quasielectron manifold is well-defined from the algebraic
structure of the Hilbert space, independent of the micro-
scopic Hamiltonian, and we denote it as QG. Every state
in this manifold contains a number of (5, 2)Type Laugh-
lin quasielectrons and quasiholes. The familiar magne-
toroton mode also belongs to this manifold65,68. On the
other hand, the creation energy of the quasielectrons and
quasiholes, as well as the interaction between them, are
non-universal and depend on the details of the micro-
scopic Hamiltonian. In particular, the Hamiltonian must
be specified to obtain more information from the states,
including the number of quasielectrons and/or the num-
ber of quasiholes that effectively remain in the low-energy
theory63.

The single (5, 2)Type Laughlin quasielectron state
from the LEC construction can be found in the Hilbert
space of No = 3Ne − 3. We can thus denote Q

(5,2)
1qe as

the single quasielectron manifold, equivalently the high-
est weight subspace after imposing ĉG on the full Hilbert
space. In the Laughlin phase, we can assume the cre-
ation energy of the quasiholes are small, while that of the
(5, 2)Type Laughlin quasielectrons are finite, implying
incompressibility and representing the charge gap nec-
essary for the phase to be robust. If we diagonalize a
short range Hamiltonian (e.g., containing only V1 pseu-

dopotential) within Q
(5,2)
1qe , the lowest energy state should

contain a single undressed quasielectron, while the ex-
cited states contain one quasielectron dressed by neutral
excitation(s).

In Table I we show that a single (5, 2)Type Laughlin
quasielectron has the same quantum number and very
high overlap with the single quasielectron state from the
CF construction. We thus claim the (5, 2)Type Laughlin
quasielectron is qualitatively equivalent to the Laughlin
quasielectron in the CF picture. It is thus reasonable
to assume that all states containing multiple undressed
(5, 2)Type Laughlin quasielectrons are equivalent to the
undressed Laughlin quasielectron states in the CF picture
(see Table I for a few concrete examples). This implies
the Hilbert space spanned by all states containing only
undressed (5, 2)Type quasielectron is also given by QJ .
In particular, the Jain ν = 2/5 ground state is made
entirely of undressed Laughlin quasielectrons, and the
Gaffnian state is made entirely of undressed (5, 2)Type
quasielectrons. The fact that the Jain ν = 2/5 and
Gaffnian states are built from the same type quasielec-
trons of the Laughlin phase is strong evidence that the
two states capture the same low-energy physics spanned
by states within QJ .

We now turn our focus to the ν = 2/5 quasihole
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Ne Nφ Quasielectrons No. Overlap L sector
6 15 1 0.993191247 3
7 18 1 0.992358615 3.5
8 21 1 0.991746992 4
9 24 1 0.991214478 4.5
6 14 2 0.985751939 0
6 14 2 0.984173168 2
6 14 2 0.984173168 4
7 17 2 0.988597494 1
7 17 2 0.983286491 3
7 17 2 0.943082997 5
8 20 2 0.985628951 0
8 20 2 0.986852018 2
8 20 2 0.972283336 4
8 20 2 0.949012693 6
9 23 2 0.986292384 1
9 23 2 0.984033466 3
9 23 2 0.973425667 5
9 23 2 0.953128136 7
10 26 2 0.9881478295 0
10 26 2 0.9833100134 2
10 26 2 0.9827543856 4
10 26 2 0.9722622828 6
10 26 2 0.9544481270 8
6 13 3 0.8743444175 1
6 13 3 0.8105834258 3
7 16 3 0.9342778754 1.5
7 16 3 0.9216743063 2.5
7 16 3 0.8775111803 4.5
8 19 3 0.9099956938 0
8 19 3 0.9319712444 2
8 19 3 0.9503537167 3
8 19 3 0.9215094248 4
8 19 3 0.8952653937 6
9 22 3 0.960168064 1.5
9 22 3 0.949196167 2.5
9 22 3 0.936635226 3.5
9 22 3 0.934275046 4.5
9 22 3 0.930653326 5.5
9 22 3 0.910263617 7.5
10 24 4 0.8928222791 0
10 24 4 0.9114580216 5
10 24 4 0.8842522966 6
10 24 4 0.8719329406 7

TABLE I. Wave function overlap of the (5, 2)Type Laugh-
lin quasielectrons with the CF quasielectrons in the second Λ
level (first Λ level completely filled). The quasielectron num-
ber is the number of (5, 2)Type Laughlin quasielectrons or
the CF quasielectrons

manifold. In the CF picture, both the generalized Jain
quasiholes Q̄J and the conventional quasiholes QJ can
be reinterpreted as Laughlin quasielectrons (dressed and
undressed). Similarly, the (5, 2)Type Laughlin quasielec-
tron manifold QG comes from the highest weight states
with ĉG, so QG is the quasihole manifold of the Gaffnian
state, i.e., all states in QG have zero energy with the
Gaffnian model Hamiltonian in Eq. (1). It is easy to see
in the lowest LL with Coulomb interaction, or with any

Ne Nφ Quasielectrons No. Overlap L sector
6 15 1 0.973487198 4
7 18 1 0.968581199 4.5
8 21 1 0.965443776 5
9 24 1 0.963056386 5.5

TABLE II. Wave function overlap of the (6, 3)Type Laughlin
quasielectrons with the CF quasielectrons in the third Λ level
(first Λ level completely filled).

interaction dominated by V1 pseudopotential, that the fi-
nite energy cost of creating a single (5, 2)Type quasielec-
tron in the thermodynamic limit dictates that different
Gaffnian quasiholes have different variational energies:
quasiholes corresponding to dressed quasielectron states
have higher energies than those corresponding to the un-
dressed ones, as each neutral excitation also costs a finite
amount of energy.
We have therefore defined three sub-Hilbert spaces of

the quasihole excitations: the conventional Jain ν = 2/5
quasihole manifold QJ , obtained by the removal of com-
posite fermions from only the second Λ level (fully occu-
pied for the ν = 2/5 ground state); the generalised Jain
ν = 2/5 quasihole manifold Q̄J , obtained by the removal
of composite fermions from either the second Λ level or
the first Λ level or both; the Gaffnian quasihole manifold
QG, obtained from the LEC approach with ĉG. All three
quasihole sub-Hilbert spaces are from No > 2Ne/5 − 3.
From the extensive numerical analysis, it turns out the
various quasihole manifolds have the following relation-
ship depicted in Fig. 1:

QJ ⊂ QG ⊂ Q̄J . (11)

The Gaffnian quasiholes are non-Abelian, and QJ is a
subspace of QG. It is intriguing that QG is a subspace
of Q̄J , implying that the Jain ν = 2/5 phase could be
non-Abelian (with higher intrinsic degeneracy for multi-
ple quasihole states than the Gaffnian quasiholes). It is
thus important to note that the Abelian nature of the
Jain ν = 2/5 phase is crucially dependent on only allow-
ing CFs in the second Λ level to be removed to create
quasiholes. This is only justified in the presence of short
range interactions, whereby removing CFs in the lowest
Λ level gives states with significantly higher variational
energies58. If there exist microscopic Hamiltonians that
maintain incompressibility, while at the same time do not
energetically penalise the removal of CFs in the lowest Λ
level (i.e., the lowest and the first Λ levels become quasi-
degenerate in the thermodynamic limit), then Q̄J should
be the proper quasihole manifold for the Jain state.

Another possibility is that the additional states in Q̄J ,
as compared to those in QG are due to the uncontrolled
process of LL projection, or strong interactions between
the CFs that are not fully accounted for. This can be par-
ticularly illustrated by considering the case of the single
quasihole state of the Jain ν = 2/5 phase. In the CF
theory, the state can be intuitively constructed with N
CFs in the lowest Λ level, and N + 1 CFs in the first



7

Λ level. This corresponds to the removal of a single CF
from the ν = 2/5 ground state. However, there appears
to be no single quasihole state for the Gaffnian phase
(contrary to the claim in Ref. 58). For example, with
Ne = 7, No = 15, there is no zero energy eigenstate of
the Gaffnian model Hamiltonian. There is also no high-
est weight state when the Hilbert space is truncated by
ĉα = {2, 1, 2}∨{5, 2, 5}. The single quasihole for the Jain
state occurs in the L = 2 sector. The corresponding root
configuration for the Gaffnian state is given as follows:

1100011000110.01
˚̊

(5, 2)Type L = 2 (12)

The black dot beneath the numbers gives the location
of a quasiparticle of charge −e/5 (when five consecutive
orbitals contain more than two electrons), and the circles
give the location of the quasiholes of charge e/5 (when
five consecutive orbitals contain less than two electrons).
Thus, in this Hilbert space there is no state with a single
quasihole, and the lowest energy state contains a single
quasihole dressed by a neutral excitation (of a quasihole-
quasiparticle pair). Naively, this looks like an exam-
ple where the counting between the (5, 2)Type Laughlin
quasielectrons and the CF quasielectron fails to match.
For the Laughlin 1/3 ground state with Ne electrons, we
cannot add Ne+1 (5, 2)Type Laughlin quasielectrons on
top of it, since such a state does not exist from the LEC
construction. However, we can add Ne +1 CF quasielec-
trons to the second Λ level, as there exists one such state
in L = (Ne + 1) /2 sector.
This paradox can be resolved by the fact that the low-

est energy state in that sector can be constructed within
the LEC formalism by using ĉh = {2, 1, 2} ∨ {6, 3, 6}
(see also Sec. V below). It thus consists of a Gaffnian
quasihole dressed by a neutral excitation consisting of a
Gaffnian quasihole and a (6, 3)Type Gaffnian quasielec-
tron. This should correspond in the CF construction to
the configuration with Ne CFs in the lowest Λ level, Ne

CFs in the second Λ level, and one CF in the third Λ level
(also see Table. II). Indeed, for Ne = 3 (corresponding to
the case given by Eq.(12)), the lowest energy state with
such configuration in the L = 2 sector has overlap of
0.997 with the single quasihole Jain ν = 2/5 state (which
is given by 3 CFs in the lowest Λ level, and 4 CFs in the
second Λ level). It turns out in the CF construction, the
single quasihole state (with all Ne +1 CFs in the second
Λ level) is physically identical to the dressed quasihole
state (with Ne CFs in the second CF level, one CF in
the third CF level) in the sector L = (Ne + 1) /2, most
probably due to the fact that interactions between CFs
mixes different CF levels.
Similarly, many states in Q̄J actually contain quasi-

electrons in the third and higher CF levels, which is sup-
ported by numerical calculations. Thus the quasihole
manifold for the Gaffnian phase and the Jain ν = 2/5
phase could also be equivalent with QG = Q̄J , and the
two phases differ not because of the topological distinc-
tions of the ground state or the quasihole manifold, but
because of the splitting of the quasihole manifold with

realistic interactions. We discuss this point in Sec. VII
below.

V. QUASIELECTRONS OF THE ν = 2/5 PHASE

It is also important to study the types of quasielec-
tron states the topological phase at ν = 2/5 can sup-
port, and to see if there are qualitative differences be-
tween the Gaffnian and Jain descriptions. The construc-
tion of ν = 2/5 quasielectron states is straightforward
in the CF picture: one can just add CFs to the third Λ
level, given the lowest two Λ levels are completely occu-
pied. From the perspective of conformal field theory, the
construction of quasielectrons is rather involved26 and
there are no available results for the Gaffnian case. How-
ever, the LEC formalism allows a very natural construc-
tion. While the condition in Eq. (7) uniquely defines the
Gaffnian ground state, Gaffnian quasihole manifold and
all of its topological properties, a more relaxed LEC of
Eq. (8) leads to the construction of low-lying charged ex-
citations on top of the Gaffnian ground state. This is
similar in spirit to how low-lying charged excitations on
top of Laughlin ν = 1/3 ground state are built.
We term such quasielectrons constructed by impos-

ing ĉh on the Hilbert space with No < 5Ne/2 − 3 as
(6, 3)Type Gaffnian quasielectrons. A state with a sin-
gle such quasielectron has to contain an odd number of
electrons. Following the approach of65,69, the root con-
figuration for a single (6, 3)Type Gaffnian quasielectron
is given as follows:

1110000110001100011000 · · · , L =
1

4
(Ne + 3) .(13)

Let |ψqe〉 be the quasielectron state containing only the
basis squeezed from Eq. (13). |ψqe〉 can be uniquely de-
termined by the following two constraints:

L+|ψqe〉 = 0, ĤGaffc1c2c3|ψqe〉 = 0, (14)

where ĤGaff was given in Eq. (1) and ci is the annihila-
tion operator for the electron in the ith orbital (orbital 1
denotes one of the poles of the sphere). It is difficult to
generalise this root configuration approach to cases with
multiple quasielectrons. The LEC construction naturally
gives the (6, 3)Type Gaffnian quasielectron manifold in-
cluding single and multiple quasielectron states, though
it requires a Hamiltonian to resolve states with different

number of quasielectrons. Let us define Q̄
(6,3)
1qe to be the

subspace of a single (6, 3)Type Gaffnian quasielectron
(which may or may not be dressed), obtained from the
Hilbert space with odd Ne and No = 5 (Ne − 1) /2 − 1.
The state with a single undressed (6, 3)Type Gaffnian
quasielectron can again be resolved as the lowest en-
ergy state by diagonalising V1 interaction or the Gaffnian

model Hamiltonian within Q̄
(6,3)
1qe . We have checked the

overlaps of this state with the state constructed from
Eq.(13) and Eq.(14), as well as the state from the CF
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construction. The very high overlap in most cases sug-
gests they are all qualitatively equivalent (see Table. III).

Ne Nφ Quasielectrons No. Overlap L sector
5 9 1 0.992059308 2
7 14 1 0.986556772 2.5
9 19 1 0.983445077 3
6 11 2 0.7752216578 1
6 11 2 0.7881834641 3
8 16 2 0.9890547151 0
8 16 2 0.9218344596 2
8 16 2 0.8983693223 4
9 18 2 0.8530680855 1.5
9 18 2 0.8008992103 2.5
9 18 2 0.6834199602 4.5

TABLE III. Wave function overlap of the (6, 3)Type Gaffnian
quasielectrons with the CF quasielectrons in the third Λ level
(first two Λ levels completely filled).

VI. CHIRAL CENTRAL CHARGE

As noted in the Introduction, the chiral central charge
in principle distinguishes the Jain and Gaffnian states.
For the Abelian Jain state, the chiral central charge is
c
−
= 2, i.e., it trivially counts the number of chiral edge

modes. For the Gaffnian state, in addition to one bosonic
mode for the charge sector, there is a neutral sector which
is described by the non-unitary M(3, 5) minimal model,
whose central charge is equal to −3/531. Thus, the total
central charge of the Gaffnian is c

−
= 1− 3/5. Extract-

ing the value of c
−

from a wave function is non-trivial
but can be accomplished using “momentum polarization”
which was introduced in Ref. 70 (see also appendices of
Ref. 71). Physically, momentum polarization measures
the momentum carried by a subsystem, thus it can be
practically evaluated from the knowledge of the orbital
entanglement spectrum72.

Specifically, momentum polarization can be expressed
as72

〈∆ML〉 =
γ

24
− ha +

1

2

(

L

2πℓB

)2

×
−s

q
. (15)

On the left hand side, ∆ML is the momentum in the
left subsystem, measured relative to the root configura-
tion, which can be computed solely by averaging over the
entanglement spectrum. The right hand side stipulates
that ∆ML scales super-extensively with the length of the
bipartition L (in units of the magnetic length, ℓB), with
a universal coefficient −s/q, where s is the guiding center
spin13 (s = −3 for the Gaffnian) and q is the number of
orbitals in the unit cell of the root partition (q = 5 for
the Gaffnian). The subleading constant term, γ/24−ha,
is also universal, where ha represents the conformal spin
of an anyon of type a in the theory, and γ = c

−
− ν is

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 300  350  400  450  500  550  600  650  700

(c
- -

 ν
)/

24

L2

Pmax=13
Pmax=14

Jain
Gaffnian

Gaffnian, effective

FIG. 2. Extracting chiral central charge from the ex-
act Gaffnian wave function via momentum polarization in
Eq. (15). We compute the momentum polarization using the
entanglement spectrum of the exact Gaffnian state on the in-
finite cylinder from Ref. 48. The entanglement spectrum is
calculated for two different levels of truncation, denoted by
Pmax. Solid and dashed lines indicate the expected values for
the Jain and Gaffnian states, respectively. Dotted line is the
“effective” central charge of the Gaffnian38,73.

the desired coefficient that depends on the chiral central
charge.

For the familiar examples of Laughlin and Moore-Read
states, the formula in Eq. (15) yields the expected values
c
−

= 1 and c
−

= 3/2, respectively, in agreement with
CFT72. However, a reliable extraction of c

−
requires

large systems. Following Ref.72, we use Eq. (15) in or-
der to extract c

−
for the Gaffnian state and the result

is shown in Fig. 2. We have computed momentum po-
larization from the largest available entanglement spec-
tra of the exact Gaffnian state that was obtained in the
MPS representation in Ref. 48. The MPS computation
is controlled by a truncation level Pmax, which roughly
corresponds to the number of momentum-resolved sec-
tors of the entanglement spectrum (higher value of Pmax

therefore corresponds to higher accuracy). The FQH sys-
tem is placed on an infinite cylinder and L denotes the
circumference of the cylinder (i.e., the length of the en-
tanglement bipartition). For simplicity, we show the data
for the vacuum sector (h = 0).

Unfortunately, Fig. 2 does not allow us to draw a
definitive conclusion whether the data agrees with the
prediction of the Jain (solid line) or Gaffnian (dashed
line). Comparing with the Moore-Read case in Ref.72, we
expect only a limited range of L where the result is fully
converged for the values of Pmax numerics can access.
For example, for the Moore-Read case, it is only in the
interval 400 . L2 . 550 that c

−
matches the expected

value (although it is seen that this interval expands with
the increase of Pmax). Referring back to Fig. 2, we see
that in the similar range of L, the value of c

−
is closer

to the prediction of Jain theory, which is consistent with



9

the finding of Ref.44. However, the value of the “effec-
tive” central charge of the Gaffnian38, ceff = 1 + 3/5,
which can be extracted from the Jack wave function73,
is closer to the expected value for the Jain state, and
thus much larger values of Pmax are required to reach a
reliable estimate of c

−
.

VII. INCOMPRESSIBILITY OF THE

GAFFNIAN PHASE

Having established a close relationship of the ground
state, the quasihole and quasielectron manifold between
the Gaffnian phase and the Jain ν = 2/5 phase, we now
attempt to synthesize these results and turn our atten-
tion to the important issue of whether the Gaffnian state
can be gapped in the thermodynamic limit, and if the
topological nature of the Gaffnian phase is Abelian or
non-Abelian.
The numerical analysis of the Gaffnian model Hamilto-

nian HGaff , as well as the connection to the non-unitary
CFT, suggest that HGaff is gapless in the thermodynamic
limit12,40. The quasihole manifold of HGaff , on the other
hand, is confirmed to be non-Abelian in Ref. 30 (although
such a calculation might be invalid in a gapless system).
However, as we argued in Sec. I, properties of a spe-
cific microscopic Hamiltonian are non-universal. A more
relevant question we can ask is: does there exist a micro-
scopic Hamiltonian such that (i) the ground state is topo-
logically equivalent to the Gaffnian state; (ii) the ground
state has a charge gap in the thermodynamic limit; (iii)
the Gaffnian quasihole manifold is quasi-degenerate with
the ground state in the thermodynamic limit.
For the LLL Coulomb interaction, it seems both (i)

and (ii) are satisfied for the Jain ν = 2/5 state, but the
Gaffnian quasihole degeneracy is lifted. We conjecture
this is the only difference between the Gaffnian phase
and the Jain ν = 2/5 phase, and the fundamental reason
why the Jain ν = 2/5 phase could be Abelian. The
question is if it is possible to tune the interaction so as to
maintain the charge gap of the ground state, while at the
same time making the Gaffnian quasihole manifold quasi-
degenerate with the ground state. In this way, a non-
Abelian topological phase at ν = 2/5 could be realised,
which potentially would be adiabatically connected to the
Abelian Jain state, in the sense that the ground state gap
to charged or neutral excitations are maintained. We will
now explore this issue from the perspective of the LEC
construction.
It is clear, based on the specific LEC condition ĉG,

that we can interpret the Gaffnian ground state, as well
as all of the Gaffnian quasihole states, as made entirely of
the (5, 2)Type Laughlin quasielectrons. In particular for
the quasihole manifold, each of the quasihole state can
contain a multiple of (5, 2)Type Laughlin quasielectrons,
together with possibly the presence of Laughlin quasi-
holes. Thus the variational energies of these Gaffnian
quasihole states are dominantly determined by the cre-

ation energies of (5, 2)Type Laughlin quasielectrons and
Laughlin quasiholes, and the interaction between them.
Both contributions depend on the microscopic Hamilto-
nian. With short range interactions (e.g., V1 or Coulomb
interaction in the LLL), the creation energy of (5, 2)Type
Laughlin quasielectrons dominates. The interactions be-
tween them are relatively weak, and the creation en-
ergy of Laughlin quasiholes is negligible. We look at
cases where the splitting of Gaffnian quasihole energies is
mainly determined by the creation energy of (5, 2)Type
Laughlin quasielectrons. If the creation energy of the
quasielectrons (which we denote as ∆(5,2)) is large, the
quasi-degeneracy of the Gaffnian quasihole manifold will
be lifted. In contrast, with ĤGaff the creation energy of
(5, 2)Type Laughlin quasielectrons is zero.

all excitations (charged and neutral)

Ground state
Quasihole manifold

all excitations (charged and neutral)

Ground state

Quasihole manifold

FIG. 3. Ground state charge gap, the energy splitting of the
quasihole manifold, and the braiding energy scale. The in-
compressibility as well as the braiding outcome could be dom-
inated by the self energies of different types of quasielectrons,
depending non-universally on the microscopic Hamiltonians.
(a) When ∆̄6,3 ≫ ∆b ≫ ∆5,2, we expect to see the non-
Abelian statistics. (b) If the quasihole bandwidth is larger
than ∆b, braiding experiment would show Abelian statistics.

The incompressibility of the Gaffnian phase depends
on the energy cost of the charged excitations on top
of the Gaffnian ground state, see Fig. 3. From the
LEC construction, the quasielectron excitations (and
thus the neutral excitations) can be classified as the
(6, 3)Type, (7, 4)Type (i.e., defined by ĉ = {2, 1, 2} ∨
{6, 3, 6}, {2, 1, 2} ∨ {7, 4, 7}) etc., and the creation ener-
gies of these quasielectrons have to be non-zero in the
thermodynamic limit, for the state to be incompressible.
For realistic interactions in general, numerical simula-
tions show the creation energy of the (6, 3)Type Gaffnian
quasielectrons is the lowest, which we define as ∆̄(6,3).
One should note (5, 2)Type Laughlin quasielectrons

and (6, 3)Type Gaffnian quasielectrons are well-defined
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microscopic objects independent of the microscopic
Hamiltonians. Their creation energies, on the other
hand, depend on the microscopic Hamiltonians, which in
turn controls the incompressibility of the Gaffnian phase,
as well as if the phase is Abelian or non-Abelian. When
adiabatically braiding the quasiholes at ν = 2/5 in ex-
periments, the action of braiding itself involves an en-
ergy scale of ∆b. Normally, adiabaticity implies ∆b → 0,
but in this limit, non-Abelian braiding is only possible if
the quasihole manifold is exactly degenerate (especially
the internal degeneracy when the quasihole locations are
fixed). If we treat ∆̄(6,3) and ∆(5,2) in Fig. 3 as the
ground state gap and the quasihole broadening in gen-
eral, then we only require adiabaticity to correspond to
∆̄(6,3) ≫ ∆b in realistic implementations. When this
is satisfied, the Gaffnian phase is only non-Abelian if
∆b ≫ ∆(5,2), otherwise the quasihole braiding will be
Abelian, as assumed for the Jain ν = 2/5 phase.

VIII. CONCLUSIONS AND OUTLOOK

We have presented a detailed comparison between the
non-Abelian Gaffnian phase and the Abelian Jain phase
at ν = 2/5, from the perspective of the LEC and CF
constructions, respectively. The comparison involves not
only the ground state, but also the low-lying elementary
excitations such as quasiholes and quasielectrons. We
have demonstrated that the Gaffnian ground state and
the Jain ν = 2/5 ground state are made of the same type
of Laughlin quasielectrons. The low-lying quasielectron
states of the Gaffnian phase also have high overlaps with
and same counting as the Jain ν = 2/5 quasielectron
states. The Abelian Jain ν = 2/5 quasiholes consist of
only undressed CF quasielectrons of the Laughlin state
in the CF picture. They again have the same counting
and very high overlap with a subset of the non-Abelian
Gaffnian quasihole states, which are made of undressed
(5, 2) Type quasielectrons of the Laughlin state. In the
CF picture, the dressed CF quasielectrons are excluded
from the Jain ν = 2/5 quasihole manifold when interac-
tions are short range (e.g., the LLL-projected Coulomb
interaction), which assigns higher variational energies to
the dressed quasielectrons.
Based on our numerical analysis, which involves the

counting of states and wave function overlaps, we have
generalized the comparison between the Gaffnian and
Jain ν = 2/5 phase to propose that topological properties
of FQH phases should be defined without Hamiltonians
or any local operators. Model Hamiltonians are useful
tools but not fundamental for defining the topological as-
pects of FQH states. The important message here is that
the topological properties of Gaffnian phase can be com-
pletely defined via the LEC conditions without invoking
a specific Hamiltonian. In contrast, the Jain ν = 2/5
phase does require a short range Hamiltonian, especially
for the definition of the quasihole counting, which is cru-
cial for the characterization of the phase to be Abelian.

We thus propose that the two phases are “topologically
equivalent” at low energies, in the sense that all topo-
logical indices computed by measurements on these two
states are equal. For all the cases we have studied, the
state counting from the LEC and the CF construction
agrees, and the wave function overlaps decrease rather
slowly with the system size. Even for states containing
multiple quasielectrons, the wave function overlaps are
very high despite quasielectron interactions and finite-
size effects due to the intrinsic size of each quasielectron.

On the other hand, it is also important to study how
robust these topological properties are in the presence of
different types of Hamiltonians, which has experimental
consequences. While it is common knowledge that the
incompressibility (or the charged) gap is essential for the
robust measurement of topological indices such as the fill-
ing factor or the topological shifts, the robustness of the
quasihole degeneracy with realistic interactions has not
been investigated in detail so far. The latter also seems
to be independent of the incompressibility gap. If two
Hamiltonians are adiabatically connected by the ground
state incompressibility gap, it is still possible in princi-
ple for the quasihole degeneracy to differ significantly in
the thermodynamic limit. In this paper we argue the
Gaffnian description captures all of the topological prop-
erties of this FQH phase, including the quasihole man-
ifold. In the LLL with the Coulomb interaction, which
decays sufficiently fast, the degeneracy of the quasihole
manifold is not robust, and the CF description emerges
as an effective theory, which captures the low-energy part
of the Gaffnian phase, where excitations possess Abelian
braiding properties.

Our work raises several interesting questions. For ex-
ample, we have seen that by removing the assumption
of short-range interactions, the Jain ν = 2/5 state sup-
ports a generalized quasihole manifold, Q̄J , which is po-
tentially even richer than the manifold of non-Abelian
Gaffnian quasiholes. It would be interesting to under-
stand the counting of states in this manifold and how
they can be realized in a microscopic model. Further, it
would be interesting to see if the relationship between
the Gaffnian and the Jain ν = 2/5 state applies to
the case between the LEC ν = 3/7 state and the Jain
Abelian state at the same filling factor. For non-Abelian
FQH phases, the presence of robust quasihole degener-
acy is crucial for experimental realization. It is thus also
worthwhile to examine the familiar Moore-Read state at
ν = 5/2. With the three-body model Hamiltonian, the
Moore-Read quasiholes are exactly degenerate and non-
Abelian. In experiments, however, the realistic interac-
tion is quite different from the model Hamiltonian. While
many numerical calculations show that the ground state
could be adiabatically connected to the model Hamil-
tonian, few studies have analyzed the robustness of the
Moore-Read quasihole degeneracy in the presence of re-
alistic Hamiltonians.
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