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Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of
quantum technologies, however, the effects of many body interactions and their interplay with
temperature, different drives and dynamical regimes is still largely unknown. Here we present
a systematic study of these interplays in the case of driven Hubbard chains subject to a variety
of interaction (from non-interacting to strongly correlated) and dynamical regimes (from sudden
quench to quasi-adiabatic), and discuss which effects all these ingredients have on the work extraction
and entropy production. As treatment of many-body interacting systems is highly challenging,
we introduce a simple approximation which includes, for the average quantum work, many-body
interactions only via the initial state, while the dynamics is fully non-interacting. We demonstrate
that this simple approximation is surprisingly good for estimating both the average quantum work
and the related entropy production, even when many-body correlations are significant.

I. INTRODUCTION

Progress on applications of quantum technologies is
linked to acquiring deeper understanding of the out-of-
equilibrium thermodynamic properties of small quantum
systems. Small quantum systems operating at finite tem-
perature constitute the hardware for most of these tech-
nologies, so that out-of-equilibrium quantum thermody-
namics guides, and ultimately may limit, these technolo-
gies [1–5]. Quantum thermodynamic properties, such as
the extracted average quantum work and thermodynamic
entropy production, are important for quantum technolo-
gies. For example, extracted average quantum work can
be used for understanding and utilising quantum engines,
quantum batteries, and for optimising energy consump-
tion. The entropy production (also known as irreversible
work) indicates how much energy is required to return to
an equilibrium state, for example when resetting a sys-
tem. A remaining challenge is properly accounting for the
effects of many-body interactions on quantum thermody-
namics properties. Many-body interactions in quantum
systems give rise to complex phenomena, such as collec-
tive behaviours and quantum phase transitions. From a
practical perspective, these effects are challenging to cal-
culate and often require approximations. In this respect,
there have been recent works studying out-of-equilibrium
thermodynamics of many-body systems such as quantum
harmonic oscillator chains and spin chains [6–15], and a
proposal for a density-functional-theory-based set of ap-
proximations which is in principle applicable to systems
of high complexity [16, 17].

Here we present a systematic study of the out-of equi-
librium thermodynamics of many-body quantum systems
subject to a set of qualitatively different driving poten-
tials. For each type of driving potential, we consider dy-
namical regimes from sudden quench, to finite times, to
quasi-adiabatic; for each dynamical regime we consider
different interaction strengths, from non-interacting to
strongly correlated systems. For each driving potential,

dynamical regime, and interaction strength, we consider
different temperatures: low, intermediate and high tem-
perature. For all cases considered we calculate and dis-
cuss the average quantum work extracted and entropy
produced in the dynamical trajectory. Our systematic
study allows to uncover some important dependencies of
work and entropy on the systems’ correlation and dy-
namical regimes, which cut across the different applied
drives.

Afterwards we consider two quite drastic approxima-
tions and compare their estimates with the exact results.
The first is the completely non-interacting approxima-
tion, where many-body interactions are set to zero in all
phases of the thermodynamic processes considered. The
second approximation assumes knowledge of the initial
interacting many-body state, but completely neglects in-
teractions afterwards, during the driven dynamics. Our
results show that including interactions just within the
initial state provides surprisingly good accuracy. We pro-
vide an analytical analysis that explains this accuracy in
the sudden quench and adiabatic regimes for a general
Hamiltonian and driving potential.

II. THEORY

A. Hubbard model

The one-dimensional Hubbard model can depict sys-
tems from weakly to strongly correlated and model nu-
merous phases of matter and related phase transitions,
such as metallic, antiferromagnetic, Mott-insulator, su-
perconductivity, and FFLO transition [18–21]. It is be-
ing widely used to study many physical systems, from
coupled quantum dots, to molecules, to chains of atoms
[22–27]. These are systems of importance, as hardware,
to quantum technologies. For small chains, the Hubbard
model is numerically exactly solvable, yet still displays
non-trivial behaviours, including, for repulsive interac-
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tions, the precursor to the metal-Mott insulator phase
transition. Hence it is often the system of choice for ex-
ploring approximations to interacting quantum systems
[16, 17, 28, 29].

For a fermionic system of N sites, the Hamiltonian of
the Hubbard model can be written as (h̄ = 1)

Ĥ(t) = −J
N
∑

i,σ

(

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)

+ U

N
∑

i

n̂i,↑n̂i,↓ +

N
∑

i

vi(t)n̂i, (1)

where J is the hopping parameter, ĉ†i,σ (ĉi,σ) is the cre-

ation (annihilation) operator for a fermion with spin σ
(σ =↑ or ↓) in site i, U is the strength of the on-site

Coulomb interaction, n̂i,σ = ĉ†i,σ ĉi,σ is the spin σ, i-site
number operator, n̂i = n̂i,↑ + n̂i,↓, and vi is the on-site
potential.

We shall use the time-dependent, inhomogeneous, one-
dimensional Hubbard model (i) to calculate the exact
average quantum work and the entropy production for
the set of system sizes and regimes described in section
III and (ii) within the approximations for these quantities
described in section V.

B. Average quantum work and entropy production

The average quantum work, much like its classical
counter part, is described as the usable energy in a quan-
tum system [2]. In a closed system at temperature T , it
can be calculated as [2]

〈W 〉 = Tr
[

ρf Ĥf

]

− Tr
[

ρ0Ĥ0

]

, (2)

with ρ0(f) and Ĥ0(f) the initial (final) system state and
Hamiltonian, respectively.

For a given dynamic process, the variation in thermo-
dynamic entropy is defined using the average work and
the change in the free energy of the system [1, 30],

∆S = β (〈W 〉 −∆F ) (3)

where β = 1/kBT , and the free energy variation is

∆F = −
1

β
ln

(

Zf

Z0

)

, (4)

with Z0(f) the partition function at the beginning (end)

of the dynamics, Z0(f) = Tr
[

exp
(

−βĤ0(f)

)]

. This ther-

modynamic entropy can be considered a measure of the
degree of irreversibility of the system dynamics: in fact
it captures an uncompensated heat which would need to
be dispersed to the environment for the system to return
to thermodynamic equilibrium at the end of the driven
process [16, 30].

III. SYSTEMS, DRIVING POTENTIALS,

TEMPERATURE RANGE AND DYNAMICAL

REGIMES

We shall calculate the work extracted and entropy pro-
duced for different systems, temperatures, driving poten-
tials, and dynamical regimes.

We will consider Hubbard chains of 2, 4, and 6 sites,
at half-filling and under open boundary conditions, and
explore low (T = 0.2J/kB), medium (T = 2.5J/kB), and
high (T = 20J/kB) temperatures.

For each system size and temperature, we will explore
regimes from non-interacting (U = 0J) all the way to
strongly correlated (U = 10), and dynamics from sudden
quench (τ = 0.5/J , τ the overall driving time) all the
way to quasi-adiabatic (τ = 10/J).

For each parameter combination, we will consider three
types of driving potentials [31], where each potential has
a linear time dependency via vi(t) = µ0

i + µτ
i t/τ , with

µ0
i and µτ

i the time-independent coefficients for site i at
time 0 and τ respectively. With this choice, the char-

acter of the dynamics will depend on τ , while the final
Hamiltonian Ĥf will be independent of it. These driving
potentials are:

• “Comb”: for each site i, µ0
i = µ0(−1)i at t = 0

and µτ
i = µτ (−1)i at t = τ , where µ0 = 0.5J and

µτ = 4.5J .

• “Middle Island (MI)”: the inhomogeneity µi is
driven only for the middle two sites of the chain;
µ0
i = 0 for i 6= L/2, (L/2) + 1 where i goes from 1

to L, and L is the chain length. For the middle two
sites, i = L/2, (L/2)+1, µ0

i = 0.5J and µτ
i = 10J .

• “Applied Electric Field (AEF)”: this potential mim-
ics the application of a potential difference between
the extremes of the chain. The sites form a linear
slope from i = 1 to i = L and are described us-
ing µ0

i = 2µ0/L × i − µ0 where µ0 = 0.5J , and
µτ
i = 2µτ/L× i− µτ with µτ = 10J .

The t = 0 and t = τ form of the driving potentials for a
six-site Hubbard chain are illustrated in figure 1.

IV. EXACT RESULTS

The system is considered at equilibrium at time t = 0−,
when the coupling with the thermal bath is switched off.
Then the closed system is driven by a time-dependent
external potential from the initial Hamiltonian Ĥ0 to the
final Hamiltonian Ĥf in a time τ , and the extracted work
〈Wext〉 from this dynamics is calculated according to (2),
with 〈Wext〉 = −〈W 〉.

We stress that with each of the driven dynamics de-
scribed in section III, the final Hamiltonian Ĥf (U) is the
same for all τ ’s, so that the latter controls the rate of
driving. Therefore, the larger τ is, the slower the system
has evolved and hence more adiabatic the evolution.
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(a) Comb dynamics.

5.0

0.5

10.0

0.0

6.0

7.0

8.0

9.0

4.0

3.0

2.0

1.0

10.5

Site number

1 2 3 4 5 6

P
o
te

n
ti
a

l 
in

 u
n

it
s
 o

f 
J

(b) MI dynamics.
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(c) AEF dynamics.

FIG. 1: On-site driving potentials versus site number for a 6 site chain; red dashed lines show the potentials at
t = 0, and blue solid lines show the potentials at t = τ .

For each of the many-body systems, their approxima-
tions, temperatures, and driving potentials described in
section V, we will consider the parameter space 0.5 ≤
τ × J ≤ 10 and 0 ≤ U/J ≤ 10. Due to the sheer number
of results from all the combination of parameters [32], we
will only explicitly show results for 6 site chains (all 6 site
chains’ exact results, and part of them for the approxi-
mations), and comment on the rest.

A. Work extraction

Figure 2 shows the exact average quantum work ex-
tracted from a 6 site chain driven via “applied electric
field (AEF)” (right column), “comb” (middle column),
and “middle island (MI)” (left column) potentials at tem-
peratures of T = 0.2J/kB (first row), T = 2.5J/kB (sec-
ond row), and T = 20J/kB (third row). Each panel
shows a wide range of regimes: from non-interacting to
strongly correlated systems as U increases along the y-
axis; and from sudden quench towards adiabaticity as
τ increases along the x-axis. A lighter shade of colour
corresponds to higher extracted work.

Figure 2 presents a variety of behaviours, with the ex-
tracted work varying over a wide range of values, and
even from positive to negative. This confirms that the
chosen dynamics are a good test-bed for understanding
work extraction in systems representable via Hubbard
chains, and hence a good test bed for related approxima-
tions.

At all temperatures, the largest work can be extracted
via the AEF dynamics, while work needs to be done on
the system in order to perform the MI dynamics. For
all driving potentials, increasing temperatures decreases

both the range of extracted/provided work and the max-
imum extractable work (the minimum work to be per-
formed on the system in the case of MI). The maximum
applied potential difference at t = τ is comparable to the
highest temperature, so, as the temperature rises, the

systems become less sensitive to the applied field. For all
temperatures and dynamics the highest work that can
be extracted (the lowest work performed on the system
in the case of MI) is reached for large τ ’s, as the sys-
tem gets closer to adiabaticity: here the dynamical state
better adjusts to the driving force and, compatible with
temperature and many-body interactions, the energetics
favour low-potential chain sites.

In the case of AEF, at all temperatures, increasing U
hampers the transient current dynamics, so the highest
work is achieved for zero to weak correlations. The max-
imum potential step between nearby sites is about 4J so,
as U increases, the AEF dynamics tends to freeze and
lesser and lesser work can be extracted from the system.
At the highest temperature, the thermal energy is al-
most equal to the potential difference between the chain
extremes at the end of the dynamics.

At low temperatures, ‘comb’ dynamics presents a work
extraction pattern similar to AEF; however, as the tem-
perature increases, maximum work extraction can be
achieved for higher many-body interactions, and at high
T it is achieved only for relatively strong many-body in-
teractions (4 <

∼ U/J <
∼ 8). This can be understood by

realising that in this case the thermal energy kBT = 20J
is twice the potential barrier between even and odd chain
sites, and hence a certain degree of repulsion is necessary
to depopulate the high-energy sites completely and max-
imise work extraction. In general, although the precise
boundaries of the parameter region and the value of the
maximum extracted work will be affected by N , our re-
sults show that the regions of maximum work extraction
are broadly independent from N .

Extracted work under MI dynamics is negative, mean-
ing that work must be performed on the systems to
achieve the final states. Indeed in this case the drive
raises the potential of the central sites and, under the
dynamics, the (closed) system cannot decrease its overall
energy. As even for τ = 10 the system is not fully adi-
abatic, a finite amount of repulsion helps to completely
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deplete the central island, even at low temperature, and
more so as temperature increases. The 10.5J maximum
barrier between high and low potential sites is about half
of the maximum thermal energy considered.

1. Adiabatic regime

From figure 2 we see that, as τ increases and we ap-
proach the adiabatic regime, the average work becomes
strongly dependent on U and weakly dependent on τ .
This behaviour can be easily explained. For a closed
system, 〈Wext〉 can be also calculated from the work dis-
tribution function, and hence written as [2]

〈Wext〉 =
∑

n,m

pτn,mEf
m −

∑

n

p0nE
0
n, (5)

where Ef
m (E0

n) is the m-th (n-th) eigenvalue of the final
(initial) Hamiltonian, and pτn,m = p0np

τ
m|n is the joint

probability distribution of arriving to the eigenstate |Ψf
m〉

of Hf , given the probability p0n of initially being in the
eigenstate |Ψ0

n〉 of H0.
In this formalism, the effect of the dynamics driven

by the external potential (and hence the dependence
on τ) is contained in the conditional probabilities
pτ
m|n = |〈Ψf

m|Uevo(τ)|Ψ
0
n〉|

2. In the adiabatic regime

Uevo(τ)|Ψ
0
n〉 = |Ψf

n〉, so that we obtain

〈Wext〉
adiabatic =

∑

n,m

Ef
mp0n|〈Ψ

f
m|Ψf,NI

n 〉|2 −
∑

n

p0nE
0
n

=
∑

n

p0n(E
f
n − E0

n), (6)

which indeed depends on the interaction coupling U but
not on τ . By looking at figure 2 we can then note that the
value of τ at which the different systems enter a nearly
adiabatic behaviour depends both on the driving poten-
tial and on the temperature, with the ‘comb’ driving po-
tential getting closer to adiabaticity for smaller values of
τ , and increasing temperature seemingly decreasing adi-
abaticity. The latter can be understood by realising that
when temperature increases to the point of dominating
by far inter-particle interactions, the system behaves as
non-interacting, and hence the dependence of any quan-
tity over U will be lost (see also discussion in section
VI A1).

B. Entropy production

Let us now examine the exact results for the entropy,
∆S from (3). This quantity corresponds to the heat
which the system would have to disperse in the envi-
ronment to return to thermodynamic equilibrium at the
end of the dynamics. Apart from the average quantum
work, the other key ingredient for ∆S is the free-energy
variation, shown by (4). Since our final Hamiltonians are

independent of τ , the free energy only depends on U and
β.

Figure 3, panels (a)-(c), shows the variation of free
energy as U varies at each of the temperatures considered
(green line for low, blue for medium, and red for high
temperature) and for each of the driving potentials. ∆F
is weakly dependent on U for high temperatures, while,
at intermediate and, even more, at low temperatures, it
significantly changes with the interaction strength. This
confirms that the system behaves more and more like a
non-interacting system as the temperature increases.

The exact entropy production for all driving potentials
and temperatures is shown in figure 3, second to fourth
rows: left column for MI, middle for ‘comb’, and right
for AEF driving potential. ∆S increases as the colour
shade becomes lighter; note however that the same shade
corresponds to different values in different panels, as the
overall entropy range significantly changes according to
both temperature and type of driving potential.

The temperature affects the entropy production dras-
tically, compare the extent of ∆S ranges between the sec-
ond and last row of figure 3. This can be understood by
comparing energy scales. By the end of the dynamics, our
driving potentials reach the maximum energy difference
of 10J for comb, 10.5J for MI, and 21J for AEF poten-
tial. For the low temperature kBT = 0.2J and the range
of parameters explored, both the interaction strength U
and the driving potentials can be much bigger than the
thermal energy, and so they have a large impact on the
system evolution. The system can change quite drasti-
cally leading to the possibility of large work extraction
and large entropy production. However at high temper-
ature, kBT = 20J , the interaction strength and driving
potential are, at most, comparable to the thermal energy:
the system is not as receptive to being driven, it will re-
main closer to its thermal state, and hence the energy
required to be dispersed to return to equilibrium (i.e.
the entropy that we are here considering) will be much
less.

In general at the lowest temperature the sudden
quench with weak-medium strength coupling parameter
region corresponds to very high ∆S values, while a dra-
matic reduction in entropy is seen moving towards the
adiabatic regime. Given the correspondence between ∆S
and the heat to be dispersed at the end to recover equi-
librium, it stands to reason that a sudden quench would
require a larger dissipation of energy to return to an equi-
librium state compared to an adiabatic evolution, which
remains closer to an equilibrium state at all times.

We note that systems subject to AEF potential show
at low T a relatively larger entropy production in the
strongly-coupled regime and τ ∼ 10/J than systems sub-
ject to ‘comb’ and MI potentials. As discussed in sec-
tion IV A1, the level of adiabaticity reached for the same
value of τ differs with driving potential. Indeed the dy-
namic induced by AEF at U >

∼ 6J and τ ∼ 10/J is less
adiabatic than the ones by MI or ‘comb’, as can be ob-
served by comparing panel (c) to panels (a) and (b) of
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FIG. 2: (a)-(i) Exact extracted average quantum work versus total dynamics time τ (x-axis)and interaction strength
U (y-axis). Data are presented for 6 site Hubbard chains driven by MI, comb, and AEF potentials, and at low,

medium, and high temperatures, as indicated. The lighter the colour shade, the more work is extracted, compatible
with the respective work range indicated over each panel.

figure 2. This leads to a larger amount of entropy pro-
duction occurring with AEF even in this strongly-coupled
large-τ region.

V. APPROXIMATIONS

A. Average quantum work

The type of approximations we consider for the average
quantum work are of the form:

〈W is+evo〉 = Tr
[

ρis+evo
f Ĥevo

f

]

− Tr
[

ρis0 Ĥ
evo
0

]

. (7)

Here is (initial system) refers to the approximation
used to derive the system state at t = 0, ρis0 =

exp
(

−βĤis
0

)

/Tr
[

exp
(

−βĤis
0

)]

, and evo is the ap-

proximation used for the evolution operator Uevo =

T e−i
∫

τ

0
Ĥevo

t
(t)dt where T is the time-ordered operator.

The final state is then ρis+evo
f = Uevoρ

is
0 U

†
evo. We note

that Ĥevo
0 = Ĥevo

t (t = 0). In the approximation where is
and evo are the same, only one acronym shall be written.
As (7) indicates, the Hamiltonians Ĥf and Ĥ0 explicitly

entering (2) and the evolution Hamiltonian Ĥevo
t are to

be taken in the same approximation: if this is not the
case, we found that the mismatch in eigenstates leads to
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Entropy production ∆Sexact
0.62 0.99 1.36 1.73 2.10 2.46 2.83 3.20 3.57 3.94 4.31

(h) T = 2.5J/kB with comb driving
potential.
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Entropy production ∆Sexact
3.77 4.18 4.60 5.01 5.42 5.84 6.25 6.67 7.08 7.49 7.91

(i) T = 2.5J/kB with AEF driving
potential.
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(j) T = 20J/kB with MI driving
potential.
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Entropy production ∆Sexact
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(k) T = 20J/kB with comb driving
potential.
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Entropy production ∆Sexact
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(l) T = 20J/kB with AEF driving
potential.

FIG. 3: (a)-(c) Variation of free energy ∆F versus U for 6-site chains at low (green), medium (blue), and high (red)
temperatures and for the three driving potential (as indicated). (d)-(l) Exact entropy production ∆S versus τ

(x-axis) and U (y-axis), for 6 site chains, with MI (left column), ‘comb’ (middle) and AEF (right column) driving
potential; temperatures as indicated. Darker colour shades correspond to lower entropy production, whilst lighter to

higher entropy production.
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spurious oscillations in the work production (not shown).
We will consider two approximations, as described in

Table I. The first, 〈WNI〉, corresponds to a completely
non-interacting system, the one obtained by setting U =
0 in the Hubbard Hamiltonian. The second approxi-
mation, 〈W exact+NI〉, uses the exact many-body initial
state, but the approximated (non-interacting) Hamilto-
nian for the evolution of the system, according to the
notation previously introduced [33].

B. Entropy production

When approximating the entropy, we use 〈W is+evo〉,
while the free energy is estimated in the same way as
ρis. In the NI approximation, this implies that the free
energy is constant. For ∆Sexact+NI , the exact free energy
is then used [see figure 3 (a)-(c)] as this uses the same
assumption made for calculating the initial thermal state,
that the system Hamiltonian can be exactly – or very
accurately – diagonalised.

VI. APPROXIMATED RESULTS

We will firstly approximate the many-body system
with a non-interacting system and use this to estimate
quantum thermodynamic quantities. Afterwards we will
extend this approach to include some memory of the
electron-electron interaction through the system initial
state.

A. Average quantum work

1. Non-interacting approximation

Clearly, for non-interacting (NI) systems, the average
work extracted 〈WNI

ext 〉 has no dependence on U . This
is shown in the upper panels of figure 4, where we plot
〈WNI

ext 〉 for ‘comb’ dynamics, with 0.5 ≤ τ × J ≤ 10
(x-axis) and 0 ≤ U/J ≤ 10 (y-axis), and low (left), in-
termediate (middle), and high (right) temperatures. The
range of variation in 〈WNI

ext 〉 decreases with temperature
(see colour bar above each panel), as the maximum driv-
ing potential becomes comparable to the thermal energy.

The lower panels of figure 4 show the correspond-
ing relative error of the NI approximation, where the
darker the blue, the more accurate the approximation
is in that regime. This approximation accurately cap-
tures the work extraction only in the parameters regions
where interactions are weak compared to the other energy
scales. These regions include higher values of U as the
temperature increases, see related discussion in section
IV A. However it is worth noting that there is very little
work extracted at high temperatures, where the thermal
energy is comparable to the driving potential which is
then less effective.

As the lowest values of the average extracted work are
driven by the freezing of the system dynamics due to
strong many-body repulsion (dark areas in figure 2), the
NI approximation strongly overestimates the minimum
work that can be extracted by a system. To see this
compare the work range indicated over each panel for
the mid column of figure 2 to the corresponding upper
panels of figure 4. At the other end, the value of the
maximum average work extracted is quantitatively well
captured by the NI approximation, but the corresponding
parameter regions are qualitatively wrong, compare the
shape of the light-shade areas of the mid-column panels
of figure 2 to the corresponding areas of the upper panels
of figure 4.

We find a similar accuracy pattern with increasing tem-
perature for 2 [34] and 4 site chains.

The ‘comb’ driving potential corresponds to an accu-
racy of the results consistently in-between those of the
AEF and MI potentials.

For the MI driving potential, the NI approximation
works better than for the ‘comb’ potential at all temper-
atures. As discussed in section IV A, for these dynamics
many-body interactions become comparatively dominant
at higher values of U . As a consequence, for 6 site chains,
the MI driving potential results in 10% accuracy (or bet-
ter) for U <

∼ 3J at low temperatures, for U <
∼ 7J at

intermediate temperatures, and for all regimes at high
temperatures: here thermal energy dominates so that
the average extracted-work range is very narrow and so
weakly sensitive to parameter changes.

For the AEF driving potential, the results in the NI
approximation are in general worse than with the ‘comb’
driving potential, and comparatively worsen as the tem-
perature increases. At difference with the MI and comb
driving potentials, the maximum AEF potential differ-
ence between nearby sites becomes at most of 4J , so that
even a Coulomb repulsion of just U∼1J will remain rel-
evant. The NI approximation is then bound to fail, even
at high temperatures, where, for 6 site chains, we get an
accuracy of 10% for U <

∼ 3J only.

2. Exact initial system with non-interacting evolution
operator

To try and improve the estimate of the work extracted,
we shall consider to still implement a non-interacting evo-
lution, but this time starting from the exact many-body
initial state. The rationale is that a many-body evolution
is in general a more challenging part of the calculation
(and hence here it is approximated), while an accurate
estimate for the initial state would be more readily avail-
able. This approximation is referred to as 〈W exact+NI〉
in table I.

Indeed this simple approximation leads to strikingly
improved accuracy. Results are presented in figure 5:
〈W exact+NI

ext 〉 in the upper three panels, and its relative
error with respect to the exact results in the lower panels.
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Acronym Approximation Hamiltonian Initial State

NI 〈WNI〉 ĤNI
= −J

N
∑

iσ

(

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ
)

+

N
∑

i

vini ρNI
0 = exp

(

−βĤNI
0

)

/ZNI

exact + NI 〈W exact+NI〉 ĤNI
= −J

N
∑

iσ

(

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ
)

+

N
∑

i

vini ρexact0 = exp

(

−βĤexact
0

)

/Zexact

TABLE I: Types of approximations with their Hamiltonians and initial states.

2 4 6 8 10

τ × J

0
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6

8

10

U
/J

Extracted work 〈WNI
ext 〉

16.32 16.97 17.63 18.28 18.93 19.59 20.24 20.89 21.55 22.20 22.86

(a) T = 0.2J/kB .
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τ × J
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6

8

10

U
/J

Extracted work 〈WNI
ext 〉

4.56 4.77 4.98 5.20 5.41 5.62 5.83 6.04 6.26 6.47 6.68

(b) T = 2.5J/kB .
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2
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8

10

U
/J

Extracted work 〈WNI
ext 〉

0.58 0.61 0.64 0.67 0.69 0.72 0.75 0.78 0.80 0.83 0.86

(c) T = 20J/kB .
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ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(d) T = 0.2J/kB .
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|〈WNI
ext 〉 − 〈W exact

ext 〉|/〈W exact
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0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(e) T = 2.5J/kB .
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|〈WNI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) T = 20J/kB .

FIG. 4: Panels (a) to (c): Work extracted in the NI approximation for 6 site chains driven by the ‘comb’ potential.
Considered regimes go from non-interacting to strongly coupled along the y-axis, and from sudden quench to nearly
adiabatic along the x-axis. The lighter the colour shade, the more work is extracted, compatible with the respective

value ranges indicated above each panel. Temperature increases from left to right panel, as indicated.
Panels (d) to (f): Relative error for 〈WNI

ext 〉 with respect to the exact results for the same parameters as the upper
panels. The darker the colour, the more accurate the approximation is in that regime.

Parameters are the same as in figure 4.

By comparing 〈W exact+NI
ext 〉 to the corresponding ex-

act results in panels (b), (e), and (h) of figure 2 we see
that including interactions just through the initial state
is sufficient to recover the qualitative (and in great part
quantitative) behaviour at low and intermediate temper-
atures. The greatest improvement is seen in the low tem-
perature, where 〈W exact+NI〉 recaptures the correct work
to 10-20% for most regimes up to U ≈ 9J .

At high temperature the qualitative behaviour is not
recovered, but, as the work extracted varies only slightly
at this temperature, quantitatively the approximation re-
mains overall good, as it reproduces rather well the over-
all work variation range (compare the colour bar limits
of figures 2 and 5). In general the ‘exact + NI’ approxi-

mation significantly improves for the minimum extracted
average work over the NI value and at all temperatures.

A similar pattern is seen in all the other systems con-
sidered, i.e. for 2 and 4 site chains, and for the MI
and AEF evolutions (see appendix), demonstrating the
scalability and versatility of this approximation. The
〈W exact+NI〉 approximation handles weak to medium
correlated systems well in all regimes and temperatures,
from adiabatic to sudden quench, and from low to high
temperatures.
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2 4 6 8 10

τ × J

0

2

4

6

8

10
U
/J

Extracted work 〈W exact+NI
ext 〉

2.23 4.29 6.36 8.42 10.48 12.54 14.61 16.67 18.73 20.79 22.86

(a) T = 0.2J/kB .
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ext 〉

1.41 1.94 2.46 2.99 3.52 4.04 4.57 5.10 5.63 6.15 6.68

(b) T = 2.5J/kB .
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0.53 0.56 0.60 0.63 0.66 0.70 0.73 0.76 0.79 0.83 0.86

(c) T = 20J/kB .
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(d) T = 0.2J/kB .
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(e) T = 2.5J/kB .
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(f) T = 20J/kB .

FIG. 5: Panels (a) to (c): Work extracted in the ‘exact + NI’ approximation for 6 site chains driven by the ‘comb’
potential. Considered regimes go from non-interacting to strongly coupled along the y-axis, and from sudden quench
to nearly adiabatic along the x-axis. The lighter the colour shade, the more work is extracted, compatible with the
respective value ranges indicated above each panel. Temperature increases from left to right panel, as indicated.
Panels (d) to (f): Relative error for 〈W exact+NI

ext 〉 with respect to the exact results for the same parameters as the
upper panels. The darker the colour, the more accurate the approximation is in that regime.

3. Adiabatic behaviour and the ‘exact + NI’ approximation

The most striking improvement of the ‘exact + NI’
approximation with respect to the NI one, is the recov-
ery of the qualitative behaviour of the average quantum
work in the quasi-adiabatic regime for low to interme-
diate temperatures. In this regime the exact 〈Wext〉 is
becoming independent from τ – as to be expected in the
adiabatic regime – but strongly depends on U , see fig-
ure 2. The recovery of this behaviour by the ‘exact +
NI’ approximation can be explained as follows.

As discussed in section IVA 1, the dependency of
〈Wext〉 over τ is contained in the conditional probabil-
ities pτ

m|n = |〈Ψf
m|Uevo(τ)|Ψ

0
n〉|

2. In the NI approxima-

tion these would read pτ,NI

m|n = |〈Ψf,NI
m |UNI

evo(τ)|Ψ
0,NI
n 〉|2

which, would lead, as expected, to a result potentially
dependent on τ but completely independent from U .
However in the ‘exact + NI’ approximation we have

pτ,exact+NI

m|n = |〈Ψf,NI
m |UNI

evo(τ)|Ψ
0
n〉|

2, which could lead

to dependency on U (through |Ψ0
n〉) as well as on τ [35].

Let us name |ΨNI
m (t)〉 the m-th eigenstate of HNI(t):

then |ΨNI
m (τ)〉 = |Ψf,NI

m 〉, independent of τ , and |Ψ0
n〉 =

∑

j aj,n|Ψ
NI
j (0)〉, with aj,n = aj,n(U). Consider

∑

n,m

pτn,mEf
m

∣

∣

∣

∣

∣

exact+NI

=
∑

n,m

Ef
mp0n|〈Ψ

f,NI
m |UNI

evo(τ)|Ψ
0
n〉|

2

=
∑

n,m

Ef
mp0n|〈Ψ

f,NI
m |

∑

j

aj,nU
NI
evo(τ)|Ψ

NI
j (0)〉|2. (8)

In the adiabatic regime UNI
evo(τ)|Ψ

NI
j (0)〉 = |Ψf,NI

j 〉, so

that (8) becomes

∑

n,m

pτn,mEf
m

∣

∣

∣

∣

∣

exact+NI

adiab.
=

∑

n,m

Ef
mp0n|〈Ψ

f,NI
m |

∑

j

aj,n|Ψ
f,NI
j 〉|2

=
∑

n,m

Ef
mp0n|am,n(U)|2, (9)

which indeed depends on U but not on τ , as observed.
At high temperatures, inclusion of many-body inter-

actions just via the initial state is a too-weak correc-
tion to counter the high thermal energy, which becomes
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even more dominant than in the exact case: at high tem-
peratures for the ‘exact+NI’ approximation a behaviour
closer to the fully NI approximation is recovered (com-
pare figure 5 panel (c) to figure 4 panel (c)). We observe
this for all driving potentials (see appendix, panel (c) of
figures 6 and 7).

4. Sudden quench and the ‘exact + NI’ approximation

With respect to the NI approximation, the ‘exact + NI’
approximation recovers the qualitative and, in great part,
quantitative exact behaviour for the average quantum
work also in the sudden quench limit. This can be seen
by comparing results for the small-τ parameter region of
the upper panels of figure 5 with the corresponding panels
in the central column of figure 2. We give an explanation
for this below.

In the quasi-sudden-quench regime τ << 1/J , ρf ≈
ρ0 + δρ(τ), with the second term a small correction. By

using this and the fact that ∆H = Ĥf −Ĥ0 is a constant,
we can approximate (2) as

〈W 〉 ≈ Tr
[

(ρ0 + δρ(τ))Ĥf − ρ0Ĥ0

]

= Tr
[

ρ0∆H + δρ(τ)Ĥf

]

(10)

τ=0
= Tr [ρ0∆H] . (11)

In the ‘exact + NI’ approximation, (10) and (11) be-
come

〈W exact+NI〉 ≈ Tr
[

ρexact0 ∆HNI + δρ(τ)exact+NIĤNI
f

]

(12)

τ→0
= Tr

[

ρexact0 ∆HNI
]

, (13)

where we have explicitly stressed which terms on the
r.h.s. are to be computed exactly and which ones in
a specific approximation. In contrast to a fully NI ap-
proximation, (13) is now U -dependent through ρexact0 ,
which means that this dependence for τ = 0 is recovered.
Similarly, the correction for small (but finite) τ values
in (12) contains a U -dependence through δρ(τ)exact+NI ,
and will then improve both qualitatively and quantita-
tively over NI results, as comparison of figures 2, 4, and
5 demonstrates.

B. Entropy production

Using the approximated work, we can now approxi-
mate the entropy production. As seen from equation 3,
the free energy is required for the entropy. The free en-
ergy is dependent only on U , not τ , and must be approx-
imated using the same assumptions used in the quantum
work – mainly whether or not the Hamiltonian is diago-
nalisable – and therefore if the exact partition function
can be used.

1. Non-interacting approximation

For the non-interacting approximation, we do not as-
sume the exact Hamiltonian can be diagonalised and
therefore we must use the NI Hamiltonian in the free
energy. This means the free energy no longer depends
on U and is simply a constant added to the work. The
results and further discussion of this can be seen in the
appendix, section B. We see that with this extra er-
ror coming from the free energy, the entropy is not as
accurately captured. It is only accurately calculated in
very weakly coupled systems, and cannot qualitatively
describe the exact entropy.

2. Exact initial state with non-interacting evolution

When using the ‘exact+NI’ approximation, we can now
assume the exact Hamiltonian can be diagonalised, there-
fore we use the exact free energy (see figure 3(a)-(c)) in
the calculation of the entropy production. Since the free
energy depends on U , it is not a simple translation of
the work, and the results qualitatively capture the ex-
act entropy production better. The results and further
discussion can be found in the appendix, section C for
figures, with further examples for the other driving po-
tentials shown in section D. Overall the approximation
improves its quantitative performance compared to the
NI approximation, and while the results are not as accu-
rate as for the work, they are still accurate in a wide span
of regimes, increasing in accuracy as the temperature in-
creases. The quantitative limits of entropy produced are
also captured well by this approximation.

VII. CONCLUSION

To conclude, we have presented a comprehensive study
of the extracted average quantum work and entropy pro-
duction in complex many-body systems subject to a
wealth of driving dynamics and dynamical regimes. By
understanding the regimes which maximise the average
work extraction, and minimise the entropy production,
efficient protocols for quantum technologies can be de-
veloped. To help this further, we have introduced a
computationally-cheap but surprisingly accurate approx-
imation for these quantities. This approximation could
be readily extended to other many-body systems, and be
used to find better and more efficient regimes for quan-
tum fluids for which exact solutions are inaccessible.

We have discussed in details the effects of the inter-
play of the different energy scales governing the systems
– driving potentials, many-body interactions, and ther-
mal energy – on 〈W 〉 and ∆S, and compared results as
many-body correlations are turned on up to the strongly
coupled regime and as the dynamical regime is continu-
ously changed from sudden quench to nearly adiabatic.
With this work, we shed light onto how thermodynamic
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properties behave in finite-time processes for a highly-
used and versatile non-integrable model.

For all driving potentials and low to intermediate tem-
peratures, intermediate to strong Coulomb repulsion de-
creases work extraction by making the system less re-
sponsive to the external drive. At weak Coulomb corre-
lations, more work can be extracted as the system be-
comes adiabatic, while with stronger many-body inter-
actions the work production becomes independent of the
overall driving time τ much sooner. For the same pa-
rameter sets, at high temperatures, work extraction is
greatly reduced both in absolute values and in variation
range.

At low temperatures the entropy production presents
a behaviour somewhat more dependent on the applied
driving potential. We observe a general tendency of lower
∆S values for weak and strong Coulomb correlations and
intermediate to large τ ’s, but the onset of an adiabatic-
like entropy dynamics varies considerably with the driv-
ing potential at intermediate coupling strengths. For a
zero temperature, open-boundary, finite, homogeneous
Hubbard chain, intermediate coupling strengths corre-
spond to the transition between metallic and insulating
behaviour (precursor to a Mott insulator transition). The
behaviour observed at intermediate coupling strengths
may be a signal of how the different driving potentials
affect this transition.

Similarly to the extracted average quantum work, en-
tropy production decreases with temperature in both ab-
solute value and range of variation, as the system be-
comes less and less responsive to the applied potential.

The strong effect of the Coulomb interaction on the
extracted average quantum work can be also appreci-
ated by comparing exact results to the corresponding
non-interacting approximations. Apart from the obvious
independence on U for all regimes, this approximation
strongly overestimates the minimum work that can be ex-
tracted from a system, as it cannot reproduce the freezing
of the system dynamics due to strong many-body corre-
lations. On the other hand, the value of the maximum
average work extracted is well captured, albeit often it is
attributed to the wrong parameter regions.

Including many-body interactions exactly for complex
system is often an hopeless task. In this paper we have
proposed a relatively simple approximation which relies
on been able to provide an accurate approximation for
the system’s initial state, while interactions are com-
pletely neglected in the dynamics.

We found this approximation to behave surprisingly
well. Including interactions just through the initial state
recovers the qualitative (and in great part quantitative)
behaviour at low and intermediate temperatures for all
regimes, driving potentials and chain lengths considered.
The greatest improvement is seen at low temperatures,
where, for example, with the ‘comb’ driving potential
the ‘exact+NI’ approximation reproduces the exact work
within 10-20% up to very strong interactions (U ≈ 9J)
for most regimes. At all temperatures, the ‘exact + NI’

approximation reproduces fairly well the range of varia-
tion for the value of the average extracted quantum work
and in particular it significantly improves the value of its
minimum over the NI estimates.

We demonstrate analytically that, independent of sys-
tem Hamiltonian and driving potential, including inter-
actions in just the initial state is sufficient to recover at
low to intermediate temperatures the characteristic de-
pendency on U and τ in the adiabatic region, which was
completely missed by the non-interacting approximation.
This is important as this is the region in which the most
work can be produced, and the dependency on U is very
strong.

We also demonstrate analytically that this approxi-
mation recovers the characteristic U -dependence of the
extracted work in the small-τ parameter region for all
Hamiltonians and driving potentials.

Fully non-interacting estimates of the entropy pro-
duction strongly under-perform, both qualitatively and
quantitatively. However at high temperatures the ex-
act entropy production range becomes very small and
its quantitative non-interacting estimate is in the right
ball-park due to the decreased influence of many-body
interactions: as a result, at high temperatures even the
non-interacting approximation gives reasonable quanti-
tative (but not qualitative) results.

When we extend the ‘exact+NI’ approximation to the
entropy production, we find qualitative improvements
similar to the work extraction, with the behaviour for low
and intermediate temperatures largely recovered. Quan-
titatively this approximation significantly improves over
the non-interacting approximation, albeit not as strik-
ingly as for the average quantum work. Overall the ‘ex-
act+NI’ approximation improves its quantitative perfor-
mance with temperature, as it captures well the entropy
production range, including at high temperature. As an
example, at high temperature and MI driving potential,
this approximation would reproduce exact results within
10% for all parameter range, to be contrasted with the
performance by the non interacting approximation which
gives such an accuracy only for U <

∼ 3.
Our results show that, even when taking a very crude

approximation for the evolution operator, starting from
an accurate initial state is sufficient for greatly improving
the estimate of thermodynamical quantities such as the
average quantum work and the corresponding entropy
production for the wide range of driving potentials tested,
all temperatures, and the great part of interaction and
dynamical regimes.
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Appendix A: Six-site ‘exact+NI’ approximation

results for MI and AEF driving potentials:

extracted average quantum work

To demonstrate how well the the ‘exact+NI’ approx-
imation fares with other driving potentials, we present
here the related MI and AEF driving potential results
for 6 site chains and all three temperatures.

Figure 6 shows results for the MI driving potential:
this particular dynamic is captured very well by the ‘ex-
act+NI’ approximation for all temperatures and regimes.
As with all other driving potentials considered, the low-
est temperature is where quantitatively the approxima-
tion struggles the most, though its accuracy is, in most
regions, within 10% of the exact work, otherwise it is
20%. At higher temperatures the accuracy remains al-
ways within 10%. We note that this approximation re-
covers to high accuracy and at all temperatures the over-
all range of extractable work (compare colour-scale range
above panels (a) to (c) in figure 6 with the correspond-
ing ranges in panels (a), (d), and (g) of figure 2). This
approximation also recovers most of the work qualitative

behaviour, at least at low and intermediate temperature.
At high temperature, although the trends of the exact
and approximate results are qualitatively different for
τ >
∼ 2/J and U >

∼ J , the exact amount of work extracted
changes very little with τ and U (panel (g) of figure 2),
so, as the quantitative range of the approximated work
is close to the exact one, the results in figure 6(c) show
high quantitative accuracy.

Results for 〈W exact+NI〉 and the AEF driving poten-
tial are shown in figure 7. Once again the approximation
accuracy improves with increasing temperature (panels
(d) to (f)), while the qualitative trend is well reproduced
for low and intermediate temperatures, but missed at
high temperatures for intermediate-to-large τ and U val-
ues (compare panels (a) to (c) of figure 7 to panels (c),
(f), and (i) of figure 2, respectively). For AEF – and at
difference with ‘comb’ and MI driving potentials – the
Coulomb repulsion U for U >

∼ 4 remains a dominant en-
ergy scale at any temperature: in fact even at t = τ the
driving potential difference between nearby sites remains
at most of 4J (see figure 1). This results in a quan-

titatively poor approximation for U >
∼ 4 even at high

temperature.

Appendix B: Six-site ‘NI’ approximation results for

comb driving potential: entropy production

We extend the approximations for the extracted work
to the entropy production. ∆SNI will be calculated from

〈WNI〉 = −〈WNI
ext 〉 and by setting U = 0 in the calcula-

tion of the free energy (U = 0 values in figure 3, upper
panels).

Figure 8 presents the ∆SNI results for 6 sites, ‘comb’
driving potential, and increasing temperature (left to
right). The upper panels show the non-interacting en-
tropy production, and the lower ones the relative differ-
ence with the exact entropy production (the darker the
purple, the more accurate the approximation is in that
region).

For each given temperature, the entropy ∆SNI is just
〈WNI

ext 〉 with an added constant, so, much like the non-
interacting work, for all driving potentials this approxi-
mation is unable to qualitatively describe the exact en-
tropy produced.

Comparing with the NI-work approximation accuracy,
the overall quantitative accuracy of the entropy is in gen-
eral reduced for all three temperatures, which is to be ex-
pected since, on top of the work, we are severely approx-
imating the free energy as well. As U increases, we are
exploring highly correlated systems, including systems
subject to a precursor to the Mott-insulator transition,
but these Coulomb correlations are completely neglected
by the NI approximation.

For the AEF driving potential, the NI approximation
works better then for ‘comb’ drive at all temperatures,
giving a 10% accuracy (or better) for U <

∼ 1.5J at low and
intermediate temperatures and for almost all regimes at
high temperatures. For the MI driving potential, the ac-
curacy of the results is comparable to the ‘comb’ driving
potential.

Appendix C: Six-site ‘exact+NI’ approximation

results for comb driving potential: entropy

production

Let us now see how considering the exact initial state
affects the estimate of the entropy production. Initially
the entropy ∆S̃exact+NI is calculated from (3) using

〈W exact+NI〉 = −〈W exact+NI
ext 〉 and the exact free energy

variation: in this approximation, we are already assum-
ing that we can diagonalise the initial Hamiltonian to
get the exact initial state, we then make the same as-
sumption for Hf , as this operation would have the same
calculation costs/difficulties. This leads to the exact free
energy variation. However we note that, with the im-
plementation described above, this approximation could
lead to the nonphysical occurrence of negative entropy:
in fact the two contributions to the entropy have op-
posite sign, and one of them (the work) has been ap-
proximated, so the occurrence of a negative sign can-
not apriori be excluded. We then further impose that
∆Sexact+NI = max{∆S̃exact+NI , 0} to correct for it.

Related results are plotted in figure 9 for 6 sites, ‘comb’
driving potential, and increasing temperature (left to
right). By comparing the upper panels of figure 9 to
the upper panels of figure 8 and to the corresponding



13

2 4 6 8 10

τ × J

0

2

4

6

8

10
U
/J

Extracted work 〈W exact+NI
ext 〉

−19.18−17.79−16.40−15.01−13.62−12.22−10.83−9.44 −8.05 −6.66 −5.27

(a) T = 0.2J/kB .

2 4 6 8 10

τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact+NI
ext 〉

−19.37−18.86−18.36−17.86−17.36−16.85−16.35−15.85−15.35−14.85−14.34

(b) T = 2.5J/kB .

2 4 6 8 10

τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact+NI
ext 〉

−19.74−19.69−19.64−19.59−19.55−19.50−19.45−19.40−19.35−19.31−19.26

(c) T = 20J/kB .

2 4 6 8 10

τ × J

0

2

4

6

8

10

U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(d) T = 0.2J/kB .

2 4 6 8 10

τ × J

0

2

4

6

8

10
U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(e) T = 2.5J/kB .

2 4 6 8 10

τ × J

0

2

4

6

8

10

U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) T = 20J/kB .

FIG. 6: Panels (a) to (c): Extracted work in the ‘exact + NI’ approximation, for 6-site chains undergoing dynamics
driven by the MI potential. The lighter the colour shade, the more work is extracted. The regimes go from

non-interacting to strongly coupled along the y-axis, and from sudden quench closer to adiabatic along the x-axis.
Temperature increases from left to right panel, as indicated.

Panels (d) to (f): Relative error for 〈W exact+NI〉 with respect to the exact results for the same parameters as the
upper panels. The darker the colour, the more accurate the approximation is in that regime.
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FIG. 7: Panels (a) to (c): Extracted work in the ‘exact + NI’ approximation, for 6-site chains undergoing dynamics
driven by the AEF potential.

Panels (d) to (f): Relative error for 〈W exact+NI〉 with respect to the exact results for the same parameters as the
upper panels.
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FIG. 8: Upper panels: Non-interacting entropy production versus τ (x-axis) and U (y-axis) for 6-site chains with
comb driving potential. Lower panels: Non-interacting entropy production relative difference for the same

parameters as the upper panels.
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FIG. 9: Upper panels: Exact + non-interacting entropy production versus τ (x-axis) and U (y-axis) for 6-site chains
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ones in the mid column of figure 3, we note a marked
improvement in the qualitative behaviour of the approx-
imation. As with the work, we can see an improvement
also in the quantitative results. The high temperature
accuracy is very much akin to that of the work, and is
accurate within 30% for all regimes. As the temperature
decreases, however, the quantitative accuracy also de-
creases: inaccuracy comes into the entropy calculations
through the approximation of the average work, so the
regimes of greater/lesser accuracy fairly mirror those of
the work.

Results for the other two driving potentials confirm
these trends and are shown in the appendix.

Similarly to the ‘comb’ potential, the ‘exact+NI’ ap-
proximation with the MI and AEF driving potentials
recover to a good extent the qualitative behaviour of
∆Sexact for low and intermediate temperatures. For high
temperatures the qualitative behaviour is recovered only
for U <

∼ 2. Quantitatively, the areas of worse perfor-
mance are related to the areas of worse performance for
the corresponding 〈W exact+NI

ext 〉, however the approxima-

tion performs worse for ∆Sexact+NI than 〈W exact+NI
ext 〉

for MI, and better for AEF. Overall the approximation
improves its quantitative performance with temperature,
as it reproduces well the limits of the entropy production

range, and especially so at high temperature.

Appendix D: Six-site ‘exact+NI’ approximation

results for MI and AEF driving potentials: entropy

production

Estimates for the entropy production in the ‘exact+NI’
approximation for MI and AEF driving potentials and
six-site chains are shown in figures 10 and 11, respec-
tively.

Similarly to the ‘comb’ potential, the ‘exact+NI’ ap-
proximation with the MI and AEF driving potentials re-
cover to a good extent the qualitatively the behaviour of
∆Sexact for low and intermediate temperatures. For high
temperatures the qualitative behaviour is recovered only
for U <

∼ 2.
Quantitatively, the areas of worse performance are re-

lated to the areas of worse performance for the corre-
sponding 〈W exact+NI

ext 〉, however the approximation per-
forms worse for the entropy than for the extracted work
for MI, and better for AEF. Overall the approximation
improves its quantitative performance with temperature,
as it reproduces well the limits of the entropy production
range, and especially so at high temperature.
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FIG. 10: Upper panels: Estimate of the entropy production in the exact + NI approximation versus τ (x-axis) and
U (y-axis), for 6 site chains and MI driving potential. Temperatures as indicated. Lower panels: relative difference
between exact and exact + NI entropy production for MI driving potential. Parameters as for the upper panels.
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FIG. 11: Upper panels: Estimate of the entropy production in the exact + NI approximation versus τ (x-axis) and
U (y-axis), for 6 site chains and AEF driving potential. Temperatures as indicated. Lower panels: relative difference
between exact and exact + NI entropy production for AEF driving potential. Parameters as for the upper panels.
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imation without this cost. If one wished to implement
this as a protocol, they would have to consider this addi-
tional work. From our experience, this different protocol
produces results farther from the fully interacting many-
body protocol than the approximation we propose.

[34] Note4. See [16] and [17] for 2-site chain examples, and
especially [16] for 2-site non-interacting results.

[35] Note5. For the ‘exact + NI’ approximation, the results
of calculating < W > using (2) or (5) differ for the
t = 0 terms. The t = 0 term via (2) can be written

as Σi,nE
NI,0

i p0n |an,i|
2, while the corresponding term via

(5) is Σnp
0
nE

NI,0
n . The t = τ terms give instead the same

results.


