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There is mounting empirical evidence that many communities of living organisms display key features
which closely resemble those of physical systems at criticality. We here introduce a minimal model
framework for the dynamics of a community of individuals which undergoes local birth-death,
immigration, and local jumps on a regular lattice. We study its properties when the system is close to
its critical point. Even if this model violates detailed balance, within a physically relevant regime dominated
by fluctuations, it is possible to calculate analytically the probability density function of the number of
individuals living in a given volume, which captures the close-to-critical behavior of the community across
spatial scales. We find that the resulting distribution satisfies an equation where spatial effects are encoded
in appropriate functions of space, which we calculate explicitly. The validity of the analytical formulae is
confirmed by simulations in the expected regimes. We finally discuss how this model in the critical-like
regime is in agreement with several biodiversity patterns observed in tropical rain forests.
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I. INTRODUCTION

Several authors have showed that the parameters of
models which describe biological systems are not located at
random in their parameter space but are preferably poised
in the vicinity of a point or surface which separates regimes
of qualitatively different behaviors [1]. In this sense,
stationary states of living systems not only are far from
equilibrium, but bring the hallmark of criticality. Although
the connection between underpinning dynamics and meas-
urable quantities is sometimes tenuous and, hence, con-
clusions about criticality loose, empirical examples span a
wide range of biological organization, from gene expres-
sion in macrophage dynamics [2], to cell growth [3],
relatively small networks of neurons [4], flocks of birds
[5], and, possibly, tree populations in tropical forests [6].
In this article, we mainly focus on the spatial patterns

emerging from a minimal model of population dynamics
close to its critical point. This latter is identified as a
singularity in the population size of the system, similarly to
what happens in the theory of branching processes in the

subcritical regime [7], when the fluctuations play a crucial
role. Therefore, in our model the critical point does not
mark a transition between ordered and disordered phases
sensu equilibrium statistical mechanics [8], although con-
nections in a broader context may certainly exist. The
emergent patterns are not calculated by using classical size-
expansion methods but introducing a parameter expansion
which appropriately identifies criticality in the parameter
space of the model.
The calculation of the probability distribution of large-

scale configurations emerging from the microscopic
dynamics is challenging, even at stationarity [9,10].
When stochastic processes violate detailed balance, they
have a generator which is not self-adjoint [11], and different
states are coupled by probability currents at the micro-
scopic level [12]. These flows of probability among micro-
states break detailed balance and time symmetry and
produce macroscopic nonequilibrium behavior. A common
way to overcome these hurdles is to formulate some kind
of effective Langevin equation which describes the dynam-
ics of the mesoscopic variables of interest, losing track,
however, of the underlying microscopic dynamics [13–15].
Nonetheless, in this paper we study a model which, despite
violating microscopic detailed balance [16,17], allows one
to study analytically (stationary) out-of-equilibrium proper-
ties of spatial patterns. These latter emerge mainly because
of the large intrinsic fluctuations of the local population
sizes. Also, the model’s mathematical amenability allows
us to analyze in detail those spatial ecological patterns
and to compare them with observation data for ecosystems
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with large species richness. The agreement between model
predictions and empirical data highlights the usefulness of
the approach and strengthens the connections between
physics and theoretical ecology.
In this spatial metacommunity model (Fig. 1), local

communities (or, equivalently, sites or voxels) are located
on a d-dimensional regular graph (or lattice) where indi-
viduals are treated as well-mixed particles which undergo a
birth and death process with local diffusion and constant
colonization.We thoroughly investigate the spatial stochastic
dynamics close to criticality and deduce the equation
governing the evolution of the conditional distribution
pðNjV; tÞ, the probability to find N individuals in a volume
V at time t (in dimension d). Within this regime, we map the
equation of pðNjVÞ of the out-of-equilibrium spatial model
into an equation of a suitable stochastic process, which
instead satisfies detailed balance. This model is described by
functions of space, which we are able to calculate exactly.
The exact stochastic simulations are always matched by our
analytical formulae in the expected regimes.
The rest of the paper is organized as follows: In

Sec. II, we introduce the master equation of the model;
in Sec. III, we calculate the mean and pairwise correlation;
in Sec. IV, we study the generating function of the condi-
tional probability density function (PDF) of NðVÞ;
in Secs. V and VI, we calculate the population variance
and the conditional PDF ofNðVÞ, respectively, along with a
comparison between simulations and analytical formulae;
in Sec. VII, we present an ecological application of the
model; and, finally, Sec. VIII includes some discussions
and perspectives about the results.

II. MASTER EQUATION OF THE MODEL

This model is a metapopulation model in which indi-
viduals live in local communities (or sites) located on a
d-dimensional lattice L, whose linear side is a. If Xi, i ∈ L,

indicates an individual living in site i, the reactions defining
the model’s dynamics can be cast into the form

Xi ⟶
bγ

2Xi; Xi ⟶
bð1−γÞ
2d Xi þ Xj;

Xi ⟶
r

∅; ∅⟶
b0

Xi;

where j indicates a site which is a nearest neighbor of the
site i. In this model, individuals within local communities
(or, equivalently, sites or voxels) are treated as diluted,
well-mixed pointlike particles which undergo a minimal
stochastic demographic dynamics: Each individual may die
at a constant death rate r and give birth to an offspring at a
constant rate b. The newborn individual remains in the
same community with probability γ, whereas it may hop
onto one of the 2d nearest neighbors with probability 1 − γ.
Also, all communities are colonized by external individuals
at a constant immigration rate b0, which prevents the
system from ending up in an absorbing state without
individuals [18,19].
Notice that (for 0 ≤ γ < 1) spatial movement is always

coupled to birth, so that only newborn individuals can
move. This constraint is because we have in mind an
application to spatial ecology, where this model mimics the
population dynamics in species-rich communities of trees,
in which only seeds can move. However, it can be easily
modified to include random walk behavior or different
dispersals—like those for bacteria or humans—in which
the local birth and the hopping probability are, in general,
decoupled. We indeed verify that the generality of our final
results does not depend on that coupling (see Appendix F).
In the language of chemical reaction kinetics, the first

reaction represents an autocatalytic production; this reaction
and thehoppingmove are responsible for thebreak of detailed
balance as shown in Appendix A. Therefore, stationary states
of this process are nonequilibrium steady states, albeit the
model is defined by linear birth and death rates.

FIG. 1. Illustration of the model. Individual trees are represented by dark green circles within local communities which are located on a
regular graph (lattice). Each individual may die or give birth to an offspring with constant per capita rates. New individuals may either
remain in the community where they were born with probability γ or hop onto one of the 2d nearest neighbors with probability 1 − γ.
Finally, all communities are colonized by external individuals at a constant immigration rate b0. The dynamics of the model is therefore
defined by the jump rates defined in Eq. (1).
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Indeed, it is worth emphasizing that each “patch” has not
a maximum number of individuals which it can accom-
modate, but any population size is allowed, albeit large
sizes have an exponentially small probability to occur,
which is because the model has no intrinsic carrying
capacity which leads the population to saturation. A
carrying capacity has the advantage to bring in more
realistic features, but it also makes the model mathemati-
cally more complicated because of nonlinear terms. Here,
we show that linear rates of a stochastic model per se can
produce a relevant phenomenology within a stationary out-
of-equilibrium model. Thus, since we want to focus on the
regime near criticality, we prefer to delve into a relatively
simpler system, in which nonlinearities are neglected in a
first approximation. More complicated dynamics are def-
initely important and will be studied in future works.
Finally, for the system to avert demographic explosion,

we have to assume that b0 > 0 and 0 < b < r, but it turns
out that the most interesting features emerge when b ≃ r,

i.e., close to its critical point. Indeed, as we show in
Sec. VII, for comparable birth and death rates, the model is
able to describe several spatial patterns of tree species in
tropical forests [20].
Let us now indicate with ni the number of individuals in

site i. Assuming that within every site the spatial structure
can be neglected and that we have perfect mixing, when the
configuration of the system is fng ¼ fni∶i ∈ Lg, the linear
birth and death rates in site i, i.e.,Wþ

i ðfngÞ andW−
i ðfngÞ,

read, respectively,

Wþ
i ðfngÞ ¼

bð1 − γÞ
2d

X
j∶jj−ij¼1

nj þ bγni þ b0;

W−
i ðfngÞ ¼ rni: ð1Þ

Let Pðfng; tÞ be the probability to find the system in the
configuration fng at time t. Then the master equation for
Pðfng; tÞ reads

∂
∂t Pðfng; tÞ ¼

X
i∈L

fWþ
i ðf…; ni − 1;…gÞPðf…; ni − 1;…g; tÞ −Wþ

i ðfngÞPðfng; tÞ

þW−
i ðf…; ni þ 1;…gÞPðf…; ni þ 1;…g; tÞ −W−

i ðfngÞPðfng; tÞg; ð2Þ

where the dots represent that all other occupation numbers
remain as in fng and it is intended that Pð·Þ ¼ 0 whenever
any of the entrances is negative. The spatial generating
function of the process is defined as

ζðfHg; tÞ ¼ he
P

k∈L
nkHki ¼

X
fng

e
P

k∈L
nkHkpðfng; tÞ; ð3Þ

where Hi ≤ 0 for every i ∈ L. Multiplying both sides of

Eq. (2) by e
P

k0∈L nk0Hk0 and summing over all configurations
of the system, we find that ζðfHg; tÞ satisfies the equation
∂
∂t ζðfHg; tÞ ¼

X
i∈L

�
ðeHi − 1Þ

�
bð1 − γÞ

2d

X
j∶ji−jj¼1

∂ζ
∂Hj

þ bγ
∂ζ
∂Hi

þ b0ζ

�
þ rðe−Hi − 1Þ ∂ζ

∂Hi

�
:

ð4Þ
This equation is the main equation of the model from which
we calculate the most important results. We are not able to
find the full solution of this equation. However, one can
gain a lot of information about the general properties of the
process by looking into the probability distribution of the
random variable NðV; tÞ ¼ P

i∈V niðtÞ, where V is the set
of sites in a d-dim volume. Before studying such a
distribution, it is useful to calculate the mean number
of individuals and the spatial correlation between any pair
of sites.

III. MEAN AND PAIR CORRELATION

The equation for the mean number of individuals in the
site k can be obtained by taking the partial derivative of
both sides of Eq. (4) with respect to Hk and then setting
fHg ¼ 0:

∂hnki
∂t ¼ bð1 − γÞ

2d
Δkhnki − μhnki þ b0;

where μ ≔ r − b and Δk is the discrete Laplace operator,
which is defined as

ΔkfðkÞ ¼
X

j∶jk−jj¼1

½fðjÞ − fðkÞ�:

This finite difference equation can be solved in full
generality and at stationarity; i.e., for t → ∞, we get simply
hni ¼ ðb0=μÞ, regardless of any spatial location.
The pairwise spatial correlation between sites k and l,

i.e., hnknli, can also be obtained by taking the partial
derivatives of both sides of Eq. (4) with respect to Hk and
Hl and then setting fHg ¼ 0 (see Appendix B for details):

∂
∂t hnknli ¼ DðΔkhnknli þ ΔlhnknliÞ − 2μhnknli þ 2b0hni

þ δk;lð2σ2hni þ b0 þDΔkhnkiÞ; ð5Þ

where we use the notation
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D ≔
bð1 − γÞ

2d
and σ2 ≔

rþ b
2

:

We also introduce

λ ≔

ffiffiffiffi
D
μ

s
and ρ ≔

ffiffiffiffiffi
σ2

b0

s
;

which are dimensionless parameters and provide important
information about how spatial diffusion intermingles with
demographic dynamics.
In order to solve Eq. (5), we introduce a d-dim system of

Cartesian coordinates where the coordinates of each site are
given as a multiple of the lattice side a. Thus, a vector k
indicates the corresponding position of a site. In this way,
we can calculate the stationary solution of Eq. (5) by
writing hnknli as a Fourier series expansion. Exploiting
translation invariance, the final expression of the solution
reads (see Appendix B)

hnknli ¼ hni2 þ hni2ρ2
�
1þ μ

2σ2

�

×

�
a
2π

�
d
Z
C
dp

eip·ðk−lÞ

1þ 2λ2
P

d
i¼1½1 − cosðpiaÞ�

;

ð6Þ
where pi is the ith Cartesian component of the d-dim vector
p and C is the hypercubic primitive unit cell of size 2π=a.
Interestingly, pairs of sites decorrelate for γ ¼ 1 or b ¼ 0,
when at stationarity we obtain hnknli−hni2¼cδk;l, where c
is a constant depending only on the demographic parameters
and δk;l is a Kronecker delta. However, c ≠ hni, pointing out
that local fluctuations are non-Poissonian.
Equation (6) is amenable to a continuous spatial limit,

obtained as a → 0, and provides a closed analytic form
for the pair correlation. Indicating now with nðxÞ and nðyÞ
the density of individuals on the sites located at x and y,
respectively, in continuous space (and rescaling parameters
accordingly), we find (see Appendix B)

hnðxÞnðyÞi
hni2 ¼ 1þ ρ̄2

ð2πλ̄2Þd=2
�
1þ μ

2σ2

�

×

�jx − yj
λ̄

�ð2−dÞ=2
Kð2−dÞ=2

�jx − yj
λ̄

�
; ð7Þ

where jx − yj is the distance between the sites located at x
and y,Kν is the modified Bessel function of the second kind
of order ν [21], and we define

λ̄ ≔

ffiffiffiffi
D̄
μ

s
; ρ̄ ≔

ffiffiffiffiffi
σ2

b̄0

s
;

where D̄ ≔ Da2 and b̄0 ≔ b0=ad for a → 0 and they are
assumed to be finite in the limit. The first one is a standard

scaling for spatial diffusivity, whereas the second scaling
assumption comes from the requirement that spatial con-
tinuous constants are finite and nontrivial as a → 0
for x ≠ y.
As the asymptotic behavior of Kν as z → ∞ is

KνðzÞ ∼ e−z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=2zÞp

, λ̄ is the correlation length of the
system; ρ̄2 has the dimensions of a d-dim volume and gives
the local intensity of the correlations. Because Eq. (7) is the
continuum limit of Eq. (6), this expression of the pair
correlation function is a good approximation of the one in
Eq. (6) only when jx − yj ≫ a and λ̄ ≫ a.

IV. GENERATING FUNCTION CLOSE TO
THE CRITICAL POINT

In this section, we introduce the parameters that allow us
to identify a region close to the critical point of the model,
suggesting an expansion that leads to simplified equations
which, nonetheless, carry a lot of information about
the model.
A simple way to make progress with the master equation

in Eq. (2) is the use of a formal Kramers-Moyal expansion
[22]. It is well known that there are limitations to this
procedure and it has been criticized, because one cannot
always pinpoint a small parameter for the correct expansion
[22,23]. The system-size expansion solves these difficul-
ties, but it has to be applied when the size of the system
becomes large [23]. Here, however, it is not entirely evident
what parameter should identify the size (population size or
volume) of the system in the critical regime. Indeed, the
model has no carrying capacity or maximum population
size, and the total volume of the system could provide us
only with the macroscopic equation, which has no interest
in the present case.
In order to make analytical progress, we introduce

two dimensionless parameters, ε and η, which identify a
nontrivial region when 0 < b < r, but b → r. This choice
comes from the observation that communities of living
organisms often appear to have very large demographic
fluctuations. Several studies (see Refs. [6,24,25]) point
out that per capita birth and death rates are close to each
other in seemingly different systems, thus suggesting that a
sensible theoretical limit to study is when b approaches r.
For example, a fit of Eq. (7) to the empirical two-point
correlation function of the tropical forest inventory of
Pasoh natural reserve in Malaysia leads to empirical values
of 2ðr − bÞ=ðrþ bÞ of the order of 10−7 (see Fig. 4 and
Sec. VII for more details). We hence define ε ≔ 2ðr − bÞ=
ðrþ bÞ with the condition that ðb0=μÞε ¼ Oð1Þ as ε → 0þ;
in this way, we obtain a constant ρ2 ¼ μ=b0ε, which in real
systems is large because usually r=b0 ≫ 1. The parameter ε
indicates how close the system is to the critical point,
regardless of spatial diffusion. With the independent
parameter η ¼ D=σ2, instead, we compare the importance
of spatial diffusion with respect to demographic
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fluctuations. We assume that η ¼ OðεÞ as ε → 0þ and,
hence, η=ε ¼ λ2, a new independent constant. This scaling
assumption reflects that we want to explicitly analyze
spatial effects in the critical limit. In fact, it can be easily
proved that when η=ε → 0 the model is equivalent to the
mean-field model without spatial diffusion, whereas for
η=ε → ∞ spatial diffusion dominates over the birth-death
dynamics.
When b and r are close to each other, we expect that

population sizes can be well approximated with continuous
random variables in each site. In order to understand when
this approximation is possible in relation to the parameters
ε and η, we assume that the generating function ζðfHg; tÞ
is analytic at Hi ¼ 0 for any i and the most important
contribution to the equation of ζðfHg; tÞ comes from a
negative neighborhood of the origin with thickness OðεÞ.
This assumption is tantamount to introducing the change of
variable Hi ¼ εSi into Eq. (4) and to expanding in powers
of ε, assuming Si ¼ Oð1Þ and Si ≤ 0. Up to linear order in
η and ε, we obtain

∂
∂t ζðfSg; tÞ ¼

X
i∈L

σ2Si

�
ηΔi

∂ζ
∂Si − ε

∂ζ
∂Si þ

ε

ρ2
ζ þ εSi

∂ζ
∂Si

�

ð8Þ

or

∂
∂T ζðfSg; tÞ ¼

X
i∈L

Si

�
λ2Δi

∂ζ
∂Si −

∂ζ
∂Si þ

1

ρ2
ζ þ Si

∂ζ
∂Si

�
;

ð9Þ

where we introduce the dimensionless time T ≔ μt and now
ζ, with a slight abuse of notation, indicates the generating
function corresponding to continuous (and dimensionless)
random variables. Therefore, the evolution equation for the
generating function of the population sizes becomes

∂ζ
∂T¼

X
i∈L

Hi

�
λ2Δi

∂ζ
∂Hi

−
∂ζ
∂Hi

þhniζþσ2

μ
Hi

∂ζ
∂Hi

�
; ð10Þ

where Hi is the variable conjugated to the continuous
random variable ni. The parameters also correspond to this
continuum limit, and now the population sizes ni have an
exponential cutoff with a (large) characteristic scale given by
σ2=μ. Equation (10) leads to the following Fokker-Planck
equation:

∂
∂T Pðfng; TÞ ¼

X
i∈L

�
−

∂
∂ni ½ðλ

2Δini − ni þ hniÞPðfng; TÞ�

þ σ2

μ

∂2

∂n2i ½niPðfng; TÞ�
�
; ð11Þ

where now fng are continuous random variables and
Pðfng; TÞ is the corresponding probability density function.

It is interesting to note that this equation is not exactly
equivalent to the naïve Kramers-Moyal expansion of Eq. (2),
which would entail additional terms in the diffusive part.
Nevertheless, it is a diffusive approximation of the process in
the regime identified by the parameters η and ε.

A. Conditional generating function

Equation (11) cannot be solved in full generality, but we
can better understand the underlying dynamics by studying
the distribution of the population sizes in arbitrary volumes
of space. Let us indicate with V the set of sites belonging to
a d-dim volume jVj ¼ V, and let us introduce the random
variable NðV; tÞ ¼ P

i∈V niðtÞ, i.e., the total number of
individuals in V at time t. By indicating with PðNjV; tÞ the
corresponding probability density function of N, we define
the conditional generating function

ZðhjV; tÞ ¼ hehNðV;tÞi ¼
Z

∞

0

dNehNPðNjV; tÞ;

where h ≤ 0. We obtain the corresponding equation for Z
by specifying Hi, i.e.,

Hi ¼
�
h if i ∈ V;

0 if i ∉ V
ð12Þ

and substituting this equation into Eq. (10). Thus,

∂
∂T ZðhjV; TÞ ¼ h

�
λ2
X
i∈V

Δifði; h; V; TÞ −
∂Z
∂h

þ hniVZ
�
þ σ2

μ
h2

∂Z
∂h ; ð13Þ

where fði; h; V; TÞ ¼ hniðTÞehNðV;TÞi and we use the
identity

X
i∈V

hniehNi ¼
∂Z
∂h ðhjV; TÞ: ð14Þ

This equation depends on fði; h; V; TÞ, which, in gen-
eral, is unknown. An equation for f can be derived by
differentiating both sides of Eq. (10) with respect to Hk.
Assuming as before that k ∈ V, we finally obtain the
following equation for fðk; h; V; TÞ [abbreviated fðk; hÞ]:
∂
∂T fðk; hÞ ¼ λ2Δkfðk; hÞ − fðk; hÞ þ b0

μ
Z

þ h

�
λ2
X
i∈V

Δigði; k; hÞ −
∂
∂h fðk; hÞ

þ hniVfðk; hÞ
�
þ 2

σ2

μ
hfðk; hÞ

þ σ2

μ
h2

∂
∂h fðk; hÞ; ð15Þ
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where gði; k; h; V; TÞ ≔ hniðTÞnkðTÞehNðV;TÞi and where
we use the identity

X
i∈V

hninkehNi ¼
∂
∂h fðk; h; V; TÞ: ð16Þ

In Eq. (15), the function g is still unknown, but it is
possible to show that Δigði; k; h; TÞ ¼ Δkgði; k; h; TÞ to
leading order as a → 0 (see Appendix C). This result
allows us to obtain a closed equation for f. Indeed, we have

X
i∈V

Δigði; k; h; V; TÞ ¼
∂
∂hΔkfðk; h; V; TÞ

after using the identity (16).
The spatial continuous limit of Eq. (13) as a → 0 reads

∂
∂T ZðhjV; TÞ ¼ h

�
λ̄2

Z
V
dx∇2

xfðx; h; TÞ −
∂Z
∂h þ hniVZ

�

þ σ2

μ
h2

∂Z
∂h ; ð17Þ

where in hni we substitute b0 with b̄0. This equation is of
crucial importance in what follows. Similarly, Eq. (15)
becomes

∂
∂T fðy; h; V; TÞ ¼ λ̄2∇2

yfðy; hÞ − fðy; hÞ þ hniZ

þ h

�
λ̄2

∂
∂h∇

2
yfðy; hÞ −

∂
∂h fðy; hÞ

þ hniVfðy; hÞ
�
þ σ2

μ

∂
∂h ½h

2fðy; hÞ�;

ð18Þ

where, with the continuous coordinates [ni → nðxÞ and
nk → nðyÞ], we have also fðx; h; V; TÞ ¼ hnðxÞehNi and
NðV; tÞ ¼ R

V dxnðx; tÞ. When there are no spatial effects,
i.e., λ̄ ¼ 0, Eq. (17) reads

∂
∂T ZðhjV; TÞ ¼ h

�
−
�
1 −

σ2

μ
h

� ∂Z
∂h þ hniVZ

�
; ð19Þ

which has the following solution at stationarity:

ZðhjVÞ ¼
�
1 −

σ2

μ
h
�−ðμhniV=σ2Þ

; ð20Þ

where h ≤ 0 and μhniV=σ2 ¼ V=ρ̄2. This solution is the
generating function of a gamma distribution [23] with mean
hniV and variance hni2Vρ̄2. Also, it is not difficult to verify
that, when λ̄ ¼ 0, the solution of Eq. (18) is given by

fðy; h; V; TÞ ¼ 1

V
∂Z
∂h ðhjV; TÞ: ð21Þ

In the next section, we calculate the stationary variance
of the population sizes in a volume V, i.e., of the random
variable NðVÞ.

V. POPULATION VARIANCE

In this section, we calculate the stationary variance of
the population size, i.e., NðVÞ ¼ R

V dxnðxÞ, where V is a
finite volume. This quantity is of pivotal importance in the
approximation that we are going to develop in the following
sections, and it is key when introducing spatial information
in the equations. Thus, we outline here the main calcu-
lations, leaving to Appendix D further details.
We start from the spatial continuous limit of Eq. (5) as

a → 0, which at stationarity reads

λ̄2½∇2
xhnðxÞnðyÞi þ∇2

yhnðxÞnðyÞi� − 2hnðxÞnðyÞi

þ 2hni2 þ 2
σ2

μ
hniδðx − yÞ ¼ 0; ð22Þ

where δðx − yÞ is a Dirac delta and we include only the
leading terms as ε → 0. By integrating both sides of
Eq. (22) with respect to y ∈ V, we obtain an equation
for hnðxÞNðVÞi. We plan to find an explicit expression for
this quantity, because it plays a key role in the following
when we calculate ZðhjVÞ. Henceforth, we take V to be a
d-dim ball of radius R, and we assume that the origin of
the Cartesian coordinates is at its center. Thus, we indicate
with jxj the distance from the origin of the site located at x
in this coordinate system. With this notation and using the
symmetry of hnðxÞnðyÞi with respect to x and y, we obtain
at stationarity

λ̄2∇2
xhnðxÞNðRÞi − hnðxÞNðRÞi þ hni2V

þ σ2

μ
hniΘðR − jxjÞ ¼ 0: ð23Þ

This linear ordinary differential equation has to be solved
separately for jxj > R and jxj < R. The continuity of
hnðxÞNðRÞi and its first derivative at the boundary
jxj ¼ R provide the solution. The final result is (see
Appendix D)

hnðxÞNðRÞi ¼ hni2V þ σ2

μ
hniΨ

�jxj
λ̄
;
R
λ̄

�
; ð24Þ

where the function Ψ takes the following form for jxj ≤ R:

Ψ
�jxj

λ̄
;
R
λ̄

�
¼ 1 −

ðjxjR Þ1−d=2Kd=2ðRλ̄ÞId=2−1ð
jxj
λ̄
Þ

Id=2−1ðRλ̄ÞKd=2ðRλ̄Þ þ Id=2ðRλ̄ÞKd=2−1ðRλ̄Þ
;

ð25Þ
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where IνðzÞ and KνðzÞ are the modified Bessel functions
of the first and second kind, respectively [21]. Integrating
both sides of Eq. (24) with respect to x ∈ V, we obtain the
equation for the second moment of NðRÞ, i.e.,

hNðRÞ2i ¼ hni2V2 þ σ2

μ
hniVψ

�
R

λ̄

�
; ð26Þ

where ψðR=λ̄Þ takes the following explicit form in dimen-
sion d (see Appendix D for its behavior):

ψ

�
R

λ̄

�
¼ 1 −

dλ̄
R Kd=2ðRλ̄ÞId=2ðRλ̄Þ

Id=2−1ðRλ̄ÞKd=2ðRλ̄Þ þ Id=2ðRλ̄ÞKd=2−1ðRλ̄Þ
:

ð27Þ

These two functions, namely, hnðxÞNðRÞi in Eq. (24) and
hNðRÞi2 in Eq. (26), are used in the next sections to
calculate a first-order approximation of the spatially
explicit probability density function of NðVÞ in the vicinity
of the critical point.
Finally, these solutions allow us to write down the

analytic form of the variance of NðRÞ in dimension d, i.e.,

Var½NðRÞ� ¼ hNðRÞiΣðRÞ; ð28Þ

where hNðRÞi¼hniV¼ b̄0V=μ and ΣðRÞ ≔ σ2ψðR=λ̄Þ=μ.
The function ΣðRÞ is the spatial Fano factor and quantifies
the deviations of the fluctuations from a Poisson process.
Since σ2=μ ¼ O½ðr − bÞ−1�, when the system is close to
the critical point—for fixed R and λ̄—the system has
large fluctuations on all scales larger than the correlation
length λ̄. Also, in the regime R=λ̄ → þ∞, we obtain
μΣðRÞ=σ2 ¼ 1þO½ðR=λ̄Þ−1�, thus recovering the mean-
field fluctuations as predicted by Eq. (20).

A. The spatial Taylor’s law

Taylor’s law was first observed in ecological commun-
ities [26,27], where natural populations show some degree
of spatial aggregation. This aggregation is phenomenologi-
cally captured by assuming a scaling relationship between
the variance and mean of population sizes in different areas.
More generally, and recently, Taylor’s law denotes any
power relation between the variance and the mean of
random variables in complex systems [28,29]. The law
postulates a relation of the following form:

Var½NðRÞ� ¼ ChNðRÞiα;

where C is a positive constant and α typically assumes
values between one and two [27,29]. The spatial model
which we introduce can predict the behavior of this relation
across scales without making specific assumptions. If we
focus on the two-dimensional case and fix λ̄, we obtain

Var½NðRÞ� ¼ C1hNðRÞi2 log½hNðRÞi� for R ≪ λ̄, while
Var½NðRÞ� ¼ C2hNðRÞi for R ≫ λ̄. This latter situation
corresponds to the mean-field case in which C2 ¼ σ2=μ.
So for areas of radius much smaller than the correlation
length, the model is characterized by α ¼ 2 with logarith-
mic corrections, while in the case of radii much larger than
λ̄we obtain α ¼ 1. This result is in agreement with previous
studies [26–28]. The model predicts α ¼ 1 at large scales
regardless of the dimension of the system, whereas for
small areas α strongly depends on d, e.g., α ¼ 2 (without
logarithmic corrections) in the one-dimensional case, and
α ¼ 5=3 for d ¼ 3. Therefore, from small to large spatial
scales, the model predicts a crossover of exponents
which is difficult to explain without a spatially explicit
framework. Recently, considerable attention has been
devoted to the origin of curvatures in scaling relation-
ships, such as those relating body size and the metabolic
rates of living organisms (e.g., species of mammals [30]
or freshwater phytoplankton [31]). Unlike what has been
found in these latter works, in our model the crossover in
the scaling exponent α is a result of the interplay between
space and dispersal at different spatial scales. When con-
sidering small areas, local communities appear strongly
correlated with each other, while at larger areas these
communities are completely independent, as they are located
at distances much larger than the correlation length. When
they are decoupled, the relation is simply Var½NðRÞ� ¼
bσ2VðRÞ=μ2, where VðRÞ is the volume of a d-dimensional
sphere.
It has been proved that Taylor’s law can emerge in a

much more general class of stochastic processes, for
example, when the dynamical rates of the model are
affected by environmental variability [28,29]. Here, we
do not consider this effect, but it would be certainly
interesting to investigate environmental stochasticity within
a spatially explicit framework.

VI. SOLUTION OF THE CONDITIONAL PDF

The goal of this section is to derive the main result of the
paper. With the spatial population variance obtained in the
previous section along with an appropriate approximation,
we are now able to close and solve Eq. (17) for the
conditional generating function ZðhjVÞ. We then invert this
latter for the conditional probability density function
PðNjVÞ, from which several characteristics of the spatial
patterns can be deduced.
In order to calculate the explicit form of ZðhjV; TÞ from

Eq. (17), we first need to calculate the solution of Eq. (18),
which, in turn, has to satisfy the identity in Eq. (14). We
first make use of this latter in the form

Z
V
fðx; h; V; TÞdx ¼ ∂Z

∂h ðhjV; TÞ: ð29Þ
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It is not difficult to verify that f can be expressed as

fðx; h; V; TÞ ¼ 1

V
∂Z
∂h

�
1þ

X∞
i¼1

hiAiðx; V; TÞ
�
; ð30Þ

where the functions Ai are such that

Z
V
Aiðx; V; TÞdx ¼ 0 ð31Þ

for any i. One could calculate the explicit form of Ai, which
depends on the spatial position, by substituting the expres-
sion in Eq. (30) into Eq. (18). However, the meaning
of these functions provides a more efficient way for the
calculation. Because of the definition of f, we readily
obtain fðx; h ¼ 0Þ ¼ hni and

∂mf
∂hm ðx; hÞj

h¼0
¼ hnðxÞNmi ð32Þ

for m ¼ 1; 2;…, from which we can make explicit the
expression of Ai by using Eq. (30). For instance, it is not
difficult to show (see Appendix E) that at stationarity

A1ðxÞ ¼
1

hni
�
hnðxÞNi − 1

V
hN2i

�

¼ σ2

μ

�
Ψ
�jxj

λ̄
;
R
λ̄

�
− ψ

�
R
λ̄

��
;

where Ψ and ψ are defined in Eqs. (25) and (27),
respectively. Similar relations, though more complicated,
hold for i ¼ 2; 3;…. Actually, hnðxÞNii can be calculated
by integrating i times over the volume V the (iþ 1)th
spatial correlation function. Nonetheless, note that this
result depends on the symmetry of the d-dim volume V and
on its connectedness. This dependence is important for
exploiting the spherical symmetry of the system when
introducing polar coordinates and in selecting its center as
the origin (see also the previous section and Appendix D).
Since we are interested in relatively large population

sizes when the correlation length is either large or small
(λ̄ → 0;∞ but finite), we retain only the first two terms in
the bracket of Eq. (30). Thus, f at stationarity turns into

fðx; h; VÞ ¼ 1

V
∂Z
∂h ½1þ hA1ðxÞ�; ð33Þ

where A1 is the one we obtained before. It is remarkable
that, when substituting Eq. (33) into Eq. (17), at stationarity
one obtains (see Appendix E)

½1 − hΣðRÞ� ∂Z∂h ¼ hniVZ; ð34Þ

where ΣðRÞ ¼ σ2ψðR=λ̄Þ=μ is the spatial Fano factor
defined in the previous section. The form of Eq. (34)
and that of Eq. (19) at stationarity are the same, provided
we replace σ2=μ with ΣðRÞ. Therefore, the solution of
Eq. (34) is

ZðhjRÞ ¼ ð1 − ΣðRÞhÞ−½hniVðRÞ=ΣðRÞ�; ð35Þ

which, when inverted for the probability density function,
gives a gamma distribution of the form

PðNjRÞ ¼
�

1

ΣðRÞ
�hniVðRÞ=ΣðRÞ N½hniVðRÞ=ΣðRÞ�−1e−½N=ΣðRÞ�

ΓðhniVðRÞΣðRÞ Þ
:

ð36Þ

Thus, while without spatial effects the characteristic scale
of the population size is ϵ−1 ≃ σ2=μ ≫ 1, in this regime
space introduces a space-dependent scale for fluctuations
which is quantified by ΣðRÞ ¼ ϵ−1ψðR=λ̄Þ, where ψ is the
function defined in Eq. (27).
As a further insight, if one defines the new process for

the random variable NðR; TÞ in the volume V of fixed
radius R by the stochastic differential equation

_NðRÞ ¼ b̄0VðRÞ − μNðRÞ þ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψðR=λ̄ÞNðRÞ

q
ξðtÞ; ð37Þ

where ξðtÞ is a zero-mean Gaussian white noise and
hξðtÞξðt0Þi ¼ 2δðt − t0Þ, then the stationary PDF of NðRÞ
is exactly Eq. (36). Notice that space is taken into account
only implicitly through the functions VðRÞ and ψðR=λ̄Þ.
Equation (37) can also be obtained as an ϵ limit of a
spatially implicit master equation along the lines we show
in Sec. IV. This process—unlike the spatial one—satisfies
the detailed balance condition at stationarity as the flux
at N ¼ 0 is set to zero. This result suggests that there are
some families of spatially explicit processes which, when
restricted to a finite volume, can be well approximated by
spatially implicit processes. While the former breaks
detailed balance, the latter turns out to be simpler and
satisfies the detailed balance condition. In this model, the
region of this approximation is close to the critical point of
the process.
It remains to understand when the f in the form of

Eq. (33) solves Eq. (18), i.e., the original equation for f.
In Appendix E, we show that, for a fixed radius R, at
stationarity f is a solution when h is small and λ̄ is either
very large or very small (but finite) compared to R,
regardless of the spatial dimension d. The limits λ̄ → 0

and λ̄ → þ∞ of Eq. (36) lead to the mean-field expres-
sions, respectively, Eq. (19) and PðNjRÞ¼δ½N−hniVðRÞ�
at leading order. Thus, Eq. (36) captures the leading
behavior of the distribution of the random variable NðRÞ
in the large population regime and in the vicinity of the
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critical point. The simulations indeed confirm this result
with very good accuracy as shown in Figs. 2 and 3.
Because we assume that A1ðxÞ is at stationarity, Eq. (33)

does not give all the correct terms for a time evolution of the
process NðR; TÞ. However, relatively close to stationarity,
even the temporal dynamics is accurately described by
Eq. (37). We check this idea and compare the exact

simulations of the process—as provided by the Doob-
Gillespie algorithm (see also the following section)—with
the corresponding analytic temporal evolution as obtained
from solving Eq. (37). Assuming that initially in the
volume V there are N0 individuals, we find the following
time-dependent solution (see Ref. [32] for the details of the
derivation):

PðN; tjN0; 0Þ ¼
�

1

ΣðRÞ
�

b̄0V=μΣðRÞ
N½b̄0V=μΣðRÞ�−1e−½N=ΣðLÞ� ½ð

1
ΣðRÞÞ2N0Ne−μt�ð1=2Þ−½b̄0V=2μΣðLÞ�

1 − e−μt

× exp

�
−

1
ΣðRÞ ðN þ N0Þe−μt

1 − e−μt

�
I½b̄0V=μΣðRÞ�−1

� 2
ΣðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0Ne−μt

p
1 − e−μt

�
; ð38Þ

where we use reflecting boundary conditions at N ¼ 0 at any t > 0. This PDF indeed tends to the stationary solution in
Eq. (36) as t → ∞. The agreement between simulations and Eq. (38) is shown in Figs. 7 and 8.

FIG. 2. Stationary distribution as obtained from the phenom-
enological algorithm (d ¼ 1). (a)–(c) present a comparison
between the simulated model as obtained from the phenomeno-
logical algorithm (histograms) outlined in Sec. VI and the
stationary solution as calculated with Eq. (36) (blue solid line).
The lattice comprises 500 sites in total, and we carry out 50 000
independent realizations in d ¼ 1 with periodic boundary con-
ditions, where parameters are D ¼ 30, b0 ¼ 0.5, μ ¼ 0.01, and
σ ¼ 10, and, hence, λ̄ ≈ 55. Panels show results for segments of
different lengths which include 10, 20, and 60 adjacent sites,
respectively. The size of error bars (black lines) is twice as much
the standard deviation, while the red solid line represents the
mean-field solution of the system [i.e., Eq. (36), where
Σ ¼ σ2=μ]. (d) presents the comparison between the simulated
and the analytic pair correlation function at stationarity. Red dots
are from simulations, while the blue solid line is the analytic
solution given by Eq. (7).

FIG. 3. Stationary distribution as obtained from the phenom-
enological algorithm (d ¼ 2). (a)–(c) present a comparison
between the simulated model as obtained from the phenomeno-
logical algorithm (histograms) outlined in Sec. VI and the
stationary solution as calculated with Eq. (36) (blue solid line).
The square lattice comprises 200 × 200 sites. We carry out 50
000 independent realizations in d ¼ 2 with periodic boundary
conditions, with parameters D ¼ 20, b0 ¼ 0.1, μ ¼ 0.1, and
σ ¼ 10, and, hence, λ̄ ≈ 15. (a)–(c) show results for different
areas with radii of length 5, 10, and 20, respectively. The size of
error bars (black lines) is twice as much the standard deviation,
while the red solid line represents the mean-field solution of the
system [i.e., Eq. (36), where Σ ¼ σ2=μ]. (d) presents the
comparison between the simulated and the analytic pair corre-
lation function at stationarity. Red dots are from simulations,
while the blue solid line is the analytic solution given by Eq. (7).
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A. Simulations with an efficient algorithm

These families of spatial stochastic models are difficult
to simulate with parameters in arbitrary regimes and, even
so, usually only on relatively small lattices in low dimen-
sions. Indeed, it is difficult to assess whether or not
simulations have reached stationarity (because of the effect
of large fluctuations) and how many replicates are neces-
sary to get reliable predictions for the spatial moments. In
this light, it is even more important to know the analytical
behavior of some quantities, which could not have been
guessed from the simulations only. We therefore compare
our analytic predictions to simulations as obtained from a
range of different parameter sets and from two different
simulation schemes.
The first one is the Doob-Gillespie algorithm [33]

for producing exact trajectories of Markovian processes.
We use periodic boundary conditions in 1 − d lattices of
various sizes. Parameters are chosen so that the correlation
length of the system is much smaller than the total size of
the lattice. We analyze different sets of parameters, and for
each one we run 50 000 independent realizations: Error
bars are calculated by grouping the results into 50 sets
made of 1000 realizations each. In principle, this simulation
scheme allows us to obtain the exact trajectories of the
system at any time, from an initial configuration up to
stationarity. However, it is computationally very expensive,
and, therefore, we are forced to choose relatively small
lattice sizes to investigate significant changes from the
initial configuration. The results of this choice are shown in
Figs. 7 and 8.
In order to analyze a wider set of parameters and larger

lattices, we simulate the process by using a new algorithm
which generates the stationary random field obtained from
the stochastic partial differential equation defined on the
lattice. This algorithm is introduced in Ref. [34] and
modifies a previous scheme that was used for simulating
models of directed percolation [35]. Here, we briefly
summarize the main steps of the pseudocode. From the
definition of the discrete Laplace operator, we split the term
λ2Δini in Eq. (11) into one part depending only on ni
(2dλ2ni) and another one depending on the densities in the
nearest neighboring sites (λ2

P
j∶ji−jj¼1 nj). Conditional on

the values of nj for j ≠ i, the second term is constant, and,
thus, PðnijnjÞ can be obtained as a gamma distribution at
stationarity [34]. Starting from a random initial configura-
tion, at each iteration m, we randomly select a site i and
update the value of nmi in the next step by sampling from
nmþ1
i ∼ Pðnijnmj Þ, conditional on the values of nmj (i.e.,

nmþ1
j ¼ nmj ). These steps are repeated until lattice configu-

rations become independent of initial conditions. While
standard stochastic integration schemes fail to preserve the
positivity of fng at any step, this algorithm produces non-
negative populations by construction. We verify that the
simulated distribution thus obtained for NðRÞ matches the

exact simulations of the Doob-Gillespie algorithm in d ¼ 1
and for different lengths, when the comparison is feasible
(see Fig. 9). By means of this algorithm, we are able to
study much larger lattice sizes at stationarity and compare
simulations against the predictions of the analytic solutions.
The agreement is excellent in all the expected regimes
(see Figs. 2 and 3).

VII. AN ECOLOGICAL APPLICATION

A simple, but far from trivial, application of the
mathematical model we have previously described is the
modeling of spatial patterns in ecosystems with a large
number of species. Examples include the species richness
and abundance distribution of coral reefs, bees across
landscapes, or vascular plant species in tropical forest
inventories. Starting with the crude approximation that
species are independent (at least at some relatively large
scale), this model can be used to predict the abundance
distribution of species from measures of the two-point
correlation function (PCF) and mean abundance per spe-
cies. Because these latter descriptors are relatively easy to
calculate, it turns out that we can obtain an estimate of how
many rare (or abundant) species live in a region without
surveying the entire system. Therefore, as well as being
theoretically interesting, this approach also has an impor-
tant practical advantage, because it ultimately allows one to
infer the total number of species within a very large spatial
region by utilizing only scattered and small-scale samples
of the region itself. This long-lasting problem has received
a lot of attention recently [6,15,20].
Our goal here is not to explain the upscaling method

but only show to what degree the spatial model is in
agreement with ecological empirical data. The PCF spec-
ifies how similar individuals are distributed as a function of
the geographic distance. Since species are assumed to be
independent, the spatial distribution of individuals belong-
ing to the same species can be considered as an independent
realization of the stochastic process. As a consequence, the
term hnðxÞnðyÞi=hni2 in Eq. (7) can be easily calculated
as the product of local abundances of individuals in sites
that lay at the same distance, averaged across all species.
Usually, it is more likely that close-by individuals belong to
the same species than individuals that live farther apart.
This likelihood translates into a PCF that is always positive
but decays with distance [36,37]. A decline in similarity
with increasing geographic distance indicates that the
individuals of a community are spatially aggregated.
Therefore, a simple random placement of individuals in
space is not a good approximation of the configurations of
the community as thought in the past [38]. On the contrary,
the stationarity PCF of this model decays with distance, is
always positive [see Eq. (7)], and has two free parameters
(λ̄ and ρ̄). When we calculate these latter from a best fit
of the empirical data, we obtain a good agreement as shown
in Fig. 4(d).
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The mean abundance per species is readily available,
because the total numbers of species and individuals are
known in this forest plot. Since at stationarity the model is
fully specified by these three parameters (hni, λ̄, and ρ̄), we
are henceforth able to predict all the stationary patterns that
we like to compare with those of the empirical ecosystem.
One of them is the probability that a species has a given
number of individuals within a specific region. In the
ecological literature, it is often referred to as species
abundance distribution (SAD) [39]. In our model, it is
given by Eq. (36), and the histograms of this pattern are
reported in Figs. 4(a)–4(c) for different radii. The SAD
represents one of the most commonly used static measures
for summarizing information on an ecosystem’s diversity.
Interestingly, the shape of the SAD in tropical forests is

observed to maintain similar features, regardless of the
geographical location or the details of species interactions.
Indeed, it often displays a unimodal shape at larger scales
and a peak at small abundances at relatively small spatial
scales. Numerous papers focus on evaluating the processes
that generate and maintain such observed characteristics
[20,40], but only a few of them consider spatial effects in an
explicit framework [19,41].
The panels in Fig. 4 show a comparison between the

empirical data from the forest inventory of Pasoh natural
reserve in Malaysia (year 2005) and the predicted abun-
dance distribution of species obtained from the model we
describe in the previous sections. It is remarkable that the
predicted curves in the first three panels are genuine
inferences obtained from the mean abundance per species
(i.e., hni) and the PCF (i.e., λ̄ and ρ̄) and not best fitted
curves to empirical SAD. As a comparison, we include the
best fit to data of a probability distribution commonly used
as a null model in the literature, the Fisher log-series (see
Appendix G) [20]. The two methods have comparable
accuracies at smaller scales, while at larger scales our
method outperforms the Fisher log-series and captures the
empirical SAD with much higher accuracy.
Such an agreement confirms that abundances of species

are indeed characterized by very large fluctuations and
that local populations appear correlated over very large
spatial scales. This result entails that complex ecosystems
may comprise a large number of rare species, whereas
only a few have large abundances (hyperdominant spe-
cies). Because this model does not explicitly include
interactions or environmental forcing, we cannot single
out which ecological processes bring about this finding.
Nevertheless, the model is able to explain this separation
of population size scales by poising a system close to
criticality.
In terms of new physical insight, the theoretical frame-

work that we present here allows us to connect exactly the
two-point correlation function to the SAD and the species
area relationship (SAR) of a system. This framework
explains quantitatively why and how SAR (known as α
diversity in the ecological literature) and species spatial
turnover (known as β diversity in the ecological literature)
are related. For instance, it is usually assumed that the SAR
is a power law function of the area [42], i.e., SðAÞ ¼ cAz;
however, our results show that this function can only be
an approximation which works on a given range of
spatial scales.
The simplicity and generality of the model make it

suitable for the description of patterns in other biological
systems. Indeed, numerous recent studies show that spatial
biogeographical patterns emerge in marine ecosystems
[43,44], microorganisms [45], including bacteria [46,47],
archæa, viruses, fungi [48], and eukaryotes [49,50]. Future
work will include the application of the current framework
to those biological communities.

FIG. 4. Species abundance distribution from a lowland tropical
forest and prediction from the model. (a)–(c) present the com-
parison between the empirical data of the distribution of species’
abundances from the lowland tropical forest inventory of the
Pasoh natural reserve (Malaysia) and the prediction based on the
model. Histograms and black points represent the empirical data,
the green solid lines are the predictions obtained from the solution
of the model, i.e., from Eq. (36), and the blue solid lines are those
from the best fit of the Fisher log-series. We highlight that the
green lines are not best fits to the empirical data but genuine
predictions that are formulated from the empirical measures of
the pair correlation function, as described in the main text [see
Eq. (7)]. The radii of the areas are 15, 70, and 200 m as reported
on the corresponding panels. For the statistical analysis, see
Appendix G. In (d), we compare the empirical pair correlation
function (black dots) with the best fit of Eq. (7). The correlation
length that is thus calculated is λ̄ ≈ 2.5 × 103 m, with ρ̄≈
8.9 × 103 and hni ≈ 6.1 × 10−4 trees per square meter for each
species. The total number of species in the whole 50 Ha forest
stand is approximately 900.
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VIII. CONCLUSIONS

In this paper, we have studied a spatial stochastic model
which can be fruitfully used to describe the main large-scale
characteristics of species-rich ecosystems. We have shown
how to calculate analytically some of the most important
spatial patterns when the system is close to criticality, which
is the regime where the most important features emerge.
The model encapsulates birth, death, immigration, and

local hopping of individuals. It describes the dynamics of
pointlike and well-mixed individuals living in a metacom-
munity defined on a d-dimensional regular graph. The
model is also minimal, meaning that, without one of its
components (i.e., birth, death, nearest-neighbor hopping,
and external immigration), it yields either trivial or well-
known results. Despite its simplicity, however, it violates
detailed balance (see Appendix A) and generates a remark-
able phenomenology of patterns, when the birth and death
rates are comparable (criticality), leading to its properties
being governed by large fluctuations, whose effects, of
course, escape any classical mean-field analysis. These
patterns and fluctuations entail strong correlations on large
spatial and temporal scales.
The linearity of the rates is not sufficient to derive a full

solution (in a weak sense) of the model. However, in
applications, one is usually interested in the analytical
properties of processes that are much less general than the
spatial random field. Thus, we restricted our analysis to the
conditional distribution pðNjVÞ that N individuals are
found in a volume V. This quantity is sufficiently general
to describe a wealth of patterns in several systems. We have
found that, in the close-to-critical regime, pðNjVÞ satisfies
an aptly derived equation which has the form of the
corresponding mean-field equation of the process (i.e.,
without space). This equation includes functions of V,
which we have exactly calculated. Such spatial redefinition
of the parameters introduces strong deviations from the
corresponding mean-field solutions, as confirmed by the
exact stochastic simulations. Also, this result shows that
the process that governs the random variable N satisfies
detailed balance in a first approximation and close to the
critical point, thus being considerably simpler than the
distribution of the random field. This result suggests that
not only is it possible to make considerable analytical
progress in this model, but there may be other, more
general, models close to criticality which can be studied
with a similar approach.
Indeed, our results suggest the tantalizing hypothesis that

the conditional distribution pðNjVÞ, provided by some
families of spatial stochastic processes, is described by
much simpler processes within a specific region of the
parameter space. In our model, the region of this approxi-
mation is close to the critical point of the process, and
the distribution of the simpler process holds the same
functional shape across all spatial scales. Of course, the
hypothesis requires much more scrutiny, especially when

spatial models include nonlinear terms which can jeopard-
ize the methods developed here. On the other side, our
approach allows for the analysis of several generalizations,
including nonlocal dispersal kernels and different sources
of noise (e.g., environmental noise).
On a more applied side, our framework explains how the

most important patterns in macroecology (e.g., SAR, SAD,
and PCF) are intrinsically connected with each other [see
Eqs. (7) and (36) and their relation through ΣðRÞ in
Eq. (28)] and also accounts for a crossover of power law
behaviors in the spatial Taylor’s law [see Eq. (28)]. We have
compared the predictions against those of the Fisher log-
series, commonly used as a null model in the ecological
literature. Despite the free parameter of the Fisher log-
series distribution being calculated directly from the
empirical data of the species abundance distribution (best
fit) at each spatial scale, our model performed much better
(see Fig. 4), even though we employed the parameters
obtained from the PCF curve, which does not provide
information about the distribution of abundances of spe-
cies. Discrepancies between empirical data and theoretical
predictions will potentially inform us on the importance
of alternative physical effects which will be included in
more realistic models.
We have finally shown that, when applying the model to

large ecosystems, species are predicted to display a broad
range of abundances as a consequence of the critical regime.
Therefore, many of them are rare, and only a few are very
abundant. These large demographic fluctuations are corre-
lated across large spatial scales as well as over long times, in
agreement with several empirical datasets collected in well-
known tropical forest inventories [6,34,51].
Of course, these findings do not prove that these

biological systems are close to criticality but suggest
that it is worth pursuing that route further. In this article,
we have not investigated the reasons why those systems
look nearly critical, nor how they can operate within such
tiny regions of their parameter space. For this investigation,
one needs to look into how inter- and intrainteractions
dynamically lead living systems toward the correct region,
in which states are biologically meaningful—however, see
Refs. [52–55]. Nonetheless, our results could help under-
stand what key factors drive such dynamics and possibly
shed light on the importance and effects of nonlinearities
among interacting agents.
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APPENDIX A: BROKEN DETAILED BALANCE

We here recall the main general properties of detailed
balance. Let us denote with c the configuration of a generic
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stochastic process and indicate with pðc; tjc0; t0Þ the
probability that the configuration c is seen at time t, given
that the configuration at time t0 is c0 [abbreviated pðc; tÞ].
We introduceWðc0jcÞ, which is the (time-independent) rate
to transit from state c to c0. If we consider Markovian
dynamics, the evolution of pðc; tÞ is given by the following
master equation (ME) [22,23]:

∂pðc; tÞ
∂t ¼

X
c0
½Wðcjc0Þpðc0; tÞ −Wðc0jcÞpðc; tÞ�: ðA1Þ

If it happens that Wðcjc0ÞPðc0Þ −Wðc0jcÞPðcÞ ¼ 0 for
all configurations [the detailed balance (DB) condition],
then the probability distribution PðcÞ is also a stationary
solution of the ME, as we see from Eq. (A1). On the other
hand, it is clear that not all stationary distributions satisfy
the detailed balance condition.
It is possible to show [12] that a condition for the validity

of DB is that the probability of following a closed path
in the space of configurations does not depend on the
orientation of the path. More precisely, DB is satisfied if
and only if for any choice of a closed path fc1;…; cmg,
with m an arbitrary number, the following holds:

Wðc1jc2ÞWðc2jc3Þ � � �Wðcmjc1Þ
¼ Wðc1jcmÞWðcmjcm−1Þ � � �Wðc2jc1Þ: ðA2Þ

This equation corresponds to microscopic reversibility,
and, when it is violated, the system can be found in
nonequilibrium steady states.
Violation of DB is key to living systems and is the

subject of intense recent interest [56,57]. In Fig. 5, we show
with a simple example that for this model the condition
in Eq. (A2) is not satisfied; hence, the detailed balance
condition does not hold: Fig. 5 shows a path in the space of
configurations for which the total rate does depend on the
orientation of the closed path. Notice that such a counter-
example does not hold when spatial dispersal is switched
off (i.e., D ¼ 0 or γ ¼ 1) or when autocatalytic production
and spatial dispersal rates are equal (γ ¼ 1=2).

APPENDIX B: SPATIAL CORRELATION OF THE
BIRTH-DEATH MARKOV PROCESS

In the main text, we define the spatial generating
function of the model

ζðfHg; tÞ ¼ he
P

k∈L
nkHki

¼
X
fng

e
P

k∈L
nkHkpðfng; tÞ:

From Eq. (2), multiplying both sides through by e
P

s∈L
nsHs

and summing over all states, we find Eq. (4) of the main
text. If we differentiate by Hk and impose fHg ¼ 0, we
find the equation for the mean number of individuals hnki,
reported in the main text. Taking another derivative with
respect to Hl and setting fHg ¼ 0, we obtain the equation
for the spatial PCF among the sites k and l:

∂
∂t hnknli ¼ DðΔlhnknli þ ΔkhnknliÞ − 2μhnknli

þ 2b0hni þ δk;lð2σ2hni þ b0 þDΔkhnkiÞ;

where σ2 ≔ ðbþ rÞ=2, D ≔ ½bð1 − γÞ=2d�, δk;l is a
Kronecker delta, and Δ is the discrete Laplace operator
as defined in the main text.
Considering stationary patterns, because of homogeneity

we have Δkhnki ¼ 0, and, introducing Gk;l¼hnknli−hni2,
we obtain

DðΔkGk;l þ ΔlGk;lÞ − 2μGk;l þ ð2σ2hni þ b0Þδk;l ¼ 0:

We now consider the Fourier series expansion of Gk;l,
which we write as

Gk;l ¼
�
a
2π

�
d
Z
C
dpĜðpÞeip·ðk−lÞ;

where k and l are the Cartesian coordinates of the
locations of sites on the lattice (in a units) and p is a
vector with d components which belongs to C, the

FIG. 5. Broken detailed balance. The picture represents a
closed path in the space of configurations of the process which
has different probabilities depending on the direction of the path
(see also Ref. [17]). We take two neighboring sites, which
initially have n and m individuals. The rates of jumping into
the next configuration of the path are reported in the image,
and the arrows indicate the direction. In this simple case,
D ¼ bð1 − γÞ. In the clockwise direction (red arrows), the total
rate is ½bγnþDmþb0�½bγmþDðnþ1Þþb0�½rðnþ1Þ�½rðmþ1Þ�.
In the anticlockwise direction (blue arrows), the total rate is
½bγmþDnþb0�½bγnþDðmþ1Þþb0�½rðmþ1Þ�½rðnþ1Þ�. These
two total rates must be equal for the detailed balance to hold.
However, for any arbitrary configuration (m ≠ n), this equality
is true only when DðD − bγÞr ¼ 0, i.e., for b ¼ 0, r ¼ 0, and
γ ¼ 1; 1=2.
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hypercubic d-dimensional primitive unit cell of size 2π=a.
Upon substituting Gk;l in the stationary equation, we get an
expression for ĜðpÞ, which is

ĜðpÞ ¼
�
σ2

μ
hni þ b0

2μ

�
1

1þ 2D
μ

P
d
i¼1½1 − cosðpiaÞ�

;

where pi is the ith component of p. Therefore,

Gk;l ¼
�
a
2π

�
d
Z
C
dp

ðσ2μ hni þ b0
2μÞeip·ðk−lÞ

1þ 2D
μ

P
d
i¼1½1 − cosðpiaÞ�

:

We can obtain a good deal of simplification by taking a
continuous spatial limit (a → 0). Renaming p → p, k → x,
and l → y (now continuous variables in Rd) and appropri-
ately rescaling the constants as explained in the main text,
we arrive at the expression for the pairwise spatial
correlation in dim d, i.e.,

Gðx; yÞ ¼ ρ̄2hni2
ð2πÞd

�
1þ μ

2σ2

�Z
dp

eip·ðx−yÞ

1þ λ̄2p2
;

where we replace b0 with b̄0 in hni and use the definitions
of ρ̄ and λ̄ given in the main text. Actually, the d-dim
integral in the previous expression can be calculated:

Z
dp

eip·ðx−yÞ

1þ λ̄2p2
¼
Z

∞

0

ds
Z

dpeip·ðx−yÞ−ð1þλ̄2p2Þs

¼
Z

∞

0

ds

�
π

s

�ðd=2Þ
e−ðjx−yj2=4λ̄2sÞ−s

¼ð2πÞd=2
λ̄d

�jx−yj
λ̄

�ð2−dÞ=2
Kð2−dÞ=2

�jx−yj
λ̄

�
;

where KaðzÞ is the modified Bessel function of the second
kind and in the last step we used 9.6.24 from Ref. [58].
Eventually, the PCF is

Gðx; yÞ ¼ ρ̄2hni2
ð2πλ̄2Þd=2

�
1þ μ

2σ2

�

×

�jx − yj
λ̄

�ð2−dÞ=2
Kð2−dÞ=2

�jx − yj
λ̄

�
: ðB1Þ

Because KaðzÞ decays exponentially for large z regardless
of a, λ̄ plays the role of a correlation length of the spatial
system. Instead, ρ̄2 has dimensions of a d-dim volume
and provides a characteristic volume of local demographic
fluctuations.

APPENDIX C: APPROXIMATING g(i; j; h; t) IN
THE CONTINUOUS SPATIAL LIMIT

Equation (15) shows that the evolution of fðk; h; tÞ is not
closed, being coupled to the generating function Z and to
the function gði; k; h; tÞ ¼ hninkehNðVÞi. In this section, we
want to show that, at leading order in the limit a → 0, the
value ofΔigði; k; h; tÞ approachesΔkgði; k; h; tÞ. This result
makes the equation for fðk; h; tÞ much simpler, basically
decoupling it with the other quantities. For simplicity, we
consider only the one-dimensional case, but this claim
holds true in higher dimensions as well. Thus, V will be an
interval of length 2R and the origin of the coordinate
system will be located at its center. By changing slightly the
notation, we now indicate NðVÞ ¼ Nð−R;RÞ, thus making
explicit that V extends from site −R to R. Since the system
is spatially homogeneous, we can write

hni−ankehNð−R;RÞi ¼ hninkþaehNð−Rþa;RþaÞi:
As a → 0 and at leading order, we can neglect a in the
argument of Nð−R;RÞ, thus obtaining

gði − a; k; h; tÞ ¼ hni−ankehNð−R;RÞi
¼ hninkþaehNð−R;RÞi
¼ gði; kþ a; h; tÞ:

Similarly, hniþankehNð−R;RÞi ¼ hnink−aehNð−R;RÞi. Thus, as
a → 0 at leading order, we can write

Δigði; kÞ ¼ gðiþ a; kÞ þ gði − a; kÞ − 2gði; kÞ
¼ gði; k − aÞ þ gði; kþ aÞ − 2gði; kÞ
¼ Δkgði; kÞ:

This approximation makes it possible to obtain Eq. (18) in
the continuous limit.

APPENDIX D: MULTIDIMENSIONAL VARIANCE

In the main text, we outline how to calculate the second
moment of the random variable NðVÞ. Here, we provide
some more details. We take V to be a d-dimensional ball
with the origin of the Cartesian coordinates in its center. By
integrating hnðxÞnðyÞi over y ∈ V in Eq. (22) and using the
symmetry of hnðxÞnðyÞi in x and y, we obtain an equation
for hnðxÞNðVÞi, which at stationarity reads

D̄
μ
∇2

xhnðxÞNðVÞi − hnðxÞNðVÞi þ b̄0
μ

b̄0V
μ

þ σ2

μ

b̄0
μ
ΘðR − jxjÞ ¼ 0; ðD1Þ

where ΘðzÞ is the Heaviside step function and V is the
d-dim volume

V ¼ πd=2

Γ½ðd=2Þ þ 1�R
d
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with radius R. Equation (D1) must be solved for R < jxj
and R > jxj separately. Boundary conditions for
hnðxÞNðVÞi and its first derivative fix the values of the
integrating constants. For jxj < R, we obtain

hnðxÞNðVÞi ¼
�
b̄0
μ

�
b̄0V
μ

þ σ2

μ

b̄0
μ

þ A

�jxj
λ̄

�
1−d=2

Id=2−1

�jxj
λ̄

�
;

while for jxj > R instead

hnðxÞNðVÞi ¼ B

�jxj
λ̄

�
1−d=2

Kd=2−1

�jxj
λ̄

�
þ
�
b̄0
μ

�
b̄0V
μ

:

The constants A and B are fixed using the afore-
mentioned continuity conditions. Upon explicit calculation,
for jxj ≤ R we obtain

hnðxÞNðVÞi ¼
�
b̄0
μ

�
2

V þ σ2

μ

b̄0
μ

�
1 −

�jxj
R

�
1−ðd=2Þ Kd=2ðRλ̄ÞId=2−1ð

jxj
λ̄
Þ

Id=2−1ðRλ̄ÞKd=2ðRλ̄Þ þ Id=2ðRλ̄ÞKd=2−1ðRλ̄Þ
�

¼
�
b̄0
μ

�
2

V þ σ2

μ

b̄0
μ
Ψ
�jxj

λ̄
;
R
λ̄

�
; ðD2Þ

where Ψða; bÞ is defined in Eq. (25) of the main text and IνðzÞ and KνðzÞ are the modified Bessel functions of the first and
second kind, respectively [21]. Integrating with respect to x ∈ V and using the properties of IνðzÞ, we can readily obtain the
explicit form of the second moment of NðVÞ, i.e.,

hNðVÞ2i ¼
�
b̄0V
μ

�
2

þ σ2

μ

b̄0V
μ

�
1 −

dλ̄
R

Kd=2ðRλ̄ÞId=2ðRλ̄Þ
Id=2−1ðRλ̄ÞKd=2ðRλ̄Þ þ Id=2ðRλ̄ÞKd=2−1ðRλ̄Þ

�
; ðD3Þ

where we can read off the explicit expression for ψðR=λÞ, also reported in Eq. (27). Finally, since Var½NðVÞ� ¼
hNðVÞ2i − hNðVÞi2, we can explicitly write down the variance of NðVÞ, which takes the form

Var½NðVÞ� ¼ b̄0V
μ

σ2

μ

�
1 −

dλ̄
R

Kd=2ðRλ̄ÞId=2ðRλ̄Þ
Id=2−1ðRλ̄ÞKd=2ðRλ̄Þ þ Id=2ðRλ̄ÞKd=2−1ðRλ̄Þ

�
¼ hNðVÞiΣðRÞ;

where ΣðR=λ̄Þ ¼ σ2ψðR=λ̄Þ=μ. ΣðR=λ̄Þ is the spatial Fano
factor and quantifies the relative importance of fluctuations
in the system. Finally, Fig. 6 shows the behavior of ψðxÞ.

APPENDIX E: EVALUATION OF THE REGIMES
OF ACCURACY OF THE METHOD

In this section, we show that the truncation of fðx; V; hÞ
as in Eq. (33) yields an accurate approximation for the
conditional probability distribution of the model. By
retaining the first two terms in the square brackets of
Eq. (30), at stationarity we are left with the following:

fðx; V; hÞ ¼ 1

V
∂Z
∂h ½1þ hA1ðx; RÞ�; ðE1Þ

where ZðhÞ is the conditional generating function at
stationarity. By taking the derivative with respect to h of
both sides of Eq. (E1) and setting h ¼ 0, we obtain

∂f
∂h

				
h¼0

¼ hnðxÞNðVÞi ¼ 1

V
hNðVÞ2i þ hniA1ðx; RÞ;

which gives

FIG. 6. Behavior of the function ψðxÞ. The figure shows the
behavior of ψðxÞ as defined in Eq. (27) in dim d ¼ 1 (blue solid
curve), d ¼ 2 (yellow solid curve), d ¼ 3 (green solid curve), and
d ¼ 4 (red solid curve).
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A1ðx; VÞ ¼
1

hni
�
hnðxÞNðVÞi − 1

V
hN2i

�
:

Because in Appendix D we have already calculated
hnðxÞNðVÞi and hNðVÞ2i [see Eqs. (D2) and (D3)],
A1ðx; VÞ is known explicitly. Substituting fðx; V; hÞ in
Eq. (E1) with A1ðx; VÞ obtained before into Eq. (17) at
stationarity, we get

h
hniV

∂Z
∂h λ̄2

Z
V
dx∇2

xhnðxÞNðVÞi − ∂Z
∂h

þ hniVZ þ σ2

μ
h
∂Z
∂h ¼ 0:

Now we can readily simplify the term λ̄2∇2
xhnðxÞNðVÞi by

making use of Eq. (D1). Integrating this latter with respect
to x in V, since hNðRÞi ¼ hniV and ΣðRÞ ¼ ½hNðRÞ2i −
hNðRÞi2�=hNðRÞi (see Appendix D), we are therefore left
with the following equation:

FIG. 7. Time evolution with the Doob-Gillespie algorithm.
(a)–(c) present a comparison between the simulated model as
obtained from the Doob-Gillespie algorithm (histograms), the
analytic prediction as defined in Eq. (38) (blue solid line), and the
mean-field solution (red line). Simulations are carried out in d ¼
1 with periodic boundary conditions, where each site initially
contains exactly 100 individuals, with a total number of 200
lattice sites; L comprises ten adjacent sites, and time t is
expressed in units of μ−1. The size of error bars are twice as
much the standard deviation. Results in (d) are from the same set
of simulated data (red dots, with error bars) and compare
simulations to the analytic curve (blue line) of the pair correlation
function at large times (t ¼ 20). Parameters in these simulations
are b ¼ 600 and r ¼ 601, with γ ¼ 0.5 and b0 ¼ 5 (λ ≈ 12).

FIG. 8. Time comparison for different areas and different times
in one dimension. Simulations are carried out in d ¼ 1 with
periodic boundary conditions, where each site initially contains
exactly 100 individuals, with a total number of 200 lattice sites;
parameters are the same as in Fig. 7. The three panels show
comparisons of simulated data from the Doob-Gillespie algo-
rithm and the analytic formula presented in Eq. (38) and at
different segment lengths (20, 40, and 60 sites, respectively), and
within each panel the three plots refer to different times T
(T ¼ 0.05 for red histograms, T ¼ 0.5 for green histograms, and
T ¼ 2 for blue histograms, units of μ−1). Histograms represent
data from simulations, solid lines are the analytic predictions, and
error bars have length twice as much as the standard deviation.
For small T, predictions and simulated data differ, as expected.
However, as we approach stationarity, the prediction improves
significantly, and already at T ¼ 0.5 the analytical and simulated
distribution match very well.
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½1 − hΣðRÞ� ∂Z∂h ¼ hniVZ; ðE2Þ

which therefore provides the equation for the generating
function of NðRÞ up to terms OðhÞ.
Similarly to what we have done so far, we can get further

insight into the evolution of fðx; V; hÞ. We substitute
fðx; V; hÞ from Eq. (E1) into Eq. (18) and use Eq. (D1)
to obtain λ̄2∇2

xhnxNðVÞi. Eventually, at stationarity this
substitution yields

∂
∂h

�
h

�
−½1 − hΣðRÞ� ∂Z∂h þ hniVZ

��

þ A1ðx; RÞ
� ∂
∂h

�
σ2

μ
h3

∂Z
∂h

�
þ h2hniV ∂Z

∂h
�

¼ 0: ðE3Þ

The first addend of Eq. (E3) is zero because of Eq. (E2),
and the remaining terms are negligible when hA1 is small.
Fixing the values of jxj, R, and σ2=μ, we can calculate

explicitly the regimes of λ̄ where A1ðx; RÞ approaches zero.
From Eqs. (25) and (27) in the main text, it is easy to
rewrite A1ðx; RÞ as

A1ðx; RÞ ¼
σ2

μ

�
Ψ
�jxj

λ̄
;
R
λ̄

�
− ψ

�
R
λ̄

��
:

The asymptotic expansion of the modified Bessel functions
is [21]

IνðzÞ ¼
ezffiffiffiffiffiffiffiffi
2πz

p ð1þO½1=z�Þ;

KνðzÞ ¼ e−z
ffiffiffiffiffi
π

2z

r
ð1þO½1=z�Þ

when z → ∞. From this result, it is not difficult to verify
that as λ̄ → 0 we have

Ψ
�jxj

λ̄
;
R

λ̄

�
¼ 1þO

�
e−½ðR−jxjÞ=λ̄�

�jxj
R

�
1−d

�
;

ψ

�
R
λ̄

�
¼ 1þO

�
λ̄

R

�
;

and so for jxj < R indeed A1ðx; RÞ → 0.
The case of λ̄ → ∞ is more elaborate. Let us call

z ¼ R=λ̄. After some lengthy but otherwise straightforward
calculations, we can verify that as z → 0 we can write

ψðzÞ ¼

8>><
>>:

zþOðz2Þ for d ¼ 1;

− z2
2
logðzÞ þOðz2Þ for d ¼ 2;

2z2
5
þOðz3Þ for d ¼ 3;

and at leading order ψðzÞ is proportional to z2 for d ≥ 3.
For the case of Ψ, let us write zx ¼ jxj=λ̄. We can verify

that

Ψðzx; zÞ ¼

8>><
>>:

zþOðz2; z2xÞ for d ¼ 1;

− z2
2
logðzÞ þOðz3; z2xÞ for d ¼ 2;

z2
3
þOðz3; z2xÞ for d ¼ 3;

and at leading order Ψ is proportional to z2 for d ≥ 3. Thus,
again A1ðx; RÞ → 0. These findings follow from the fact
that f goes into mean-field regimes as λ̄ → 0;∞ (but finite)
and, hence, all spatial terms go to zero.

APPENDIX F: MODEL WITH INDEPENDENT
DISPERSAL

In this section, we show how the analysis that is
undertaken in the main text can be extended also to a
model where spatial dispersal is independent of birth.
As in the main text, the new model consists of a spatial

metacommunity where local communities are located on a
d-dimensional regular graph (or lattice), and within each

FIG. 9. Comparison between Gillespie and phenomenological simulation scheme. The four panels show the conditional PDF PðNjLÞ
simulated with the same set of parameters and on lattices of the same size but using different algorithms at stationarity and in one
dimension. Blue dots represent data from the phenomenological scheme (and blue lines are the respective error bars), while red dots are
from the Doob-Gillespie algorithm (with respective error bars). Black solid lines are the analytic predictions from Eq. (36). The
parameters are b ¼ 600, d ¼ 601, γ ¼ 0.5, and b0 ¼ 5 (D ¼ 150), and, hence, λ ≈ 12. The lattices have 200 total sites with periodic
boundary conditions.
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community individuals are treated as diluted, well-mixed,
and pointlike particles.
The model is defined by the following birth-death

dynamics: Each individual dies at a constant death rate r
and gives birth at a constant rate b, and communities are
also colonized from the outside at a constant immigration
rate b0. However, individuals can now jump from one site
to any of its 2d nearest neighboring sites at any time (not
just after birth), and this jump happens with rate D.
Indicating with Xi, i ∈ L, the individual living in site i,

the reactions defining the model’s dynamics are the
following:

Xi ⟶
b

2Xi; Xi ⟶
D

Xj;

Xi ⟶
r

∅; ∅⟶
b0 Xi;

where j indicates a nearest neighbor of site i. A comparison
with the reactions reported in Sec. II shows that, indeed,
now spatial movement is decoupled from birth events.
Let us now indicate with ni the number of individuals in

site i and with Pðfng; tÞ the probability to find the system
in the configuration fng at time t. The master equation for
Pðfng; tÞ then reads

∂
∂t Pðfng; tÞ ¼

X
i∈L

f½bðni − 1Þ þ b0�Pðf…ni − 1;…g; tÞ þ rðni þ 1ÞPðf…ni þ 1;…g; tÞ − rniPðfng; tÞ

− ½bni þ b0�Pðfng; tÞ þD
X

j∶jj−ij¼1

½ðnj þ 1ÞPðf…ni − 1; nj þ 1;…g; tÞ� −D2dniPðfng; tÞg; ðF1Þ

where the dots represent that all other occupation numbers
remain as in fng and it is intended that Pð·Þ ¼ 0 whenever
any of the entrances is negative.
Similarly to the procedure followed in the main text, as a

first step we introduce the spatial generating function of the
model, defined in Eq. (3). Multiplying through Eq. (F1)

by e
P

k∈L
nkHk and averaging, we obtain the equation for

ζðfHg; tÞ, which reads

∂
∂t ζðfHg; tÞ ¼

X
i∈L

�
D

X
j∶jj−ij¼1

�
ðeHi−Hj − 1Þ ∂ζ

∂Hj

�

þ bðeHi − 1Þ ∂ζ
∂Hi

þ b0ðeHi − 1ÞζðfHg; tÞ

þ rðe−Hi − 1Þ ∂ζ
∂Hi

�
: ðF2Þ

The next steps follow exactly the same procedure under-
taken in the main text.
Thus, we define the parameter ε ¼ 2ðr − bÞ=ðrþ bÞ and

assume the following parameter scaling: ðb0=μÞε ¼ Oð1Þ
as ε → 0þ. We introduce the parameter η ¼ D=σ2 and fix
the scaling η ¼ OðεÞ as ε → 0þ. We further assume that the
generating function ζðfHg; tÞ is analytic at Hi ¼ 0 for any
i and that the most important contribution to the equation of
ζðfHg; tÞ comes from a negative real neighborhood of the
origin with thickness OðεÞ. Taking the change of variables
Hi ¼ εSi, we expand Eq. (F2) in powers of ε, assuming
Si ¼ Oð1Þ and Si ≤ 0. With the definition of the following
constants:

λ ¼
ffiffiffiffi
D
μ

s
; ρ ¼

ffiffiffiffiffi
σ2

b0

s
;

which are formally equivalent to those defined in Sec. III,
and retaining only the leading order in ε at Eq. (F2),
we obtain

∂
∂t ζðfSg; tÞ ¼

X
i∈L

σ2Si

�
ηΔi

∂ζ
∂Si − ε

∂ζ
∂Si þ

ε

ρ2
ζ þ εSi

∂ζ
∂Si

�

ðF3Þ

with Δi the discrete Laplace operator. Dividing through by
ε and rescaling time as T ≔ μt, we finally obtain

∂
∂T ζðfSg; tÞ ¼

X
i∈L

Si

�
λ2Δi

∂ζ
∂Si −

∂ζ
∂Si þ

1

ρ2
ζ þ Si

∂ζ
∂Si

�
;

ðF4Þ

which is exactly equal to Eq. (9). Since all the results of this
paper stem from this equation [or, equivalently, Eq. (10)],
the conclusions drawn in the main text for the model with
“seed dispersal” also hold true for the diffusion model
presented in this section, provided the systems are close to
the critical point (i.e., as ε → 0).

APPENDIX G: A NULL MODEL: THE FISHER
LOG-SERIES

The log-series distribution was first proposed in 1943 by
the statistician Ronald Fisher to describe the empirical
abundance distribution of British moths and Malaysian
butterflies [59]. From a set of assumptions involving the
independence of species and the absence of spatial dis-
persal, Fisher derived the following formula, which pro-
vides the probability Pn that a species has n individuals
within an ecosystem:
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Pn ¼ −
1

logð1 − xÞ
xn

n
ðG1Þ

in which n > 0 and 0 < x < 1 is a free parameter that is
usually determined via a best fit to data. The Fisher log-
series is still largely used as a null model in theoretical
ecology [18,42] because of the low number of free
parameters (only one) and of its straightforward math-
ematical derivation. Nonetheless, many limitations have
emerged [19,20] in more recent years. Among these, the
lack of a spatial structure has strongly limited its accuracy
in describing spatial ecological patterns.
In Fig. 4, we compare the predictions of our model to the

best fits of Eq. (G1) (rescaled by the total number of
species) for three areas of different sizes. The histograms
are log-scaled in the x axis, meaning that the ith bin counts
the number of species that have abundances between ei−1

and ei. In order to compare these empirical data to the
analytical predictions, we first need to compute the prob-
ability that a species has abundances between ei−1 and ei,
which is straightforward from Eq. (36) and from Eq. (G1).
Our model at stationarity has a total of three free

parameters (namely, hni, λ̄, and ρ̄). hni is obtained directly
from the empirical data, whereas λ̄ and ρ̄ are calculated
from the best fit of the theoretical PCF, i.e., Eq. (7), to the
empirical PCF, which is unrelated to the species abundance
distribution. Once the three parameters are obtained, we
predict the species abundance distribution by using
Eq. (36), which is the curve shown in Fig. 4 along with
the histograms of the empirical data.
Looking at the plots in Fig. 4, we see that our model

prediction is very accurate in all three cases, whereas the
Fisher log-series fails at fitting the distribution in Figs. 4(b)
and 4(c). This accuracy is confirmed by standard chi-square
analysis: 0.91 p value in the first panel and p values of 0.7
in the other two cases; while the Fisher log-series yields
a p value of 0.46 and 10−6 in Figs. 4(a) and 4(b) and of
approximately 10−21 in Fig. 4(c). More importantly, our
model can predict the SAD at all spatial scales without any
further assumptions on the system, whereas a method
relying on the fit of Eq. (G1) introduces new parameters
at each spatial scale (which, in general, are incompatible
with each other) and is inapplicable at scales where we do
not have empirical data.
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