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Abstract

The intermediate-band solar cell (IBSC) concept promises to increase the efficiency

limit in a single-junction solar cell through the absorption of below-bandgap-energy

photons. Despite their operating principle having been proposed over 20 years ago,

IBSCs have not delivered on this promise yet, and the devices fabricated so far, mainly

based on embedded epitaxial quantum dots, have, instead, operated with lower ef-

ficiency than conventional solar cells. A new paradigm, based on the exploitation,

as intermediate band, of the intra-gap states, naturally occurring in the density func-

tional theory description of colloidal (i.e., chemically synthesized) quantum dots, was
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suggested recently. Here we revisit this intriguing concept unveiling its shortcom-

ings and propose two alternative schemes: in the first, the localised electron surface

trap states, ubiquitously found in commonly synthesized colloidal quantum dots, are

used as intermediate bands in strongly coupled films made of small InAs nanocrys-

tals; in the second scheme, the intermediate band is provided by the conduction-band-

minimum-derived miniband in films of larger InAs nanocrystals. Both schemes yield

estimated limiting IBSC efficiencies exceeding Shockley-Queisser’s limit for a single

absorber.

Keywords: Optical transitions, nanocrystal films, colloidal quantum dot superlattices, pseudopo-

tential method

INTRODUCTION

Conventional solar cells made of a single absorber can harvest only photons with energy

equal or higher than the band gap of the active material, resulting in a wasteful loss of

about 25% of the solar spectrum, represented by lower-energy photons (typically those

with energy smaller than 1.0-1.5 eV). Furthermore, the photon energy in excess of the

band gap is lost to lattice vibrations, i.e., heating of the cell, which is also detrimental

to the device’s performance. A possible strategy to overcome the former limitation and

to increase by over 50% (from 31% to 46.8% at 1 sun, and from 40.7% to 63.2% at full

concentration) the efficiency limit in a single junction solar cell exploits the Intermediate-

Band Solar Cell (IBSC) concept,1–4 where the creation of a partially occupied intermediate

band (IB) in the gap between the valence band (VB) and the conduction band (CB) of the

active material allows the absorption of sub-bandgap photons. The latter can use the

IB as a sort of "stepping stone", to promote electrons from the VB to the CB in a two-

step process: VB→IB from the VB into the empty states of the IB, and IB→CB from the

occupied states of the IB into the empty states of the CB, in addition to the traditional
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VB→CB band gap absorption. This strategy has the added advantage of simplicity, as it

dispenses from the need to introduce additional material layers, as in the case of a tandem

cell, avoiding complications in the growth process.

Although a few schemes to build bulk IBSCs have been proposed and realised,2 the

main implementation of the IBSC concept has been based so far on epitaxial quantumdots

(EQDs -mainlymade of InAs) creating the intermediate bandwhen they are embedded in

a wide gap barrier material (GaAsX).2 Unfortunately nearly all of the devices fabricated

using these materials performed poorly and even their very operation as actual IBSCs

was questioned.2 Furthermore, all EQD IBSCs manufactured so far exhibited a loss of

voltage (from room temperature to very low temperatures) with respect to control cells

without QDs.4 The reasons for that are not completely understood and still debated. One

of the problems is that the system used - InAs EQDs in a GaAs matrix - although well

characterised experimentally and considered as a "standard" in quantum dot physics,

being based on a well-established and mature technology, is indeed far from realising the

ideal conditions needed for IBSC operation,3 with the IB-CB gap of the order of 100-200

meV at most.5 Furthermore, measured efficiencies have never exceeded those obtained

for the control cell without QDs. A conclusive proof that a device is operating as an IBSC

would be the detection in its emission of three different wavelengths,6 corresponding to

the three possible transitions (VB to IB, IB to CB and VB to CB). Unfortunately this three

colour emission has been reported only in GaNxAs1−x based IBSCs.7

Recently an intriguing scheme was proposed,8 where the intra-gap states (IGSs) nat-

urally occurring in the density functional theory (DFT) description of colloidal quan-

tum dots (CQDs) following structural relaxation,8 were suggested as viable intermediate

bands for implementing the IBSC concept in arrays of CdSe nanocrystals (NCs).

Although that work seemed to present a compelling case for IGSs as IBs, its conclu-

sions were based on DFT calculations on small clusters (Cd15Se15 with R ∼ 0.6 nm). This

is of particular relevance considering that the band gap of dots of that size (which were
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used as building blocks for the arrays exhibiting IB formation in Ref. 8), although of the

order of 1.5-2.0 eV according to the results of DFT modelling,8 exceeds 3.6 eV11 when

measured in real systems. Indeed, the material considered in Ref. 8 (CdSe) is not ideal

for such IBSC applications, given its large band gap (1.7 eV) in the bulk. Therefore, for a

realistic implementation of the IBSC concept, larger NCs made of small band gap mate-

rials should be considered as building blocks. As the electronic, structural, and chemical

properties of very small nanoparticles with a few tens of atoms have been shown both

theoretically and experimentally9 to be more sensitive on surface interactions than their

larger (and more commonly experimentally synthesised) counterparts, the question that

needs to be addressed is whether the results of Ref. 8 can be generalised to dots with radii

in the experimental range (R > 1.0 nm) and with a total number of atoms exceeding 160.

Indeed, we have shown recently10 that the band structure of NC films is very material-

and size-sensitive: films made of small dots can exhibit very different features from those

made of large NCs, due to the much reduced coupling experienced by the dots with in-

creasing size. Also, we found10 the width of the CBM-derivedminiband, that forms when

the dots are brought close together in CdSe NC films, to be nearly 6 times smaller (67 meV

vs 392 meV) than that calculated for films of InAs of the same size (R = 1.2 nm). Finally,

the IGSs considered in Ref. 8 were completely delocalised. Considering that, in general,

the deeper a gap state, the smaller the hydrogenic radius of its wave function (i.e., the

stronger its localisation),12 the 0.4 to 0.6 eV depth of the IGS states calculated in Ref. 8

would seem to preclude a large delocalisation. Instead, their degree of delocalisation was

so high (higher, in fact, than most of the VB states and some of the CB states, including

the CBM, in the same dot), that it is questionable whether their identification as IGSs,

rather than as proper band edge states, is justified. Interestingly, no IGS were identified

by previous time-domain DFT calculations on the same systems.13 We therefore conclude

that the IGSs considered in Ref. 8 are not representative of the most common type of IGSs

observed in semiconductor nanocrystals of experimentally relevant sizes: surface traps.
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Here we revisit the concept of using IGSs as IBs in CQD films, aiming to test its appli-

cability to realistically sized nanocrystals made of a more suitable material - InAs (bulk

band gap 0.4 eV) - for the implementation of the IBSCs concept. This investigation will

be carried out within the framework of the state-of-the-art atomistic semiempirical pseu-

dopotential method (see Supporting Information for further details), that has proved suc-

cessful in the past in accurately determining band edge positions,11 absorption14 and

transport15 properties of semiconductor nanocrystals of different materials, as well as in

modelling both hole16 and electron17 trap states and their population dynamics.18

RESULTS

The IGS we consider is an electron surface trap (see Fig. S1, Supporting Information),

whose ubiquitous presence in nanocrystals of many different materials has been exten-

sively documented experimentally.9,19–21 We first investigate its suitability as an IB in

small nanocrystals (starting with the same size as the one considered in Ref. 8, R = 0.6

nm, up to R = 1 nm, containing from 29 to 147 atoms), by verifying that it satisfies the fol-

lowing necessary minimum conditions: (i) the IGS is separated by a zero density of states

from both VB and CB; and (ii) the VB→IGS and IGS→CB transitions are optically allowed

and strong. An energetically isolated IGS [condition (i)] is required in order to maintain

three well-separated quasi-Fermi levels, which are essential to preserve the high output

voltage of the cell.2,5 This condition will also contribute to suppress non-radiative recom-

bination, if the VB-IGS and IGS-CB separations are much greater than the LO phonon

energy. The necessity of condition (ii) is evident. We note that the additional condition

of a finite width for the IGS-derived miniband8 to guarantee the presence of both empty

and occupied states to support both (VB→IB) transitions into it and (IB→CB transitions)

out of it,1,2 is not necessary as, statistically, in a large ensemble some IB states will be oc-

cupied while others will be empty, providing the required half-filling. This condition is
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not even required for transport, as in an IBSC the carriers should be collected from CBM

and VBM, but not from the IB, in order to maintain a large Voc.
1,2 A large IB width, on the

other hand, can even be detrimental to the conversion efficiency, as we will show later on

in this work, as it can lead to voltage drops that are proportional to it.

The calculated optical spectra for the isolated dots (representing the dilute solution

case), show that the IGSs of all three sizes (Fig. S2, Supporting Information) satisfy condi-

tions (i) and (ii). However, it is clear that the oscillator strength of the transitions involving

the IGS (IGS→CB and VB→IGS) decreases with increasing dot size, becoming about one

order of magnitude smaller than the band edge transition VBM→CBM for R = 1 nm,

consistently with the room temperature experimental signature of these trap states being

observed as a low intensity broad shoulder to the low energy side of the main optical

gap,9,19,20 in nanocrystals of experimental size. Nevertheless, the three-colour photon

emission, critical proof of the correct behaviour of the IB,6 should be clearly detectable in

all three nanostructures. It is clear, however, that, even though InAs has a bulk band gap

of 0.4 eV, compared to 1.7 eV for CdSe, the energy of the VBM→CBM absorption edge of

a dot with R = 0.6 nm is too high (> 3 eV) for optimal solar conversion efficiency in an

IBSC (although, in principle, this value of the band gap could still lead22 to efficiencies in

excess of the Shockley-Queisser limit,24 the position of the IB in this case leads to much

lower efficiencies, see Table 1), for attaining which a band gap around 2 eV represents the

ideal case.22

Based on the energies of the different transitions for the isolated dots, we estimated,

according to Bremner, Levy and Honsberg,23 and Krishna et Krich,22 IBSCs limiting effi-

ciencies exceeding the Shockley-Queisser (SQ) limit24 (and the estimated performance of

small CdSe clusters8) for the two larger dots (see Table 1) both at 1 and 100 suns.22,23

The calculated band structure of arrays made of these dots shows (Figure 1) a remark-

able IB width of about 400 meV, in the smallest dot, that decreases to 20 meV for R = 0.8

nm, and becomes completely flat in the largest dot (R = 1.0 nm), even for the closest
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Table 1: IBSC limiting efficiencies at 1 sun (AM1.5G) and 100 suns (AM1.5D), estimated
according to Bremner, Levy and Honsberg23 and to Krishna and Krich,22 for InAs NCs
both isolated and in a close-packed film. (The transition energies used in the estimate are
reported in Table S1, Supporting Information). For comparison, the SQ limit for nanos-
tructured solar cells is 32.7% at 1 sun and 36.6% at 100 suns.34 For R≤ 1.0 nm the IB is the
IGS, whereas in the case of R = 1.2 nm and R = 2.0 nm the CBM is considered as the IB.

Isolated Film
R[nm] η(1 sun)[%] η(100 suns)[%] η(1 sun)[%] η(100 suns)[%]

IB=IGS
0.6 < 30 ∼ 30 . 30 ∼ 35
0.8 ∼ 37 39-44 40-43 52-54
1.0 ∼ 46 52-54 43-45 48-52

IB=CBM
1.2 ∼ 38 45-50 48-49 54-55
2.0 ∼ 43 52-54 40-43 48-52

IB
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Figure 1: Band structures of films of InAs CQDs with R = 0.6 (a), 0.8 (b), and 1.0 nm (c).
The energies are referred to the vacuum level.
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interdot separation realistically achievable (1 bond length).

This is due to the localised character of the surface trap states we consider as IGS, so

that the probability that their wave function will overlap with that of a neighbouring dot

in the array becomes increasingly small the larger the radius, no matter how close the

dots may be.

Figure 1 further suggests that the band structure of arrays made of very small clusters

may be very different from that of films made of nanocrystals with experimentally rele-

vant sizes. Indeedwe recently found10 that the width of the miniband associated with the

CBM decreases according to a ≈ D−2 (where D = 2R) dependence, in films of CdSe NCs.

The size effect was even more dramatic in InAs, where an increase by less than a factor of

2, from 1.2 nm to 2 nm, in the radius of the array’s building blocks, led to a decrease by

a factor of 8, from ∼ 400 meV to 50 meV, in the CBM miniband width. Here we also find

a significant downward shift of the CBM miniband in films of NCs with R = 0.6 nm and

0.8 nm, compared to the position of the CBM in isolated dots of the same size (this shift is

clearer from the 2D band structure displayed in the right-hand panels of Figure 2). Such

shift is independent of the presence of either the IGS or the VB states, but is due to the

coupling of the CBMwith higher CB states in neighbouring NCs (see Fig. S4, Supporting

Information).

Interestingly, we find that the IB→CB transition can be either red- or blue-shifted com-

pared to the IGS→CB transition in isolated dots (red dashed lines in Figure 2), depending

on the specific band structure characteristics. We should also mention that our calcula-

tions were performed for the ideal IBSC operating conditions of half filling of the IB, i.e.,

with the quasi-Fermi level relative to the IB positioned in the middle of that band. This

configuration can be achieved through photodoping (although this procedure is better

suited for high solar concentrations35) or electronic doping (as discussed in Ref. 8). For

wide IBs, as in the case of the smallest dot, half-filling means that the onset of the IB→CB

transition is determined by the IB-CBM separation away from the Γ point and closer to
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Figure 2: (a)-(c) Absorption spectra of films (solid lines) and isolated (dashed lines) InAs
CQDs with R = 0.6 (a), 0.8 (b), and 1.0 nm (c). For clarity, the spectra of the films have
been rescaled so that the amplitude of the main IB→CB transition peak (red lines) was
the same as that relative to isolated dots. (d)-(f) The calculated band structure (Figure 1)
is shown in a 2D representation (right-hand panels) to aid in the identification of the
different transitions (coloured arrows). The absorption curves are colour-coded with the
arrows in the band structure (and the inset of Fig. S2, Supporting Information).
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the Brillouin zone boundary. The large red shift exhibited by the NC with R = 0.8 nm is

instead due to the large coupling between CBM and higher CB states that, leading to a

widening of the CBM miniband, brings it closer to the IB, even despite the latter’s shift

to lower energies compared to the position of the IGS in the isolated dot (black horizon-

tal dashed lines in Figure 2). The blue-shifted IB→CB transition found in the case of the

largest NC originates from the upward shift of the CBM, that compensates for its widen-

ing.

The onset of the other two transitions (VB→IB - black lines in Figure 2 - and VB→CB -

green lines in Figure 2) is instead either red-shifted (R = 0.6 nm and 0.8 nm) or not shifted

at all (R = 1.0 nm), as the VBM is flat (so its position corresponds to that in the isolated

dot), and any width in either CBM or IB translates into a downward bowing that brings

them closer to the VB. The red shifts in the R = 0.8 nm dot have instead a completely

different origin: although the IB is quite flat and its width would only cause negligible

red shifts, it exhibits, however, a large rigid shift downwards, compared to the position

of the IGS, due to an unusually large negative value for the overlap integral

〈

ψIGS(~r)
∣

∣

∣
V(~r− ~Rp)

∣

∣

∣
ψIGS(~r)

〉

(where ~Rp is the position of a neighbouring NC in the array), contributing to the mini-

band’s energetic position (but not to its width) in the tight-binding approach36 used to

solve the Schrödinger equation of the NC film. We conclude that the optical properties of

closely packed NC films are quite different from those of diluted solutions, and cannot be

simply deduced from the study of isolated dots.

Based on the position of the absorption peaks for the different transitions, we again

estimate22,23 IBSCs limiting efficiencies exceeding the SQ limit24 for the two larger dots

(see Table 1) both at 1 sun and at 100 suns.22,23

We note that the above results were obtained for ideal 2D arrays (see Supporting In-
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formation for the details of our model). The performance of realistic NC-film-based IBSC

devices may be affected by the presence of disorder (either due to the polydispersity of

the dots’ sizes, or to fluctuations of their positions) in the film, which, by breaking the

system’s periodicity, would alter the array’s wave functions. We expect this effect to have

a larger impact on the film’s mobility10,15 than on its optical properties, where it may

introduce some additional broadening of the spectra and variations in their amplitude,

both of which may lead to a voltage reduction. However, while a broad excitonic peak,

by enabling light absorption across a wider spectral range, also leads to high current den-

sities, the presence of tail states below it only leads to a reduction in the voltage of the

cell.52

Taking advantage of the large energy separation in CQDs between the s-like CBM and

the p-like excited states, which in our systems can easily be made to exceed 500 meV in

isolated dots, and of the large width of the minibands derived from both sets of states

in a dot array10 (these minibands will henceforth be denoted as Mn, with n = 1 for the

CBM-derived miniband and n = 2,3,4 for minibands originating from the triplet of p-like

states), we will now explore an alternative scheme for the implementation of IBSCs: the

use of M1 as a potential IB candidate. This choice is not unreasonable, considering that

M1 automatically satisfies both minimum IB suitability conditions mentioned above, and

that, moreover, it allows harnessing of the energy in excess of the nanocrystal’s bandgap

through the "extended" bandgap transition VB→ M2,3,4. Indeed, the "standard" VB→IB,

VB→CB, and IB→CB transitions become the VB→M1, VB→M2,3,4, and M1→M2,3,4 tran-

sitions in our scheme. In this case, in order to engineer the "band gap" VB→ M2,3,4 transi-

tion to ideal values for IBSC implementation (1.9-2.4 eV), we consider dots with R = 1.2

nm and 2.0 nm.

We find that: (I) the absorption spectra of isolated dots of both sizes (Fig. S3, Support-

ing Information) exhibit the required characteristics for their implementation in IBSCs,

(based on the energies of the different transitions, reported in Table S1 Supporting Infor-
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mation, we estimated22,23 limiting efficiencies exceeding SQ’s limit at both 1 sun and 100

suns - see Table 1); (II) when they are assembled in close packed arrays (films), the width

of all relevant Mn minibands exceeds 50 meV (Figure 3); finally, (III) the films’ absorption

spectra (Figure 4) also maintain the desirable characteristics exhibited by isolated dots,

showing, however, in the case of R = 1.2 nm, a blue shift in the M1→ M2,3,4 transition

(red solid line in Figure 4), and a red shift in the VB→M1 transition (black solid line in

Figure 4), compared to single nanocrystals (all transitions involving the VB include the ef-

fect of Coulomb attraction between electron and hole). The latter effect is consistent with

what is observed experimentally in many different materials37–41 in going from dilute

solutions to close-packed solids.

Although the two shifts have opposite directions, both have the same origin: the

strong coupling occurring when the dots are brought close together in an array. This

effect, that, due to the lighter electron effective mass is stronger in the CB than in the

VB (as confirmed experimentally for PbSe and InAs CQD films38,39), is responsible for

the formation of minibands which are wider, the stronger the coupling (i.e., the closer

the dots), and ultimately leads to band-like transport and high electron mobility in these

systems.41,42 Since (A) the miniband widening occurs through the lowering of the mini-

bands’ minimum energy (which is located at the Γ point for VBM and M1, and at the

Brillouin zone boundaries for M2,3,4 - Figure 3), and (B) the transitions with the largest

oscillator strength originate from regions close to Γ (Fig. S5, Supporting Information), the

net result is a larger optical separation between M1 and M2,3,4 on one hand (as the mini-

mum energetic separation between them is actually much reduced, as clearly visible from

Figure 3, a low energy tail appears in the absorption peak), and a reduced optical separa-

tion between the VBM and M1, on the other. This is a further indication that single-dot

calculations cannot predict the absorption features of a densely packed film. Both shifts

decrease with increasing interdot distance, until they converge, respectively, to the e1− e2

energy level separation and the band gap absorption edge of the isolated dots, for suf-
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ficiently large distances (Fig. S6, Supporting Information). Even with the new, shifted,

IB-CB and VB-CB gaps, the estimated limiting efficiencies of IBSCs made with the two

structures still exceed SQ’s limit at both 1 sun and 100 suns (Table 1).

We want to stress here that these are ideal upper efficiency limits, obtained, within the

detailed balance framework, assuming (a) the carrier mobilities to be infinite, (b) the only

recombination process to be radiative, and (c) complete absorption of all photons with

energies above the threshold for the lowest transitions. These clearly idealised conditions

are useful to estimate upper limits, and to provide a common standard for comparing the

performance of different devices, but - especially in the case of (a) and (b) - can only be

considered as approximations to real systems. The performance of actual IBSC devices

made using InAs nanocrystals as building blocks may therefore differ quite strongly from

the values reported in Table 1.

We recently estimated upper bounds for the electron mobility (a) in films of InAs NCs

with R = 1.2 nm and 2.0 nm to be of the order of 2.6 and 0.4 cm2V−1s−1, respectively,10

whereas the radiative lifetime in the largest (isolated) dot was calculated25 to be 0.54 µs.

Assuming the mobility to be proportional to the miniband width (for dots of the same

material), we expect it to be of the same order of magnitude in the three dots with smaller

sizes considered above. A recent study26 found the recombination rates (b) in PbS-NCs-

based solar cells to be mobility-dependent and controlled by diffusion of free charge car-

riers to trap states. The measured free carrier mobility increased with decreasing dot size,

in agreement with our findings. This increase led, on one hand, to a decrease in the open

circuit voltage (Voc), as the charge carriers could find more quickly recombination centres

(whose density was found to increase with decreasing size), and on the other to improved

charge extraction, hence to a larger short circuit current Jsc. They concluded that, owing

to this delicate balance between Jsc and Voc, NC films with mobilities in the range 10−3

to 10−2 cm2V−1s−1 should result in solar cells with better power conversion efficiencies

than films with larger values for the mobility. Based on this analysis, IBSCs using our
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largest NCs should achieve the best conversion efficiency.

Finally, regarding assumption (c), the discrete nature of the conduction band electronic

structure in isolated dots, where the separation between CBM and CBM+1 is of the order

of a few hundreds of meV, generally gives rise to an absorptionless window of a similar

width at energies above the IB→CBM transition (The gaps above the VB→IB transitions,

visible in Figure 2 and Figure 4, originate, instead, from the limited number of valence

band states included in the calculations, whose main focus was the determination of the

transition’s absorption edge. Such gaps are expected to vanish following the inclusion

of a sufficiently large number of VB states). As these gaps in the conduction band of

isolated dots decrease with increasing size, films of larger NCs may seem a more suitable

choice for IBSCs exploiting scheme I. However, despite the larger gap in their electronic

structure at the single-dot level, films of R = 0.8 NCs outperform those made of R = 1.0

NCs from this point of view and exhibit an uninterrupted absorption spectrum (compare

panels b and c in Figure 2). This is due to their peculiar miniband structure with wide

CB-derived minibands and a flat IB, which lead to a red shift in the IB→CBM transition

energy threshold (at Γ), and, owing to the opposite curvature of CBM and CBM+1, to the

filling of the gap between these minibands, due to the presence (for ~q 6= 0) of an almost

continuous spectrum of energies between the minimum of the CBM and the maximum of

the CBM+1 minibands.

Another indication that larger NCs may be better suited as building blocks for IBSCs

comes from the observation that the molar extinction coefficient in NCs increases with

size,14,27–33 leading to a stronger absorption in films made of large dots, for the same

nominal film thickness (i.e., for the same number of dot layers. Equivalently, a given

absorption can be obtained with thinner films if made of large dots).

The critical role played by the film’s band structure, combined with the (often con-

trasting) size-dependent features of the isolated dot electronic structure (such as the gaps

between different states), and optical properties (such as the extinction coefficient) make
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it difficult to identify an ideal size (or size range) for application in scheme I IBSCs. How-

ever, given their high estimated limiting conversion efficiencies (Table 1), together with

their continuous absorption spectrum, films of R = 0.8 NCs represent our choice as an

ideal size to implement scheme I.

That larger NCs may indeed be better suited as building blocks for IBSCs for the sec-

ond scheme we proposed is instead suggested (together with the arguments discussed

above), by the observation that the peculiar band structure of films of dots with R = 1.2

nm (Figure 3 and Figure 4, upper right-hand panel), may lead to a reduction in the IBSC

efficiency, if following an optical ∼ 0.9 eV IB→CB (i.e., M1 → M2,3,4) transition at Γ, the

electron thermalized rapidly to the Brillouin zone edges, leading to a significant (∼ 0.5

eV) voltage loss. Moreover, the small energetic separation between M1 and M2 at this

position in k-space could favour a further phonon-assisted relaxation back to the IB (M1),

causing a current loss. Even from this point of view, dots with R = 2.0 nm represent a

better alternative, as, due to the large and nearly constant energetic separation between

M1 and M2,3,4 in k-space (Figure 3 and Figure 4, lower right-hand panel), they are not

susceptible to any of these loss mechanisms. If increasingly larger sizes would have the

additional advantage of a narrower separation between higher CB minibands (leading

to a reduce absorptionless window above the IB→CBM transition onset, as discussed

above), they would also exhibit a narrower band gap, leading, for R > 3.5 nm, to a drop

of the associated limiting conversion efficiency, in our second IBSCs scheme (where the

effective band gap is given by Eg = E(CBM + 1)− E(VBM)), below the SQ limit.22,23 We

therefore conclude that NCswith 2< R< 3.5 nm are themost suitable for implementation

of scheme II.

It is also worth mentioning that these results were obtained, as in the case of smaller

NCs, at room temperature (300 K) and with the quasi-Fermi level relative to the IB (M1,

in our case), positioned in its middle, so that the IB is half filled in order to provide both

empty states for the VB→IB transitions, and occupied states for the IB→CB transitions.1
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The main effect on the absorption spectra of this upwards shift in the Fermi level, from

the position in the VB-CB gap (i.e., below M1) it would have in undoped structures, is to

reduce the blue shift in the IB→CB (i.e., M1→ M2,3,4) transition, by introducing a low-

energy shoulder in the absorption spectra, as M1 electrons at Γ are now half a miniband

width higher in energy than before. Also contributing to this shoulder are the many

direct transitions from M1 to M2,3,4, originating from the remaining regions of the newly

populated Brillouin zone.

Before we conclude, we will briefly discuss the main challenges facing QD-based IB-

SCs: (1) charge extraction, (2) optimal carrier occupancy in the IB, (3) excitonic nature of

the absorption spectrum. (1) In order to maintain a high Voc, carriers should only be col-

lected from the CBM and the VBM, but not the IB.1,2 Achieving this in NCs may be chal-

lenging, considering that colloidal dots are not embedded in a matrix (like epitaxial dots),

and therefore they (and hence all three bands) are in direct contact with the electrodes.

Possible strategies to isolate the IB include the use of a charge-selective extraction layer in

the proximity of the electrodes or of an IB blocking layer near the electron-collecting elec-

trode.7 The identification of specific extraction layers suitably matched to CBM and VBM

for electron and hole collection is, however, beyond the scope of the present investiga-

tion. Recent work on PbS-nanocrystal-based solar cells26 indicated ITO and LiF/Al/Ag

as suitable electrodes, whereas TiO2 was suggested for electron extraction in CdSe-based

devices.43

The challenges in charge collection are partiallymitigated by the consideration that the

IBSC features a "natural" connection between its two "sub-cells", compared with that ob-

tained, often with significant processing effort, in a monolithic 3-cell tandem structure53

with which it shares the calculated limiting efficiency.

(2) As we mentioned above, the IB must be half filled in order to provide both empty

states for the VB→IB transitions, and occupied states for the IB→CB transitions.1 Con-

ventional (i.e., epitaxial) QD-based solar cells suffer from low occupancy of the IB, which
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leads to a strong bleaching of the IB→CB transition, hence to current losses.44 This prob-

lem is being addressed by (i) trying to fabricate high-density arrays of small and homoge-

neous dots with low defect and long radiative lifetimes45 (achieving these conditions has

proven extremely challenging due to the build-up of high internal strain in the growth

process,46 which not only results in an increase in the dot size and its fluctuations, but

also negatively affects solar cell performance47), and (ii) doping (either through electri-

cal48 or optical49 routes). The use of colloidal QDs represents a huge advantage over

epitaxial dots from this point of view as, owing to their chemical nature, they can be

synthesized with very accurate size control and monodispersity and easily assembled

in high-density, virtually defect-free, 3D superstructures, and their surface can be effec-

tively passivated (either by using organic/inorganic ligands or by doping) to remove all

trap states.41,42,50,51

(3) The discreteness of the electronic states and the ensuing discrete character of the

excitonic optical transitions in NCs may significantly reduce the single junction conver-

sion efficiency, by reducing the photogenerated current.52 The main origin of this effect

is the transparency of the NC absorption spectrum between sets of absorption peaks,

which is more pronounced for R = 0.8 nm and 2.0 nm, but is also present in all other sizes

(see Figure 2 and Figure 4). However, CQDs-based IBSCs have two additional advan-

tages: minibands with a finite width and absorption rates that increase with increasing

energy. Both properties are crucial to achieve conversion efficiencies beyond the SQ limit

as they ensure the participation of photons of the lowest possible energy in the available

absorption processes, avoiding the loss of photon energy in excess of the energy gap.53

When high and low energy absorption processes compete, the required photon selectiv-

ity is "naturally" achieved in CQD-based IBSCs, where higher energy processes are more

strongly absorbing compared to lower ones as apparent from Figure 2 and Figure 4. The

finite miniband width introduces, however, an upper bound on the energy of the ab-

sorbed photons, which, in practice is not likely to lead to significant losses, considering
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that such photons are already filtered by the atmosphere or by the use of ultraviolet ab-

sorbers (protecting the cell encapsulation), providing a similar high energy cut-off.53

CONCLUSIONS

In conclusion, we have revisited a promising IBSC scheme, based on the use of electroni-

cally isolated states in CQDs films as IBs. We have shown the unsuitability of the original

proposal and suggested two alternative schemes: in the first, the localised electron sur-

face trap states (as opposed to the very delocalised DFT-derived IGS proposed in Ref.

8), ubiquitous in commonly synthesised CQDs, are used as IBs in NC films made of a

suitable (i.e., small band gap) material, InAs (as opposed to wide-band-gap CdSe used in

Ref. 8). We found that in films made of very small dots these states yield very wide IBs

which may lead to large voltage drops, furthermore the energies of the resulting optical

transitions are too large for IBSCs based on these nanostructures to yield solar conversion

efficiencies in excess of (or even close to) SQ’s limit for a single absorber. Although larger

NCs exhibit very narrow IBs, show strong IB→CB transitions and, based on the position

of their absorption features, have the potential to exceed SQ’s limit, we identify NCs with

R = 0.8 nm as ideal building blocks for IBSCs within this scheme, based on their film’s

continuous absorption spectrum and high estimated limiting conversion efficiencies.

In the second scheme, the CBM-derived miniband in nanocrystal films is shown to

possess all the characteristics of an ideal IB, with the estimated limiting IBSC efficiencies

exceeding SQ’s limit for a single absorber in films of nanocrystals with 1.2 < R < 3.5 nm.

However in this case, instead of below-band-gap absorption, our scheme enables harness-

ing of some of the photon energy in excess of the bandgap of the active material, which

is usually lost to heating of the cell with consequent degradation of its performance. We

identify NC sizes in the range 2 to 3.5 nm as the most suitable for the implementation of

this scheme.
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We hope that, despite the existence of a number of challenges in the implementation of

CQD-based IBSCs, the many advantages highlighted in this study will encourage further

exploration and optimization efforts of these systems aimed at the full exploitation of

their potential and the fulfilment of their promise to exceed SQ’s limit.

SUPPLEMENTARYMATERIAL

Theoretical method, Atomistic modelling of single NCs, 3D Charge densities of isolated

NCs, Optical spectra of isolatedNCs, 3D band structure of a film of InAsNCswith R= 0.6

nm, Absorption edge peak energies in isolated NCs and quantum dot films, 3D oscillator

strength in a film of InAs NCs with R = 1.2 nm, Evolution of the band structure with

dot-to-dot separation in a film of InAs NCs with R = 1.2 nm.
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A.; Tomić, S. Quantum Engineering of InAs/GaAsQuantumDot Based Intermediate

Band Solar Cells ACS Photonics 2017, 4, 2745-2750.

(6) Ekins-Daukes, N.; Honsberg, C.; Yamaguchi, M. Signature of Intermedi-

ate Band Materials from Luminescence Measurements, Conference Record of

the Thirty-first IEEE Photovoltaic Specialists Conference, (IEEE 2005), 49-54. DOI:

10.1109/pvsc.2005.1488066.

(7) Lopez, N.; Reichertz, L. A.; Yu, K. M.; Campman, K.; Walukiewicz, W. Engineering

the Electronic Band Structure for Multiband Solar Cells. Phys. Rev. Lett. 2010 106,

028701.

(8) Vörös, M.; Galli, G.; Zimanyi, G. T. Colloidal Nanoparticles for Intermediate Band

Solar Cells. ACS Nano 2015, 9, 6882-6890.

(9) Landes, C. F., Braun, M., and El-Sayed, M. A. On the Nanoparticle to Molecular Size

Transition: Fluorescence Quenching Studies. J. Phys. Chem. B 2001, 105, 10554-10558.

(10) Gómez-Campos, F. M.; Rodríguez-Bolívar, S.; Califano, M. High-Mobility Toolkit for

Quantum Dot Films. ACS Photonics 2016, 3, 2059-2067.

(11) Jasieniak, J.; Califano, M.; Watkins, S. E. Size-Dependent Valence and Conduction

Band-Edge Energies of Semiconductor Nanocrystals ACS Nano 2011, 5, 5888-5902.

22



(12) Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. Luminescence and Photophysics of

CdS Semiconductor Clusters: The Nature of the Emitting Electronic State J. Phys.

Chem. 1986 90, 3393-3399.

(13) Kilina, S. V.; Kilin, D. S.; Prezhdo, O. V. Breaking the Phonon Bottleneck in PbSe and

CdSe Quantum Dots: Time-Domain Density Functional Theory of Charge Carrier

Relaxation ACS Nano 2009, 3, 93-99.

(14) Jasieniak, J.; Smith, L.; Embden, J. v.; Mulvaney, P.; Califano, M. Re-examination of

the Size-Dependent Absorption Properties of CdSe Quantum Dots J. Phys. Chem. C

2009, 113, 19468-19474.

(15) Gómez-Campos, F. M.; Rodríguez-Bolívar, S.; Skibinsky-Gitlin, E. S.; Califano, M.

Efficient, Non-Stochastic, Monte-Carlo-Like-Accurate Method for the Calculation of

the Temperature-Dependent Mobility in Nanocrystal Films.Nanoscale 2018, 10, 9679-

9690.

(16) Califano, M.; Gómez-Campos, F. M. Universal Trapping Mechanism in Semiconduc-

tor Nanocrystals. Nano Lett. 2013, 13, 2047-2052.

(17) Zhu, H.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N.; Wang, Y.; Zhang, W.;

Prezhdo, O. V.; Lian, T. Auger-Assisted Electron Transfer from Photoexcited Semi-

conductor Quantum Dots. Nano Lett. 2014, 14, 1263-1269.

(18) Califano, M. Origins of Photoluminescence Decay Kinetics in CdTe Colloidal Quan-

tum Dots ACS Nano 2015, 9, 2960-2967.

(19) Baker, D. R.; Kamat, P. V. Tuning the Emission of CdSe Quantum Dots by Controlled

Trap Enhancement. Langmuir 2010, 26, 11272-11276.

(20) Chon, J. W. M.;Gu, M.; Bullen, C.; Mulvaney, P. Three-Photon Excited Band Edge

23



and Trap Emission of CdS Semiconductor Nanocrystals Appl. Phys. Lett. 2004 84,

4472-4474.

(21) Schaller, R. D.; Pietryga, J. M.; Klimov, V. I. Carrier Multiplication in InAs Nanocrys-

tal Quantum Dots with an Onset Defined by the Energy Conservation Limit Nano

Lett. 2007, 7, 3469-3476.

(22) Krishna, A.; Krich, J. J. Increasing Efficiency in Intermediate Band Solar Cells with

Overlapping Absorptions J. Opt. 2016, 18, 074010-1–074010-7.

(23) Bremner, S. P.; Levy, M. Y.; Honsberg, C. B. Limiting Efficiency of an Intermediate

Band Solar Cell under a Terrestrial Spectrum Appl. Phys. Lett. 2008, 92, 171110.

(24) Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar

Cells J. Appl. Phys. 1961, 32, 510-519.

(25) Puangmali, T.; Califano, M.; Harrison, P. Monotonic Evolution of the Optical Proper-

ties in the Transition from Three- to Quasi-Two-Dimensional Quantum Confinement

in InAs Nanorods. J. Phys. Chem. C 2010, 114, 6901-6908.

(26) Bozyigit, D.; Lin, W. M. M.; Yazdani, N.; Yarema O.; Wood V. A Quantitative Model

for Charge Carrier Transport, Trapping and Recombination in Nanocrystal-Based

Solar Cells. Nature Commun. 2015 6, 6180.

(27) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction

Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854-2860

(28) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction

Coefficient of CdTe, CdSe and CdS Nanocrystals. Chem. Mater. 2004, 16, 560

(29) Rajh, T.; Micic, O. I.; Nozik, A. J. Synthesis and Characterization of Surface-Modified

Colloidal Cadmium Telluride Quantum Dots. J. Phys. Chem. 1993, 97, 11999-12003.

24



(30) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine,

A.; Eychmuller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size

Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy,

and Reversible Absorbance Shift. J. Phys. Chem. 1994, 98, 7665-7673.

(31) Yu, P.; Beard, M.; Ellingson, R.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A.

Absorption Cross-Section and RelatedOptical Properties of Colloidal InAsQuantum

Dots. J. Phys. Chem. B 2005, 109, 7084-7087.

(32) Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G.

A. Size-Dependent Extinction Coefficients of PbS Quantum Dots. J. Am. Chem. Soc.

2006, 128, 10337-10346.

(33) Moreels, I.; Lambert, K.; Muynck, D.; Vanhaecke, F.; Poelman, D.; Martins, J.; Allan,

G.; Henz, Z. Composition and Size-Dependent Extinction Coefficient of Colloidal

PbSe Quantum Dots. Chem. Mater. 2007, 19, 6101-6106.

(34) Xu, Y.; Gong, T.; Munday, J. N. The Generalized Shockley-Queisser Limit for Nanos-

tructured Solar Cells. Sci. Reports 2015, 5, 13536-1–13536-9.

(35) Strandberg, R.; Reenaas, T. W. Photofilling of Intermediate Bands J. Appl. Phys. 2009,

105, 124512-1–124512-8.

(36) Ashcroft, N. W.; Mermin, N. Solid State Physics, Holt Rinehart and Winston, New

York, London, 1976.
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