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Lipids preserved within the walls of ancient pottery vessels are routinely analysed to reveal

their original contents. The provenience of aquatic lipids in pottery is generally connected

to vessel function (e.g., for cooking or storing fish, shellfish and aquatic mammals). However,

ethnographic reports from early historic Alaska mention the use of aquatic oils for waterproof-

ing low-fired pottery. Results of lipid residue studies on Alaskan pottery reflect an exclusive

function of pottery to process aquatic resources. However, can one be sure these residues

are the product of vessel function and not a remnant of the manufacturing process? The study

presents the results of an experiment where the preservation of aquatic lipids during the firing

process at different temperatures was measured. It was found that nearly all lipids were re-

moved at firing temperatures of ≥ 400°C. Petrographic analysis of Alaskan pottery samples

indicates that firing temperatures were generally > 550°C but < 800°C. The contribution of

pre-firing manufacture-derived lipids to samples fired at these temperatures may be regarded

as negligible. While the possible presence of aquatic lipids from post-firing surface treatments

cannot be excluded, such treatments appear unnecessary for well-fired pottery.

KEYWORDS: POTTERY, LIPID RESIDUE ANALYSIS, PETROGRAPHY, FIRING

TEMPERATURE, AQUATIC LIPIDS, QUANTIFICATION, ALASKA

INTRODUCTION

The study of lipid residues in archaeological pottery has advanced significantly over the past de-

cade and it has yielded new information about the prehistoric diet and cuisine (Craig et al. 2013;

Lucquin et al. 2016b; Gibbs et al. 2017). Various lipid compounds, such as tars, resins and
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waxes, have also been identified which were clearly used to repair pottery and to waterproof po-

rous vessels, and had nothing to do with food preparation or cuisine (Regert et al. 2003; Regert

2004; Hjulström et al. 2006; Reber and Hart 2008; Stern et al. 2008; Rageot et al. 2019). Other

substances identified through residue analysis are more ambiguous to interpret, and so far there

has been little consideration about whether fats, oils and waxes used in the manufacture of pot-

tery leave a significant residue signal following firing.

In Alaska, the use of organic materials in pottery manufacture is well documented. Materials

such as grass, hair, feathers and even aquatic oils were used as tempering agents in the clay, or

were applied to the surface of the pottery vessel (de Laguna 1940; Frink and Harry 2008; Ander-

son 2019; Admiraal and Knecht 2019). Recent lipid residue analysis has shown that prehistoric

Alaskan pottery was used almost exclusively for processing freshwater or marine (aquatic) ani-

mal fats and oils (Solazzo and Erhardt 2007; Farrell et al. 2014; Anderson et al. 2017). The ubiq-

uity of such aquatic oils is intriguing and has been interpreted to reflect the dominance of

maritime and riverine subsistence economies. However, can we be sure these residues are the

product of culinary practices and not a remnant of the manufacturing process?

A common assumption is that any organic molecules present in the ceramic paste are

destroyed, or thermally altered beyond detection during the firing process, and therefore before

use (Evershed 2008; Berstan et al. 2008). However, this depends on the firing temperature and

the duration of firing, as well as other factors such as the thickness of the pottery and the extent

of the organic inclusion. It is thought that relatively high temperatures (> 600°C) are needed to

destroy most organic molecules in clay, reducing them to graphitic carbon or combusted to car-

bon dioxide. An experimental study by Johnson et al. (1988) showed that such leftover carbon,

naturally occurring in clay, still remained in pottery fired at temperatures as high as 800–1000°C.

While such carbon remnants likely have no influence on the lipid profiles discussed here, it com-

plicates the radiocarbon dating of archaeological pottery. Most prehistoric firing temperatures

would not have reached 800–1000°C. An open fire generally reaches between 600 and 900°C,

but with great variability dependent on many circumstances. For instance, a gust of wind can de-

crease local firing temperatures by as much as 200°C (Rye 1981).

Interestingly, Reber et al. (2018) showed that naturally occurring alkyl lipids in clay are re-

moved during firing at > 400°C for 4 h, and concluded, therefore, that any fatty acids identified

are associated with pottery use or post-firing treatments. While this study greatly enhances our

knowledge of the preservation and removal of lipids during firing, it does not consider the addi-

tion of (large amounts of) organic temper during manufacture. Large amounts of organics present

in the clay may not be entirely removed under the same circumstances. The addition of organic

materials as temper to clay is a well-known phenomenon in archaeological pottery worldwide

(Chard 1958; Rye 1981; Arnold 1988), and is well recorded in ethnographic settings (including

plant temper and hot surface coating). In general, studying these issues will allow one to interpret

organic residues in archaeological ceramics more accurately and will also open up new perspec-

tives for the study of pottery production by ancient societies through organic residue analysis.

In prehistoric Alaska ethnographic sources suggest that large amounts of oily substances may

have been added to the clay, or were applied to vessel walls during manufacture (Frink and Harry

2008). In this study, we specifically aim to explore whether aquatic oils, mixed with clay at high

concentration, and applied as surface treatment, are detectable following firing at various temper-

atures and firing durations. Subsequently, we determined the approximate firing temperature of

archaeological pottery from the Southwest Alaskan Norton, Thule and Koniag traditions, through

petrographic analysis. We then aimed to infer the probable contribution of manufacture-derived

lipids in prehistoric Alaskan pottery.

2 M. Admiraal et al.
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BACKGROUND

The sudden appearance of pottery in the North American Arctic and Subarctic is unexpected and

remains largely unexplained. Pottery is generally restrained to zones of temperate climate where

it can properly dry before being fired at relatively high temperatures (> 800°C). Cold winters in

Alaska constrain pottery production to the short, but warmer, summer season (June–August).

However, even in summer, pottery production is highly influenced by climate, as temperatures

are often unstable. Days can be overcast and rainy, and humidity is high (≤ 85%). This leads

to several problems during the manufacturing process. Wet clays are difficult to work with and

lengthy to dry, which can result in breakage of the vessel during firing due to steam build-up

(Harry et al. 2009a, 2009b; Admiraal and Knecht 2019). Additionally, rainfall and wind during

firing will significantly decrease the firing temperature and pose problems for atmosphere control

(Frink and Harry 2008; Harry et al. 2009b). In contrast to the treeless northern coastal areas,

where fuel in the form of wood was limited to the occasional finds of driftwood, in Southwest

Alaska wood was much more widely available due to the presence of regions with forest cover.

Despite the many challenges facing early Alaskan potters, ceramic technology entered the

New World c.2800 cal BP from Northeast Asia. It quickly spread with the Norton culture along

coastal Alaska, ranging from the Arctic North to the Subarctic Alaska Peninsula in the

Southwest (Fig. 1). Norton pottery actually appears to have been relatively well-fired (> 500°

Figure 1 Alaska, including the Alaska Peninsula and Kodiak Island. [Colour figure can be viewed at wileyonlinelibrary.

com]
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C). It was tempered with organic materials such as grass, hair and feathers (Oswalt 1955). While

still relatively thick-walled, Norton pots have generally thinner walls (< 10mm) than their later

counterparts of the Thule tradition (> 10mm), and appear more refined. Very little research has

been done on Norton ceramic technologies (Oswalt 1955; Dumond 2000, 2016). No research has

been published to date on the manufacturing techniques and function of Norton pottery. In the

modern literature, it is often either overlooked or classified together with the later Thule pottery

as ‘Arctic’ or ‘Alaskan’ pottery. Note that Norton and Thule are in fact two very different pottery

technologies.

With the arrival of the Thule cultural tradition c.1000 cal BP, Norton pottery was replaced

quickly by Thule pottery. Substantial amounts of crude mineral temper in the shape of small peb-

bles, gravel and crushed rock made the thick-walled Thule pots susceptible to breakage. This was

a problem that was further enhanced by the apparently low temperatures at which Thule pots

were fired (Duelks 2015). The transition from Norton to Thule pottery is an enigma, as it seems

that the latter was inferior to the former. Harry et al. (2009a, 2009b) explained the seemingly

poor quality of Thule pottery as technological choice, and the result of environmental circum-

stances and culinary preferences. While this may be the case, it does not explain why people

in the same region were making far superior pottery for a period as long as 1500years before

Thule (Admiraal and Knecht 2019).

Pottery was only adopted on Kodiak Island some 500 years ago by the Koniag tradition. It was

most likely an influence from the Alaska Peninsula, as is visible in similarities among other

artefact groups. While tempered with vast amounts of gravel, crushed slate and other mineral ma-

terials, Koniag pottery differs from Thule pottery of the mainland in several ways. Koniag pots

are much larger than their counterparts on the Alaska Peninsula, and also their shape differs. It

also appears that Koniag pottery is well-fired (de Laguna 1939), while most Thule pottery from

the Alaska Peninsula is described as poorly fired. Pottery was only adopted on the southern half

of Kodiak Island. The reasons for this distribution remain unclear (Knecht 1995; Clark 1998;

Admiraal and Knecht 2019).

Ethnographic information

The growing body of modern literature on Alaskan pottery technology and function is mainly fo-

cused on Thule pottery (Arnold and Stimmell 1983; Frink and Harry 2008; Harry and Frink

2009; Anderson et al. 2017). Furthermore, there is abundant ethnographic information on this

early historic ceramic technology as people were still using ceramic pots during the early contact

period in the area (for an extensive summary, see Anderson 2019).

Aquatic oil and blood as temper

In the ethnographic literature there is repeated mention of the addition of sea mammal oil

(Bogoras 1904, 186; de Laguna 1939, 339; Oswalt 1952, 20; Fienup-Riordan et al. 1975, 14;

Fienup-Riordan 2007, 48), and even sea mammal blood (Geist and Rainey 1936, 129; de Laguna

2000, 128) to the clay paste as a temper (Gordon 1906; de Laguna 1947; Spencer 1959; Fienup-

Riordan et al. 1975). It is also described that aquatic oils and blood were applied to the pottery

walls as a coating both before and after firing. Additionally, Osgood (1940) and de Laguna

(1947) mention a pottery vessel was filled with oil and left to stand so that the oil could permeate

the vessel walls. All these measures seem to have been aimed at waterproofing the porous and

low-fired contact-period pottery.

4 M. Admiraal et al.
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Harry et al. (2009a, 2009b) investigated the manufacturing technologies of unfired pottery and

found that boiling an oily broth in a very porous vessel would plug the pores and make the vessel

waterproof. Additionally, by coating an unfired cooking pot with aquatic oil and blood, they

managed to boil water in the vessel, proving that low-fired, or even unfired, pottery could still

be used. In this experiment, it was also observed that coating leather-hard clay with blood pro-

duced a crusted layer identical to that found on the majority of archaeological sherds from Alaska

(Fig. 2). Producing a charred surface deposit similar to those observed on archaeological pottery

from other regions has proven difficult to achieve experimentally. De Laguna (2000, 119) de-

scribed the formation of the charred black encrustation on the inner surface of the pottery as a

result of repeated greasing of the pottery with fish grease, as was described to her by an elderly

Native woman from Nulato (Yukon, Canada).

Drying and firing

Ethnographic accounts on the drying and firing of contact-period Thule pottery are limited and

practices probably varied throughout time and space. De Laguna (2000, 119) describes how in

the Yukon ‘the vessel was set near the fire and slowly dried, being greased and turned as it dried’.

Nelson (1900, 210) mentions that pottery from the Norton Sound ‘was baked inside and out for

an hour or two in an open fire’; it is also stated that near the Bering Strait more attention was paid

Figure 2 Alaskan pottery sherd. Photo: M. Admiraal; courtesy: University of Oregon Museum of Natural and Cultural

History [Colour figure can be viewed at wileyonlinelibrary.com]
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to firing. Here a fire was built in- and outside the pot which was kept burning as hot as possible

for up to two days (228). Osgood (1940) describes the process of making pottery by the Ingalik

of the Yukon–Kuskokwim River Delta in great detail:

When the pot has been shaped it is moved on its plank about 3 or 4 feet from the fire and

allowed to dry slowly. This takes about two days, the pot being turned from time to time

and tested by tapping with a little stick in order to determine its condition of dryness by

the sound. When the wall of the pot is dry, it is tipped over so the bottom also dries. After

this, a little fire is made inside with shavings to burn off edges of the feathers which roughen

the surface of the pot. When the pot cools again, water is put inside and the pot is placed

beside the fire. To the water some backbones of fish are added and cooked all day long. This

is done in order to give the pot a permanent fishy taste which is very much desired. (p. 147)

It must be kept in mind that these accounts are all from the Yukon–Kuskokwim River area,

and further north. Firing techniques in the forested areas on Kodiak Island and the upper Alaska

Peninsula were probably different from those on the Bering Sea coast further to the north, where

the climate was harsher. Here a general lack of trees made (drift)wood a valuable commodity.

Alternative fuels such as dung and bone may have been used instead, especially in the treeless

north. Additionally, fuel could have been soaked in oil to assist the firing process further (Harry

and Frink 2009; Anderson 2019) For example, ethnographic sources inform on the use of wood

soaked in seal oil for the firing of pottery on the north slope (Spencer 1959, 472) and on St

Lawrence Island (Geist and Rainey 1936, 129). Certainly, the addition of oil would have in-

creased firing temperatures; the extent of this increase is, however, unclear. The appreciation that

reaching high firing temperatures was more complicated in the northern treeless areas of Alaska

also aids in an understanding of the replacement of Norton pottery by Thule pottery in Southwest

Alaska. Dumond (2011) argues that it is very probable that the more brittle, low-fired Thule pot-

tery of the Alaska Peninsula actually originated in the Yukon–Kuskokwim area. This could ex-

plain why Thule pottery was so different from Norton pottery because it was developed in an area

with limited woody fuels. This also illustrates the fact that Norton pottery cannot simply be com-

pared with ethnographic accounts that refer to the later Thule period, and it must be considered as

a separate pottery type.

Firing temperatures of archaeological pottery from Alaska are largely unknown. However,

Duelks (2015) investigated Thule firing temperatures using an experimental method based on

re-firing the archaeological pottery, and the subsequent observation of differences in colorations

of the ceramic. Duelks (2015, 39) concluded that all tested Thule pottery was fired at a minimum

of 500°C and a maximum of 800°C. This suggests that Thule firing temperatures may not always

have been as low as suggested in ethnographic reports. One of only a few statements made on the

firing temperature of Alaskan archaeological pottery is by de Laguna (1939, 334), who describes

Kodiak pottery as ‘well-fired’, but provides no further information. One may argue that very

low-fired pottery would not have survived the wet burial environment (Rye 1981, 111), and as

a result the sherds that did preserve may reflect a selection of the better fired pottery of a wider

initial assemblage.

Little is also known about firing techniques in prehistoric Alaska. At Cape Espenberg, a

shallow dish-like feature from late pre-contact times may have been used for the firing of pottery,

as evidenced by the presence of numerous sherds and charcoal, burned bone and oxidized sand

(Anderson 2019). However, in general, archaeological excavations have rarely yielded evidence

associated with the firing of pottery in Alaska. This limited information, combined with ethno-

graphic information, suggests the firing of pottery took place in open fires. It is also possible that

6 M. Admiraal et al.
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pottery was fired in cooking hearths to save fuel. In general, open fires do not reach temperatures

> 1000°C (Rye 1981).

MATERIALS AND METHODS

Firing temperature experiment

For the firing experiment, a total of 15 clay tiles (12× 6×1 cm) were made (three sets of five).

The clay (Sibelco EU K127) for each tile was mixed with a set amount of salmon oil (West Coast

Select Wild Salmon Oil—NPN 8005088). The contribution of salmon oil to each set of tiles was

0.5% and 1.0%, respectively. The surface of the third set was coated with a single layer of salmon

oil, and no oil was mixed into the clay of this set. The tiles were dried for 10 days at room tem-

perature (about 20°C). Subsequently they were fired at different temperatures in an oxidizing en-

vironment using a Naber N100H 380V oven. One tile of each set was fired, wrapped in a single

layer of aluminium foil at a maximum of either 200, 400, 600 or 800°C. The temperature, starting

at room temperature was raised by 100°Ch–1 until the maximum firing temperature was reached.

It was held there for 15min, after which the temperature was lowered again at the same rate. The

total firing duration for tiles fired at 200°C was 4.25 h, at 400°C was 8.25 h, etc. (additional

supporting information Table S1). One tile of each set was left unfired as a reference for the orig-

inal lipid concentrations.

Lipid residue analysis

Samples were obtained by drilling about 5mm into the experimental ceramic tiles and collecting

approximately 1 g of ceramic powder. The surface layer (1mm) of the ceramic was first removed

in order to avoid any contamination. Subsequently lipid residue analysis was performed using an

acidified methanol extraction following established protocols (Craig et al. 2013; Papakosta et al.

2015). Two internal standards (10μL of C34 n-alkane before and 10μL C36 n-alkane after

extraction) were added to all samples before further analysis by gas chromatography-mass spec-

trometry (GC-MS).

The equipment used for GC-MS analysis was an Agilent 7890A series chromatograph at-

tached to an Agilent 5975C Inert XL mass-selective detector with a quadrupole mass analyser

(Agilent Technologies, Cheadle, UK). A splitless injector was kept at 300°C. The GC column

was inserted into the ion source of the MS directly. Helium was used as a carrier gas with a con-

stant flow rate of 3mL min�1. The ionization energy of the MS was 70eV and spectra were ob-

tained by scanning between m/z 50 and 800. A DB-5ms (5%-phenyl)-methylpolysiloxane

column (30m×0.250mm×0.25mm; J&W Scientific, Folsom, CA, USA) was used for scanning.

The temperature was set at 50°C for 2min, then raised by 10°C min�1 until it reached 325°C,

where it was held for 15min. MSD ChemStation software (Agilent Technologies) was used to

calculate lipid concentrations per sample, based on the known amount of internal standard, as

well as for the identification of compounds in the GC-MS chromatograms.

Petrographic analysis of archaeological sherds to establish a firing temperature

Seven ceramic samples from different archaeological sites in Alaska (one Thule, four Norton and

two Koniag sherds) were analysed by petrographic observation (additional supporting informa-

tion Table S2). For the petrographic analysis, we used a polarizing microscope, which employs

7Leftovers: manufacture-derived aquatic lipids in Alaskan pottery
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transmitted plane-polarized light (PPL) or cross-polarized light (XP) to observe the mineralogical

composition in order to reconstruct the technological steps carried out to process the clay (Reedy

1994; Quinn 2013). Such observations permit the characterization of the clay matrix, temper ma-

terials added to the clay (e.g., plastic and non-plastic inclusions), surface treatments and firing

temperature. When observed under an optical microscope, the clay matrix may exhibit evidence

to distinguish firing technologies and temperatures reached during the firing process (Quinn

2013). At < 800°C, the clay matrix tends to retain optical activity, while at higher temperatures

the crystals lose their structures, turning into an amorphous glassy and isotropic matrix with

new mineralogical phases (sintering stage). Thus, samples with optically active paste can be

considered as being fired at < 800°C. Additionally some minerals transform colour at specific

temperatures, which may be used as a marker for firing temperatures as well. For instance, at

> 750°C muscovite changes from a colorful shade to a pale brown, while hornblende shifts from

green to brown (Quinn 2013).

Water testing

In order to investigate whether the archaeological pottery was fired at high enough temperatures

to reach a sintering stage, we tested each available sherd (13 Norton, four Thule and 20 Koniag;

additional supporting information Table S3) by placing a small section of it in water. We then

observed whether the ceramic started to disintegrate after being submerged for 1, 3, 6 and 24 h.

Figure 3 Results of the firing experiment. The three coloured data lines refer to the different sets of tiles: blue

triangles = 0.5% oil content; yellow squares = 1% oil content; and red circles = surface coating with oil. The dashed line

indicates the limit of interpretable lipid concentrations (5 μg g
�1
); data points below this line are viewed as negligible in

archaeological samples [Colour figure can be viewed at wileyonlinelibrary.com]
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RESULTS

Lipid concentrations

The results of the lipid residue analysis show a clear loss of lipids with increasing firing temper-

atures. The three samples that were dried at room temperature without firing showed very high

lipid concentrations ranging from 1 to 2 mgg�1 (Fig. 3). The lipid concentrations dropped signif-

icantly after firing the ceramic tiles for 4 h at a maximum of 200°C, to between 70 and 200 μg

g�1. Around 90% of the lipid content was lost at this stage. After 8 h in the oven with maximum

temperatures reaching 400°C, only small quantities (< 1.4 μgg�1) of fatty acids C16, C18 and

C18:1 remained (Table 1 and Fig. 4). These quantities are below the interpretable limit of 5 μgg�1

(Fig. 3) and may, therefore, be viewed as negligible, especially when compared with lipid con-

centrations found in Alaskan pottery that range from 12 to 3500 μg g�1 (Farrell et al. 2014).

Lipid profiles

The unfired clay tiles all show typical aquatic lipid distributions (Fig. 4, a) with fatty acids rang-

ing from C14 to C26 and abundant unsaturated fatty acids including C20:5 and C22:6, branched

Table 1 Presence of compounds in chromatograms at different temperatures in set 2; other sets yielded comparable

results

Firing

temperature

(°C)

Fatty

acids

Unsaturated

fatty acids Diacids

ω-(o-

Alkylphenyl)

alkanoic

acids

(APAAs)

Isoprenoid

acids Branched

Other

compounds

Unfired C14–

26

C16:1, C18:1,

C20:5, C20:1,

C22:6, C22:1,

C24:1, C26:1

C8–17 – Present Ca15:0,

Ca17:0,

Ca18:0

Alcohol, n-

alkanes, phenol

200 C14–

24

C18:1, C20:1,

C22:1, C24:1

C7–17 C16–22 Present Ca17:0,

Ca18:0

Alcohols, n-

alkanes, phenol,

B3CA

400 C16–

18

C18:1-tr – – – – Phenol,

methylenebis,

benzenamine,

B3CA(2),

B4CA-tr

600 C16–

18

C18:1-tr – – – – Phenol,

methylenebis,

benzenamine,

B4CA-tr

800 C16–

18

– – – – – Phenol,

methylenebis,

benzenamine,

B4CA-tr

B3/4CA, benzene tri/tetra-carboxylic acids; ‘a’ under Branched refers to anteiso; -tr, trace amounts.
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Figure 4 Chromatograms of total lipid extracts of samples 2.1–2.3 showing the lipid profiles in (a) unfired clay and af-

ter firing at (b) 200°C and (c) 400°C. DC, dicarboxylic acid; OH, alkanol; IS, Internal standard n-alkanes C34 and C36

10 M. Admiraal et al.
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fatty acids and dicarboxylic acids. All isoprenoid acids—TMTD (4,8,12-trimethyltridecanoic

acid); pristanic acid (2,6,10,14-tetramethylpentadecanoic acid); and phytanic acid (3,7,11,15-

tetramethylhexadecanoic acid)—are present in these samples in high concentrations. Isoprenoid

acids are an established biomarker for the presence of aquatic resources (Evershed et al. 2008;

Cramp and Evershed 2014; Lucquin et al. 2016a). Mid-chain alcohols and n-alkanes are also

present in the unfired samples.

The chromatogram changes after the clay tiles are fired at 200°C for 4 h (Fig. 4, b). Some

(mainly long-chain) compounds are lost. While amounts of dicarboxylic acid increase, alcohols

are reduced in concentration. ω-(o-Alkylphenyl) alkanoic acids (APAAs) of carbon length 16–22

are now detectable in the sample, though weakly. These compounds form during the prolonged

heating of mono- and polyunsaturated fatty acids at ≥ 270°C, and the presence of C18–C22

APAAs is considered to be a biomarker for aquatic resources. The weak appearance of APAAs

in the sample may be explained by the firing temperature not reaching 270°C, which has been

described as a precondition for APAAs to form (Cramp and Evershed 2014). At 400°C (8 h)

hardly any lipids are detectable. Only fatty acids of carbon length 16 and 18 are still observed.

Trace amounts of C18:1 as well as a few other compounds are also present (Table 1). The chro-

matograms of samples fired at 600 and 800°C are nearly identical to samples fired at 400°C

(Fig. 4, c).

Firing temperatures of Alaskan archaeological pottery

In general, the tested Alaskan ceramics (additional supporting information Table S2) show dif-

ferent mineralogical matrixes and manufacturing techniques. Interestingly, the samples show

different firing technologies ranging from oxidizing (UGA1-1008b, UGA1-1009b, KAR1-88,

KK1-19b and UGA2-21b) to reducing atmospheres (KAR31-74b and NAK8-12b). While the

sample was too small to make any significant interpretation on cultural preferences for firing

techniques, it is clear that all Norton pottery (n=4) was fired under oxidizing circumstances,

while the one Thule sherd was fired in a reducing environment. The two Koniag sherds showed

variable firing technologies (additional supporting information Table S2). The clay used for

vessel manufacture went through a sintering process, meaning that firing temperatures reached

were at least 550–600°C for all samples (Rice 1987; Quinn 2013). Earthenware that does not

reach this temperature range will eventually break down when soaked in water (Rice 1987,

Figure 5 Empty voids as observed in the general matrix XP of Norton samples UGA1-1009b (left) and KK1-19b (right),

possibly the result of the evaporation of lipids in clay paste during the firing process. [Colour figure can be viewed at

wileyonlinelibrary.com]
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90–93; Orton and Hughes 2013, 134–135). None of the tested Alaskan archaeological sherds

showed any sign of disintegration after being submerged in water for 1, 3, 6 or 24 h. However,

the ceramic paste of the seven samples tested by petrography yielded a high optical activity,

suggesting the maximum firing temperature was < 800°C. Therefore, results indicate that all

sherds analysed by petrography (n=7) were fired at 550–800°C. All other sherds tested here

(n=37) were fired at temperatures of at least 550°C.

Samples NAK8-12b (Thule) and KAR31-74b (Koniag) yield a very coarse matrix structure in

contrast with the other samples, the dark colour of the matrix may be the result of reducing firing

conditions combined with the presence of organic matter. Norton samples UGA1-1009b and

KK1-19b show a high number of round-shaped voids that may be connected to the addition of

hydrophobic substances (e.g., animal fats and oils) to the clay mass during the manufacturing

process, or the evaporation of gases during the firing process (Fig. 5). Gases can form as a con-

sequence of the presence of organic materials (both solids and liquids) within the clay matrix.

While there is some evidence of solid organic temper in sample UGA1-1009b, many of the voids

in these samples do not show any evidence of carbonaceous plant remains, making it less likely

that the presence of these voids is a consequence of solid organic materials (e.g., grasses, twigs)

burning out. It is more likely that these voids were formed during the evaporation of liquids, such

as oils or fats, during firing. This is, however, a novel idea that needs further experimental testing.

DISCUSSION

Previous studies have investigated the degradation of lipids and carbon, which are naturally oc-

curring in clay, during the firing process. While carbon will remain present in the ceramic up to

very high temperatures (800–1000°C) (Johnson et al. 1988), Reber et al. (2018) showed that the

majority of naturally occurring lipids in clay are thermally degraded to the point that they are no

longer detectable by GC at 400°C. They concluded that pottery fired at > 400°C may be consid-

ered a ‘blank state’, and lipid residue results from such pottery may be interpreted as resulting

from the usage of the ceramic vessel. Our experiment confirms this; however, we stress that

post-firing maintenance activities such as surface treatments may still contribute considerably

to lipid residue results.

The added aquatic lipid concentration in the unfired pottery in our experiment was very high

(1973 μg g�1 in unfired sample 3.1) when compared with naturally occurring lipids in clay, as

reported by Reber et al. (2018) (maximum of 193 μgg�1). Nevertheless, our experiment showed

that even substantial amounts of aquatic lipids mixed into the clay, or applied as a surface coat-

ing, will be lost during the firing process at ≥ 400°C. This is a significant finding, not only for

Alaskan pottery but also in a global hunter–gatherer pottery context as the addition of organic

materials to the clay paste of pottery is a well-known phenomenon among prehistoric cultures

around the world. The results show that even substantial amounts of lipids are removed during

firing at relatively low temperatures (> 400°C). Therefore, while the ethnographic descriptions

of the addition of aquatic products during pottery manufacture are directly related to early his-

toric Thule pottery, the conclusion that such practices would have little effect on lipid concentra-

tions in pottery fired at > 400°C is likely also applicable to Norton, Koniag and even other

archaeological pottery worldwide, depending on the nature of the added organic material.

An important variable that remains to be investigated further is the role of firing duration on

lipid degradation. In our experiment, the firing duration increased significantly with the increase

in temperature. This possibly enhanced the degradation of lipids per firing temperature stage and

may not be reflective of prehistoric Alaskan firing practices, as wasting fuel on lengthy firing
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episodes would have been undesirable, especially in areas where wood is scarce. On the other

hand, short firings (20–30min) with high heating rates (a maximum temperature in 20min), such

as described by Gosselain (1992), also seem improbable considering the Alaskan climate often

does not allow pottery to dry sufficiently before firing. Too high heating rates would significantly

increase the risk of vessel breakage because of thermal stress due to steam build-up in the vessel

walls. This problem may explain the porous nature of Thule pottery, as the porosity allows for the

firing of not sufficiently dried clay pots (Gibson and Woods 1997; Harry et al. 2009b).

While very little is known about firing technologies of Alaskan pottery, it is assumed that fir-

ing generally occurred in an open fire. Open firings display great variety in firing temperatures,

up to 300°C locally. Firing temperatures therefore may vary greatly between vessels and even

within vessels themselves (Gosselain 1992). Petrographic results indicate variability in Alaskan

firing environments, with some reducing and some oxidizing circumstances. Interestingly, all

tested Norton pottery (n=4) showed oxidizing firing circumstances. There were no differences

in firing temperature detected between the three types of pottery.

The discerning ethnographic descriptions of the practice of repeated greasing of pots with oil

and blood after firing remain a valid concern for lipid residue results on pottery from Alaska and

possibly elsewhere in the world, especially when those results indicate a predominant presence of

aquatic lipids (Farrell et al. 2014; Anderson et al. 2017). However, if we assume that the post-

firing surface treatment of pottery with oil and blood was solely for the purpose of waterproofing

the pottery, as described by Harry et al. (2009b), we may investigate whether such treatment was

necessary in the first place. A simple water test showed that all 37 tested ceramic sherds were

fired at temperatures high enough to reach a sintering stage (< 550°C). We argue that the exten-

sive post-firing treatment using aquatic products for the waterproofing of the pottery may have

been unnecessary. Possibly, such practices did not occur for this reason on well-fired pottery.

Osgood (1940, 147) stated that a permanent fishy taste of the pottery was desirable and that it

was for this reason that fish products were extensively boiled in newly made pottery. This sug-

gests the possibility that the coating or greasing of pottery with fish or marine mammal oils

and/or blood was a culinary practice, and might therefore be considered ‘use’ instead of ‘manu-

facture’. We suggest here that it is likely that aquatic lipids on Alaskan pottery sherds originate

from the use of the pottery as a cooking or storage vessel, rather than from the manufacture

and/or maintenance of the pot itself, provided the pottery was fired at temperatures of at least

400°C. However, we acknowledge that the necessity to waterproof pottery not only is based

on firing temperature but also is dependent on the porosity and subsequent permeability of the

ceramic vessel (Rice, 1987). While Alaskan pottery was generally very porous (especially Thule

pottery), the consequences of its permeability remain largely unknown. This needs further inves-

tigation in order to determine the necessity for surface treatments to make the pottery waterproof.

CONCLUSIONS

In this paper we tested whether abundant aquatic lipids added during ceramic manufacturing can

survive the firing process. We found that high concentrations of added aquatic lipids to clay are

removed during firing at 400°C or higher, for 8 h and over. Through petrographic analysis we

showed that all the archaeological pottery from Southwest Alaska tested here, including Norton,

Thule and Koniag pottery, achieved this firing temperature. Therefore, we conclude that the at-

tribution of manufacture-derived lipids to these pottery samples is negligible. While ethnographic

information indicates that surface treatments of pottery with aquatic oils and/or blood was a com-

mon practice in Alaskan early historic ceramic traditions, it must be emphasized that these
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accounts often regard very low-fired, or even unfired, pottery vessels from historic times. Such

vessels probably did not preserve in the archaeological record. All the tested pottery samples

in this study were found to have been fired sufficiently to reach a sintering stage (>550°C). Pos-

sibly this makes post-firing treatments to waterproof the pottery redundant, and the reasons for

these treatments were culinary, rather than practical. However, other factors could influence per-

meability (i.e. porosity) as well, and it should be stated that post-firing treatments are in fact a

complex cultural practice, that may have differed from one vessel to the next. This needs further

experimental work, testing the performance of cooking vessels with and without post-firing treat-

ments, and under various firing circumstances. Nonetheless, we tentatively conclude that lipid

residue results of well-fired Alaskan pottery, may be cautiously interpreted as resulting from ves-

sel use, instead of manufacture. The contribution of aquatic lipids from manufacture or mainte-

nance of the pottery cannot be excluded, but we consider their contribution for purely practical

reasons unlikely for vessels that were fired at temperatures exceeding 550°C.
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