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TRACE IDEALS, NORMALIZATION CHAINS, AND ENDOMORPHISM RINGS

ELEONORE FABER

Dedicated to Gert-Martin Greuel on the occasion of his 75th birthday

ABSTRACT. In this paper we consider reduced (non-normal) commutative noetherian rings
R. With the help of conductor ideals and trace ideals of certain R-modules we deduce a
criterion for a reflexive R-module to be closed under multiplication with scalars in an in-
tegral extension of R. Using results of Greuel and Knörrer this yields a characterization of
plane curves of finite Cohen–Macaulay type in terms of trace ideals.
Further, we study one-dimensional local rings (R,m) such that that their normalization is
isomorphic to the endomorphism ring EndR(m): we give a criterion for this property in
terms of the conductor ideal, and show that these rings are nearly Gorenstein. Moreover,
using Grauert–Remmert normalization chains, we show the existence of noncommutative
resolutions of singularities of low global dimensions for curve singularities.

1. INTRODUCTION

This paper studies trace ideals and conductor ideals of reduced commutative noether-
ian rings and their relation to endomorphism rings of modules, in particular maximal
Cohen-Macaulay modules and reflexive modules. The motivation comes from two direc-
tions: on the one hand, in order to compute the integral closure of a commutative ring

R in its total quotient ring (i.e., the normalization R̃ of R), one forms an ascending chain
of endomorphism rings of certain ideals that stabilizes at the normalization (first studied
in the analytic context by Grauert and Remmert [GR71]). This can be used to formulate
an algorithm for computation of integral closure, which has been implemented in com-
puter algebra systems like SINGULAR. See [dJ98, GP08] for the original algorithms, and
[BDS14, GLS10, BDL+13] for more recent enhancements of these ideas.
Here, one would like to have a short chain of endomorphism rings, so that the normal-
ization is reached in few steps of the algorithm. If one knew the conductor ideal C of the
normalization, then this chain would only be of length 1, since EndR(C) is the normal-
ization of R. In general it is not possible to find the conductor ideal, and thus we have
to come up with some test ideals that are hopefully sufficiently close to the conductor.
Therefore we will study trace ideals of R-modules: these ideals are easy to calculate from
the presentation matrix of the module and we will see that they tell us whether the mod-
ule from which they come from is closed under multiplication with scalars of a certain
integral extension of R. This also leads us to consider conductor ideals of smaller integral

extensions of R than R̃.
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2 ELEONORE FABER

In the study of trace ideals it is also natural to ask which ideals in a commutative ring R
can occur as trace ideals. Recently it has been studied, when every ideal of R is isomorphic
to a trace ideal [Lin17, LP16]. See [KT18] for an answer in the local case and [GIK18] for
connections with stable ideals. Since here we are mainly interested in the class of Cohen–
Macaulay modules, one is led to the finer question: which ideals in R are isomorphic to
trace ideals of Cohen–Macaulay modules over R? The first case to consider, is R of finite
CM-type, that is, there are only finitely many isomorphism classes of Cohen–Macaulay
modules over R.
Our main results in this direction are: a criterion for a reflexive module over a ring to be a
module over an integral extension using trace ideals and conductor ideals (Theorem 3.5),
and a characterization of plane curves of finite Cohen–Macaulay type with trace ideals
(Cor. 3.9).

As another application of normalization chains, we are interested in rings that are “nearly”
normal from the point of view of the normalization algorithm: here we study one dimen-
sional reduced local rings (R,m). If such an R is not regular, then the singular locus of
Spec(R) is zero-dimensional and determined by the maximal ideal of R. In this case there
is a natural chain of endomorphism rings, cf. [Leu07, Iya03], starting with

R ⊆ EndR(m) ⊆ · · ·

We say that R has a 1-step normalization or is 1-step normal if R̃ ∼= EndR(m). Note that if R
is regular, then it is also 1-step normal, since then R is isomorphic to its maximal ideal.

We give a characterization of 1-step normal rings in terms of the maximal ideal (Prop. 4.2
and Cor. 4.7) and study connections with nearly and almost Gorenstein rings that have
recently appeared in work of Herzog–Hibi–Stamate about the trace of canonical modules
[HHS16].

The other direction of research is the study of endomorphism rings of finitely generated
modules over a commutative ring. These endomorphism rings are in general noncom-
mutative but still inherit some nice properties (like noetherianity) from R. Recently, the
study of various endomorphism rings has flourished in both commutative and noncom-
mutative algebra, as well as in algebraic geometry and representation theory and even
has applications to theoretical physics. In particular interesting are endomorphism rings
of modules that have finite global dimension. They can be seen as a noncommutative analog
of resolution of singularities: let R be a reduced noetherian ring and let M be a faithful R-
module. Then Λ = EndR(M) is called a noncommutative resolution (=NCR) of singularities if
gl. dim EndR(M) < ∞, see [DITV15]. Moreover, if Λ is homologically homogeneous, then
Λ is called a noncommutative crepant resolution (=NCCR) of singularities, cf. [VdB04, IW14].
For more about the rationale behind these definitions, see [Leu12, DFI15].
Recently, there were quite a few results on construction of NC(C)Rs and their properties,

see e.g. [IW10, BLvdB10, FMS19, IN18, HN17, ŠVdB17]. In particular, it is interesting
which values the global dimension can assume: this should give some information about
the singularities of Spec(R). Therefore, in [DFI15] the global spectrum gs(R) of a singularity
Spec(R) was defined as the set of all possible finite global dimensions of endomorphism
rings of Cohen–Macaulay R-modules. In [DFI16, Theorem 4.6] the global spectra of some
ADE-curve singularities were determined.
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Our main result in this direction is that for any curve singularity, the integers 1, 2 are in
the global spectrum (Lemma 5.1) and 3 ∈ gs(R) if and only if the singularity Spec(R) is
not of type A2n (Theorem 5.4).

1.1. Structure of the paper. Our goal was to make this paper as self-contained as pos-
sible, thus in Section 2 we first review some homological facts and then introduce the
main players: trace ideals and conductor ideals. We also review the construction of the
normalization of a commutative ring by an ascending chain of endomorphism rings (the
Grauert–Remmert normalization algorithm). In the next section we characterize reflexive
R-modules, where R is a reduced ring, that are closed under scalar multiplication with
elements in a finite birational extension R′, that is, these R-modules are also R′-modules
(Theorem 3.5). In Section 3.1 the relationship between finite Cohen–Macaulay type and
trace ideals is studied, in particular, we show that the coordinate ring of a (reduced) plane
curve singularity is of finite CM-type if and only if there are finitely many possibilities for
trace ideals of CM-modules over this ring (see Cor. 3.9).
In Section 4 we consider reduced one-dimensional local rings (“curves”) and study those

with 1-step normalization, that is, (R,m) such that R̃ ∼= EndR(m). Using the reflexivity
of the maximal ideal m (Prop. 4.1), we deduce that these 1-step normal rings are char-
acterized by the property m ⊆ C, the conductor of the normalization (Prop. 4.2). This
implies that 1-step normal rings are nearly Gorenstein (Cor. 4.3) in the sense of [HHS16].
We also show that for 1-step normal rings the maximal ideal m is isomorphic to its dual

m∗ = HomR(m, R) (Prop. 4.51), but that this property does not characterize 1-step normal
rings (Example 4.9).
In the final section we consider the global spectrum gs(R) of curve singularities Spec(R).
Making use of normalization chains and methods from representation theory, we show
that 1, 2 and 3 are contained in the global spectrum if and only if R is not the coordinate
ring of an A2n-singularity (see Thm. 5.4).

2. PRELIMINARIES

2.1. Conventions. In this paper, Λ will denote any ring and the letter R is reserved for a
commutative noetherian ring. Additional assumptions, such as local, complete, Cohen–
Macaulay or Gorenstein, will be explicitly stated.
Recall that a commutative ring R is reduced if it has no non-zero nilpotent elements, or
equivalently, it satisfies Serre’s conditions (R0) and (S1), see [HS06]. Also recall that the

normalization R̃ (=integral closure of R in its total ring of fractions) is finitely generated

as R-module if and only if the conductor CR̃/R of the normalization R̃ in R contains a
non-zerodivisor.
We are studying singularities of Spec(R), so most of the time we will assume that R is

reduced. In the study of normalizations we will also assume that the normalization R̃ is
a finitely generated R-module.

2.2. Homological properties of modules. In the following, maximal Cohen–Macaulay
modules over R will play a significant role. These modules have been studied not only
in commutative algebra but are also important in representation theory. In particular
the description of maximal Cohen–Macaulay modules over hypersurface rings via matrix
factorizations is very useful, see e.g. [LW12, Yos90, Buc86]. Here we give the most general

1Here the referee pointed out a much shorter proof of this proposition than in the first version of this
manuscript.
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definition for not necessarily commutative rings, as well as the standard definitions in the
commutative algebra context, for a good reference see e.g. [BH93].
Let Λ be an Iwanaga–Gorenstein ring. Recall, that this means that Λ is noetherian and has
finite injective dimension as left as well as right module over itself. Then a finitely gener-

ated Λ-module M is called (maximal) Cohen–Macaulay, abbreviated CM, if Exti
Λ
(M, Λ) = 0

for all i > 0. If (R,m, k) is any local commutative ring, then a finitely generated R-module
M is CM if its depth is equal to the (Krull-)dimension dim(R) of R, that is, the smallest

d ≥ 0 for which Extd(k, M) 6= 0, is equal to dim(R). If R is any commutative ring, then a
finitely generated R-module M is CM if for any maximal ideal m of R the localization Mm

is CM in Rm. If R is any commutative ring, we denote by mod(R) the category of finitely
generated R-modules. The full subcategory of CM-modules of mod(R) is denoted by
CM(R). Moreover, R is called a Cohen–Macaulay ring if it is CM as a module over itself.

Proposition 2.1 ([Buc86], Lemma 4.2.2.(iii)). Let Λ be an Iwanaga–Gorenstein ring (not nec-
essarily commutative) and let M be a Cohen–Macaulay module over Λ. Then M is reflexive and
M∗ = HomΛ(M, Λ) is also Cohen–Macaulay over Λ

op. In particular, if Λ is commutative, then
M∗ is in CM(Λ).

Proposition 2.2 ([Bas63], Proposition 6.1). Let R be a local, reduced Cohen–Macaulay ring and
M an R-module. Then the dual module M∗ = HomR(M, R) is a reflexive R-module.

Proposition 2.3 ([Chr00], Prop. (1.1.9)). Let R be a commutative noetherian ring and M be
a finitely generated module. Then M is reflexive if and only if M is isomorphic to its bidual
M∗∗ = HomR(M∗, R).

The following facts about modules of homomorphism are helpful for computations with
these modules and will be used later:

Proposition 2.4 ([Her71], Lemma 2.1). Let R be a commutative ring, K = Q(R) its total ring
of quotients and I, J ∈ K be two fractional ideals, such that depthR(I) and depthR(J) are greater
or equal to 1 (that is, both ideals contain a non-zerodivisor). Then (I :K J) = {x ∈ K : xJ ⊆ I}
is isomorphic to HomR(J, I) as R-modules, via the homomorphism

ϕ : (I : J) −→ HomR(J, I) : x 7→ (m 7→ mx) .

Remark 2.5. (1) In particular, if I = R and J ⊇ R in Prop. 2.4, then (I :K J) = (I :R J),
since 1R ∈ J.

(2) In the following, we will be in particular interested in endomorphism rings EndR(I).
If R is a reduced noetherian ring, and I ⊆ R and ideal containing a non-zerodivisor x

of R, then it is easy to see (e.g., in [GP08, Lemma 3.6.1]), that HomR(I, I) ∼= 1
x (xI : I)

as rings.

The following lemma deals with change of the base ring and homomorphism modules,
and often allows one to consider endomorphism rings of generators. Here M is a generator
(of mod(R)) if every finitely generated R-module is a homomorphic image of a direct sum
of copies of M. Equivalently, R is a direct summand of Mn for some positive integer n.

Lemma 2.6. Let R be a reduced local ring. Suppose that S is a finite birational extension of R,

i.e., R ⊆ S ⊆ R̃ and S is finitely generated as R-module. Then if M and N are (R, S)-bimodules
and N is torsion-free, one has

HomR(M, N) = HomS(M, N).

Proof. See [LW12], Prop. 4.14. �
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Remark 2.7. Assume that R, S, M, N are as in the lemma. If R is of dimension 1, then
the lemma holds for any Cohen–Macaulay module N, since torsion-free is equivalent to
Cohen–Macaulay under this assumption on R. If R is Gorenstein of any dimension > 0,
then the above lemma also holds for N ∈ CM(R), since then N is reflexive and reflexive
implies torsion-free (see e.g. [BH93, Exercise 1.4.19]). Finally if R is a local domain of any
dimension > 0, then the above lemma also holds for N ∈ CM(R), since the depth of a
torsion-free module is ≥ 1.

2.3. Trace ideals. Here we will give the general definition for trace ideals over any ring
Λ. Later we will only study them for commutative rings R.
Let Λ be a ring, M a right Λ–module. We set M∗ = HomΛ(M, Λ), the Λ–dual of M
endowed with its natural structure of a left Λ–module. Note that M is as well a left
E = EndΛ(M), right Λ–bimodule and M∗ a left Λ, right EndΛ(M)–bimodule. Here we
view M as an Λ ⊗ Eop–module and M∗ as an Λ

op ⊗ E–module. The tensor product here
can be taken over any subring in the centre Z(Λ) of Λ, as such a subring then also maps
to the centre of E.
The natural pairing

M∗ × M → Λ

(λ, m) 7→ λ(m)

satisfies λ(ϕ(m)) = (λ ◦ ϕ)(m) for each Λ–endomorphism ϕ : M → M and thus induces
an Λ–bilinear trace homomorphism

τΛ : M∗ ⊗E M → Λ , λ ⊗ m 7→ λ(m)

The image I = τΛ(M) is a two–sided ideal in Λ, the trace ideal of M. We sometimes denote
it simply by τ(M), when it is clear in which ring we are working.
For computation of trace ideals, we note the following: If R is a commutative Cohen–
Macaulay ring and I is an ideal of grade ≥ 1, then τ(I) is the fractional ideal

τ(I) = I · I−1 ,

where I−1 is defined to be the quotient (R :Q(R) I), which is in this case isomorphic to

I∗ = HomR(I, R). For a proof, see [HHS16, Lemma 1.1]. In particular, if I is an ideal of
grade ≥ 2 on R, then τ(I) = I, see [Lin17, Example 2.4].
If M is a CM-module over R and R is a hypersurface ring of the form A/( f ), where A =
k[[x1, . . . , xn]] or A = k[x1, . . . , xn], then M can be represented by a matrix factorization
(X, Y) of f . Then τ(M) = I1(syz(M)), the first fitting ideal of of the syzygy module of
M, see [Vas98]. Here I1(syz(M)) is the ideal generated by the entries of the matrix Y.
Some general facts about trace ideals of commutative rings R:

Lemma 2.8 (cf. Prop. 2.8 in [Lin17]). We have the following properties of trace ideals of finitely
presented R-modules M, N:

(1) τ(M ⊕ N) = τ(M) + τ(N).
(2) Let R′ be a commutative finitely generated flat R-algebra. Then τR′(M ⊗R R′) = τR(M)⊗R

R′. This implies in particular, that taking trace ideals commutes with completion and local-
ization.

(3) If M is reflexive, then EndR(M) ∼= EndR(M∗) and τ(M) = τ(M∗).
(4) τ(M) = R if and only if M is a generator of mod(R). Note that if R is local, this just means

that R ∈ add(M).
(5) τ(M) = τ(M/torsR(M)), where torsR(M) denotes the torsion submodule of M.
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Proof. (1)–(4) are proven in Prop. 2.8 in [Lin17].
We prove (5) for a lack of reference: recall that

torsR(M) = {m ∈ M : there exists a non-zerodivisor r ∈ R such that rm = 0}.

If f : M → R is a homomorphism, then for any m ∈ torsR(M) it follows that f (m) = 0.
Thus, for any g(m) for g ∈ HomR(M, R) define ḡ : M/torsR(M) −→ R, m̄ 7→ g(m). It is
easy to see that ḡ is well defined. It follows that g(m) = ḡ(m̄) for any m ∈ M and thus
τ(M) ⊆ τ(M/torsR(M). On the other hand, for any f̄ ∈ HomR(M/tors(M), R) one can
define f ∈ HomR(M, R) such that f (m) := f̄ (m), where m is the image of m under the
natural projection M −→ M/torsR(M). So for any f̄ (m) there exists a homomorphism
f : M → R such that f (m) = f̄ (m), which shows τ(M) ⊇ τ(M/torsR(M)). �

Remark 2.9. In (3), one may ask, whether either EndR(M) ∼= EndR(M∗) or τ(M) = τ(M∗)
characterizes reflexive modules. This is not the case: for the first property take R =
k[[x, y]] and M = (x, y). Then EndR M = R and since M∗ = R also EndR M∗ = R, but
clearly M is not reflexive (its depth is 1). For the second property take any local ring
(R,m) and M = R/m⊕ R. Then by (1) of the Proposition, τ(M) = R and since M∗ ∼= R
τ(M∗) = R. But clearly M is not reflexive, since M∗∗ = R.

2.4. Conductors. Next we collect some properties of conductor ideals in order to study
the relationship of conductor ideals and trace ideals in Section 3.

If R is commutative noetherian and reduced, then recall that the normalization R̃ of R is
the integral closure of R in its total ring of quotients Q(R). If R = R̃, then R is called

normal. As already mentioned in Section 2.1, we will assume that R̃ is module-finite over
R. In particular, if R is 1-dimensional and local, then the normalization is R-module finite

if R is analytically unramified (equivalently, the completion R̂ is reduced), see [Her71,
Kor. 2.12].
Following [LW12, GK85], recall that R ⊆ S is a finite birational extension of rings if S is a
ring contained in the total quotient ring Q(R) and is finitely generated as an R-module.
Note that this implies that S is an integral extension of R (see [BH93, Appendix A]).

Definition 2.10. Let R be a reduced ring and let R ⊆ R′ be a reduced extension of R such
that R′ is contained in Q(R), the total ring of fractions, and moreover R′ is module finite
over R. Then (R :Q(R) R′) = {a ∈ Q(R) : aR′ ⊆ R} is called the (relative) conductor of R′ in

R, denoted CR′/R. For R′ = R̃, the normalization of R, one simply calls C := (R :Q(R) R̃),
the conductor of R.

It is easy to see that (R :Q(R) R′) = (R :R R′) is an ideal in R and R′, and that CR′/R =
HomR(R′, R) = Ann(R′/R). In fact, CR′/R is the largest common ideal of R′ and R. Note
that in particular, if R = R′, then CR′/R = R.

Lemma 2.11. Let R be reduced and let R′ be a reduced extension with R′ ⊆ Q(R) and R′ module
finite over R. Then

R ⊆ R′ ⊆ HomR(CR′/R, R) .

Proof. From Prop. 2.4 it follows that HomR(CR′/R, R) = (R : CR′/R) contains R. Since
HomR(CR′/R, R) = (R′)∗∗, it follows that R′ ⊆ HomR(CR′/R, R). �

The relation between conductor ideals and reflexive finite birational extensions of R is
described by the following result.
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Theorem 2.12 ([DM80], Theorem 1.4). Let R be a reduced ring and let F be the set of all
reflexive finite birational extensions of R. Then the map

F −→ {I ⊆ R : I is a conductor of an element in F} : S 7→ CS/R

is an order inverting bijection between the elements in F and their conductors. The inverse map
is is given by I 7→ EndR(I).

Lemma 2.13. Let R be a reduced ring. Then the normalization R̃ of R and the conductor of the
normalization C are both reflexive R-modules. Moreover, one has

EndR(C) = R̃ .

Proof. The equality EndR(C) = R̃ is shown in [DM80, Remark after Prop. 1.2], which

also shows the reflexivity of R̃. Alternatively, in view of Prop. 2.3 one can show, using

adjunction, that R̃ ∼= C∗ and thus R̃ is reflexive. Dualizing again yields that C is reflexive.
�

2.5. Normalization chains. Here we briefly describe the ideas of the Grauert-Remmert
normalization algorithm, which was our main motivation to study endomorphism rings
of trace ideals.
Let R be a reduced noetherian (commutative) ring. One calls N(R) := {p ∈ Spec(R) : Rp

is not normal} the non-normal locus of R. It can be shown (see e.g. [GP08, Lemma 3.6.3])
that N(R) = V(CR̃/R), that is, the conductor of the normalization defines precisely the

non-normal points of Spec(R).
If I is an ideal of R that contains a non-zerodivisor, then

R ⊆ EndR(I) ⊆ R̃ .

If I = C, then EndR C = R̃ (see Lemma 2.13). But in practice it is hard to guess the
conductor ideal, and thus one needs to proceed in steps.
The rough idea is (here we follow [dJ98] and [GP08, 3.6]): Start with the reduced non-
normal ring R0 := R and an ideal I0 ⊆ R0 containing a non-zerodivisor and supp(I0) =
Sing(Spec(R0)) such that R0 ( EndR0

(I0) (this holds e.g. for radical ideals with V(I0) ⊇

N(R0)). Then R1 := EndR0
(I0) is a reduced ring lying between R and R̃. If R1 is equal to

the normalization, we are finished, otherwise find an ideal I1 ⊆ R1 such that R1 ( R2 :=
EndR1

(I1) and repeat if necessary. This yields a chain of rings

(1) R0 = R ( R1 = EndR0
(I0) ( · · · ( Rl = EndRl−1

(Il−1) ,

with supp(Ii) ⊆ Sing(Spec(Ri)) which terminates at Rl = R̃, l < ∞, if R̃ is a finitely
generated R-module. We call such a chain of rings a (Grauert–Remmert) normalization
chain of R. The crucial point in this algorithm is to find good test ideals Ij that are easy
to compute, so that one needs as few steps as possible in the algorithm. In practice one
takes Ij to be the radical of the Jacobian ideal of Rj, see [GP08, Algorithm 3.6.9]. However,
it would be interesting to consider other type of ideals, or even endomorphism rings of
modules of higher rank. In the next section, we will therefore study trace ideals, which
are easy to calculate and sometimes are closer to the conductor than the radical of the
Jacobian ideal.
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3. TRACES AND CONDUCTORS

Here we study connections between trace ideals of certain R-modules and conductor
ideals of finite birational extensions of R. In particular we are interested in trace ideals of
CM-modules and we consider the finite CM-type case in 3.1.
Note that the relation between trace ideals and birational extensions of R has in particular
been studied in [GIK18, Prop. 1.2]

Proposition 3.1. Let R ⊆ R′ be a finite birational extension of a reduced commutative noetherian
ring R and let M′ be a module over R′. Then

τR(M′) ⊆ CR′/R.

In particular, if M′ ∼= R′, then also the other inclusion holds, that is,

τR(R′) = CR′/R.

Proof. Clearly M′ is also a module over R, so τR(M′) is well-defined. Since we can identify
CR′/R with (R : R′) = {a ∈ R | aR′ ⊆ R}, we have to show that for any R-linear map f
from M′ to R, for any m ∈ M′ and any x ∈ R′, the element f (m)x is contained in R. An
element x ∈ R′ can be written as x = r

s , for some r, s ∈ R, where s is a non-zerodivisor.
Then

s f (xm) = f (rm) = r f (m) = sx f (m),

and since s is a non-zerodivisor, it follows that f (xm) = x f (m). Since M′ is an R′-module,
xm ∈ M′ and since f : M′ −→ R is an R-linear map, f (xm) lies in R. This shows that
τR(M′) ⊆ CR′/R.
For the second assertion it has to be shown that CR′/R ⊆ τ(R′). Therefore let a ∈ CR′/R.
Define a map fa : R′ → R as x 7→ xa. Then fa is well-defined since by definition xa ∈ R
for any x ∈ R′ and of course fa is R-linear. Clearly fa(1) = a, so a ∈ τR(R′) = ( f (x) | f ∈
HomR(R′, R), x ∈ R′). �

Lemma 3.2. Let R ⊆ R′ ⊆ R
′′

be finite birational extensions of a commutative noetherian ring
R. Then:
(1) CR′′/R ⊆ CR′/R.

(2) τ(R
′′
) ⊆ τ(R′).

Proof. (1): clear from the definitions of the relative conductors:

CR′′/R = {a ∈ R : aR′′ ⊆ R} ⊆ {b ∈ R : bR′ ⊆ R} = CR′/R,

since R′ ⊆ R′′.
(2): Follows from (1) and Prop. 3.1. �

Example 3.3. In general one only has τ(M) ⊆ CR′/R for a R′-module M and not equal-
ity: consider e.g. R = C[[x, y]]/(x3 + y4) the E6 singularity. Then one can compute the
indecomposable CM−R-modules, see [Yos90]. The ring R′ = EndR(mR) is a birational
extension of R and has the same indecomposable CM-modules as R, with exception of R
itself. From Yoshino’s list (see loc. cit. ) of matrix factorizations of the indecomposables
(in Yoshino’s notation) one sees that τ(M2) = (x, y2) is strictly contained in CR′/R = mR.

There is a converse for reflexive modules:

Proposition 3.4. Let R ⊆ R′ be a finite birational extension of a commutative noetherian reduced
ring R and let M be a module over R. If τR(M) ⊆ CR′/R, then M∗ is a module over R′. If moreover
M is reflexive, then M is a module over R′.
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Proof. Let f ∈ M∗ and x ∈ R′. Then x · f is a function from M → R, since for any m ∈ M
one has x f (m) ∈ R, which follows from the containment of τR(M) in the conductor CR′/R.
Clearly x f is an R-linear function, thus M∗ is also an R′-module.
By Prop. 3.1, this implies that τR(M∗) ⊆ CR′/R. Thus, by what we just proved, (M∗)∗ =
M∗∗ is also an R′-module. If M is reflexive, this means that M is a module over R′. �

Theorem 3.5. Let R be a reduced noetherian local ring and let M be a finitely generated reflexive
R-module and let R′ be a finite birational extension. The following two assertions are equivalent:
(1) τ(M) ⊆ CR′/R, where CR′/R is the conductor of R′ in R.
(2) M is a module over R′.

Proof. (2) ⇒ (1): Follows from Prop. 3.1 τ(M) ⊆ C.
(1) ⇒ (2): Follows from Prop. 3.4. �

Remark 3.6. In particular, if R is irreducible, then τR(M) = C if M is a CM-module over

R̃. If R is not irreducible, then one can have an inclusion, e.g., consider R = k[[x, y]]/(xy)
with M = R/(x). Then M is isomorphic to an irreducible component of the normalization
and τR(M) = (y) ( C = (x, y).

Looking at the relative conductor CR′/R of a ring R ⊆ R′ ⊆ R̃, we ask if the corresponding
statements of Thm. 3.5 also holds for CM-modules M over R, namely, whether the fol-
lowing are equivalent:
(1) τR(M) ⊆ CR′/R.
(2) M is a module over R′.
The implication (2) ⇒ (1) holds for any R-module with this property by Prop. 3.1. How-
ever, the other implication is in general not satisfied: consider a non-normal local ring
R with canonical module ωR such that τR(ωR) = C, the conductor of the normalization
(examples for such rings are the non-regular 1-step normal rings considered in Section
4). The canonical module is Cohen–Macaulay over R, but ωR is not a module over the

normalization R̃: by [BH93, Thm. 3.3.4] R ∼= EndR(ωR) and thus by [DFI16] ωR is not a

module over R̃.

3.1. Trace ideals and finite CM type. The guiding question of this section is: which
ideals in R are isomorphic to trace ideals of Cohen–Macaulay modules? The first case to
consider, is R of finite CM-type, that is, there are only finitely many isomorphism classes
of CM-modules over R. Rings of finite CM-type have been extensively studied, in partic-
ular, they are classified for rings of Krull-dimension ≤ 2, see [LW12] for an overview and
references.
Here we pose the following

Question 3.7. Let R be a complete local or graded ring. Are the following equivalent?
(1) R is of finite CM-type.
(2) There are only finitely many possibilities for τR(M), where M ∈ CM(R).

It is clear that (1) implies (2), since τ(M1 ⊕ M2) = τ(M1) + τ(M2) and there are only
finitely many isomorphism classes of indecomposable CM-modules over R. The other
implication is also true for a class of rings coming from geometry: coordinate rings of
plane curve singularities. To prove this we will use results of Greuel and Knörrer about
1-dimensional rings of finite CM-type.

Proposition 3.8. Let R be a reduced Gorenstein ring. Let R′ and R′′ be two finite birational
extensions of R. Then CR′/R

∼= CR′′/R if and only if R′ ∼= R′′.
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Proof. If R′ is isomorphic to R′′, then clearly their conductors are isomorphic. For the
other direction, if R ⊆ S is finite, then S is a CM-module over R. Since R is Gorenstein,
by Prop. 2.1, S is also a reflexive R-module. Now Theorem 2.12 implies the result. �

Corollary 3.9. Let (R,m, k) be a reduced local complete ring of dimension 1 and embedding
dimension 2 and k containing Q (that is, R is the coordinate ring of a plane curve singularity).
Then R is of finite CM-type if and only if there are finitely many possibilities for τR(M), M ∈
CM(R).

Proof. We have already seen that if R is of finite CM-type, then there only exists a finite
number of possible trace ideals. Suppose that there are only finitely many possibilities for
τ(M). Since for any possible finite birational extension R ⊆ S one has τR(S) = CS/R and
by Prop. 3.8 τR(S) ∼= τR(S

′) if and only if S ∼= S′, it follows, that there are only finitely
many possible finite birational extensions of R. But this is exactly the characterization
of coordinate rings plane curves of finite CM-type of Greuel–Knörrer, see [GK85], Satz
2. �

Remark 3.10. The proof of [GK85, Satz 2] holds for all Gorenstein complete local rings of
dimension 1 that satisfy mult(R) < emb.dim(R) + 2, so also Cor. 3.9 extends to this case.

It is not clear how to generalize this proof to higher dimension, that is, to Gorenstein
singularities X = Spec(R) of finite CM-type and dimension greater than or equal to 2: by
[BGS87, Knö87] these X are precisely the ADE-hypersurface singularities. So in order to
get an analog to Cor. 3.9, one would need to show that any Gorenstein ring R with finitely
many isomorphism classes of trace ideals CM-modules is isomorphic to the coordinate
ring of one of these ADE-singularities.

Example 3.11. An example for a ring of infinite CM-type is the coordinate ring of the swal-
lowtail singularity. The graded rank one CM-modules over the swallowtail were classi-
fied by Hovinen [Hov09, Thm. 4.4.7]. He showed in particular that the first fitting ideals,
or equivalently, the trace ideals, of pairwise non-isomorphic graded CM-modules of rank
1 are pairwise non-isomorphic. This shows that there are infinitely many possibilities for
trace ideals of CM-modules in this example.

4. ONE-STEP NORMALIZATION AND CONDUCTORS

In this section, let (R,m) be a one-dimensional reduced local ring. The most natural nor-
malization chain starts with

R ⊆ EndR(m) ⊆ · · ·

As defined in the introduction, we say that R has a 1-step normalization or is 1-step nor-

mal if R̃ ∼= EndR(m). Note that 1-step normal rings include the regular local rings, since
in this case m ∼= R and thus also EndR(m) ∼= R. Here we characterize 1-step normal rings
in terms of their maximal ideal and study connections with nearly and almost Gorenstein
rings, see [HHS16] for more on these type of rings.
Recall that a local ring (or positively graded k-algebra) R is called nearly Gorenstein if R is
Cohen–Macaulay, admits a canonical module ωR and τR(ω) ⊇ m, where m is the (graded)
maximal ideal of R. The trace of the canonical module measures the non-Gorenstein locus
of R. First we prove the following fact, which has been proven for domains in [CHKV06,
Prop. 2.14] (there it is more generally shown that for 1-dimensional local domains every
integrally closed ideal is reflexive):

Proposition 4.1. Let (R,m) be a one-dimensional Cohen–Macaulay local ring. Then m is a
reflexive CM(R)-module.
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Proof. First assume that R is regular. Then since the global dimension of R is 1, the maxi-
mal ideal m is projective and thus reflexive. Assume now that R is not regular. We show
that m ∼= m∗∗ = HomR(HomR(m, R), R), which by Prop. 2.3 is enough to show reflexivity
of the maximal ideal. Consider the exact sequence

0 −→ m −→ R −→ R/m −→ 0.

Applying HomR(−, R) to it yields the exact sequence

(2) 0 −→ HomR(R/m, R) −→ R −→ m
∗ −→ Ext1(R/m, R) −→ 0.

Since R/m = k is of finite length over R and hence of depth 0, HomR(R/m, R) = 0.

Moreover, note that Ext1(R/m, R) is killed by m, and thus a module of finite length over
R. Applying HomR(−, R) to (2) gives

0 −→ HomR(Ext1(k, R), R) −→ m
∗∗ −→ R −→ Ext1(Ext1(k, R), R) −→ · · · .

Here the same reasoning as above implies that HomR(Ext1(k, R), R) = 0 and thus m∗∗

embeds into R. Assume that m∗∗ were isomorphic to R. Then, as the dual of any module
is reflexive (cf. Prop. 2.2), we have m∗ ∼= m∗∗∗ = (m∗∗)∗ ∼= R. Now, looking back at
sequence (2), the map R −→ m∗ = R must be given by multiplication by some a ∈ R. But
since the next term is killed by m, R/aR is killed by m, which implies that aR = m and R
is a discrete valuation ring, contradiction.

On the other hand, Ext1(Ext1(k, R), R) is of finite length and annihilated by m, which
implies that the image of R in this module is also annihilated by m. So the image is a
factor of R/m = k and since the image is non-zero, it must equal k. But this implies that
m∗∗ is isomorphic to m. �

Proposition 4.2. Let (R,m) be a reduced one-dimensional noetherian local ring. Then C ⊇ m if
and only if R is 1-step normal.

Proof. First assume that R is 1-step normal. If R is regular, then C = R and we do not
have to show more. If R is not regular, then it is easy to see (by direct calculation) that

EndR(m) = HomR(m, R). Since R has a 1-step normalization, this means that m∗ ∼= R̃.
Applying HomR(−, R) to both sides of the equation yields

m
∗∗ ∼= (R̃)∗ ∼= C .

Since by Prop. 4.1 m∗∗ is isomorphic to m, we have that m ∼= C. It remains to show that
C = m. Clearly C ⊆ m. For the other inclusion we only need to show that m is closed

under multiplication in R̃, which will render m an ideal of R̃ and then by definition of
the conductor, m ⊆ C. Therefore, let ϕ : C −→ m be the isomorphism (as R-modules).

Any element in R̃ can be written as r
s , for some r, s ∈ R, where s is a nonzerodivisor. Let

m ∈ m, then m = ϕ(c) for some c ∈ C. Since C is closed under multiplication in R̃, r
s c = c′

for some c′ ∈ C, or equivalently, rc = sc′. Applying the R-isomorphism ϕ yields that
rϕ(c) = rm = sϕ(c′) is in m. Since s is a nonzerodivisor and ϕ(c′) ∈ m, the claim follows.
For the other implication assume that C ⊇ m. If the inclusion is strict, then R is regular
and hence 1-step normal. If m = C, then EndR(C) = EndR(m), and since the left hand

side is equal to the normalization R̃, our claim follows. �

We have the following connection between nearly Gorenstein rings and 1-step normal
rings:

Corollary 4.3. Under the conditions of the proposition, if R is 1-step normal, then R is nearly
Gorenstein.
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Proof. Since either R is regular or C = m, by Prop. 6.6 of [HHS16] R is nearly Gorenstein.
�

Remark 4.4. (1) The other implication does not hold: by Prop. 7.1 of [HHS16], the semi-
group ring R = k[[t3, t5, t7]] is nearly Gorenstein. But the endomorphism ring of the
maximal ideal m = (t3, t5, t7) is k[[t2, t3]], which is clearly not the normalization of R.
(2) There is also the slightly different concept of almost Gorenstein rings, that was first
considered by Barucci–Fröberg and later generalized by [GTT15]. It can be shown that 1-
dimensional almost Gorenstein rings are always nearly Gorenstein (see [HHS16, Prop. 6.1])
but one can easily find examples of nearly Gorenstein rings that are not almost Goren-
stein. There seem to be no clear relation between almost Gorenstein rings and 1-step nor-
malization rings, since e.g., the ring R from (a) is also almost Gorenstein but not 1-step
normal and on the other hand the ring S = k[[t5 , t6, t7]] is 1-step normal but not almost
Gorenstein (see [HHS16, Remark 6.2].

Another interesting property of 1-step normal rings is that the maximal ideal is isomor-
phic to its dual.

Proposition 4.5. Let (R,m) be a 1-step normal complete integral domain of dimension 1. Then
m ∼= m∗.

Remark 4.6. The following short proof was kindly pointed out by the referee. Alterna-
tively, one could use more representation theoretic methods and study the endomor-

phism ring of the R-module M = R ⊕ R̃ to show that the maximal ideal m ∈ add M.

Then either R is regular and m ∼= R ∼= m∗, or otherwise this implies that m ∼= R̃.

Proof. If R is regular, then m ∼= R ∼= m∗. Assume that R is 1-step normal, but not regular.

Then R̃ ∼= EndR(m) = HomR(m, R) = m∗ ) R. We show that then m itself is isomorphic

to R̃, which implies the claim. For this note that by Prop. 4.2 the conductor C = m, and

thus mR̃ ⊆ R. One can easily see that the units of R are not contained in mR̃. So this

inclusion is strict, which implies mR̃ ⊆ mR. On the other hand, mR ⊆ mR̃, so it follows

that mR = mR̃. Since R is an integral domain, the normalization R̃ is a discrete valuation

ring, and the ideal mR̃ must be principal and isomorphic to R̃. So m is indeed isomorphic

to R̃. �

Corollary 4.7. Let (R,m) be a one-dimensional complete integral domain. Then R is 1-step

normal if and only if R̃ is isomorphic to m.

Proof. If R is 1-step normal then the proof of Prop. 4.5 shows that m ∼= R̃. Then

EndR(m) ∼= EndR(R̃) = R̃.

The other implication is clear. �

Remark 4.8. Note that there is also the notion of self-dual module: if M is a module over
local ring R with canonical module ω, then M is self-dual if M ∼= HomR(M, ω). The
property of m to be self-dual in this sense has e.g. been appeared in [HV06, Ooi96] and
more recently been studied in [Kob18].

One can also ask if in Prop. 4.5 the condition m ∼= m∗ is also sufficient for R to be 1-step
normal, but this is certainly not true:

Example 4.9. Let R be a reduced local ring of dimension one with infinite residue field
and not a discrete valuation ring. Assume further that the multiplicity of R is equal to 2.
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By [Ooi96, Thm. 2.6] this condition is equivalent with the property that the embedding
dimension of R is 2 and m = m∗ (and even that any CM-module over R is self-dual).
Thus any plane curve of multiplicity two has the property m ∼= m∗. Explicit examples are
coordinate rings of An-curves, which do not have a one-step normalization for n ≥ 3.

5. GLOBAL SPECTRUM OF CURVE SINGULARITIES

In this final section we assume that R is complete local noetherian. We are interested in
the global spectrum gs(R) of R, where R is one-dimensional and reduced (i.e., Spec(R) is
a curve singularity), defined as

gs(R) = {n ∈ N : there exists a module M ∈ CM(R), such that gl. dim EndR(M) = n} .

One restricts to CM-modules because this is a class of modules for which one can use
methods from representation theory. In order to show that 1 and 2 are always in the global
spectrum (Lemma 5.1) and characterize when 3 is in the global spectrum (Theorem 5.4,
under some additional assumptions on R) we will use normalization chains.
We start with a reduced local complete noetherian ring R of dimension 1 and consider a
chain of the form (1). We want to determine

(3) gl. dim EndR(M), where M =
l⊕

j=0

Rj .

The most natural chain to study is

(4) R = R0 ⊆ EndR(mR) = R1 ⊆ · · · ⊆ EndRl−1
(mRl−1

) = Rl = R̃ ,

as in [Leu07]. Also cf. [Iya03] for a more representation theoretic approach (here the non-
regular one dimensional rings are considered as orders over a DVR, which can be taken to
be the Noether normalization since we assume R to be complete). It has been shown that
the global dimension of such an EndR(M) is bounded above by l (see [Leu07, Thm. 4]),
but it is not clear which value it will assume in general. Let us note that such chains
and the global dimension of rings of the form (3) have been studied for semigroup rings
by Mousavidehshikh: he has shown that for a given integer n, one can construct certain
semigroup rings R such that n ∈ gs(R), and moreover that always 2 ∈ gs(R) for these R,
see [Mou18, Thm. 5.4 and Thm. 5.9]. In general it is not clear, which integers are contained
in gs(R).

5.1. Elements in the global spectrum.

Lemma 5.1. Let R be a complete local CM ring of Krull-dimension one, which is not regular.
Then {1, 2} is always a subset of the global spectrum, that is, there always exist NCRs of global
dimension 1 and 2 of Spec(R).

Proof. For a ring R with these properties the normalization R̃ is a finitely generated CM-

module. Since R̃ is regular, its global dimension is 1 and from EndR R̃ = EndR̃ R̃ = R̃
follows that 1 ∈ gs(R). Now look at the chain (4). If l = 0, then R is regular. So we
have l ≥ 1. Let M = Rl−1 ⊕ Rl. Then, since all Ri’s are finite extensions of R, one has
EndR(M) = EndRi

(M) for all i = 1, . . . , l − 1 (see Lemma 2.6). Thus we may assume

w.l.o.g. that l = 1, i.e., M = R0 ⊕ R1, where R0 = R and R1 = R̃. Then EndR M is a non-
commutative resolution which is a generator. By [DFI15, Prop. 2.8] the global dimension
is strictly greater than 1. By [Leu07] Theorem 4, the global dimension is bounded by 2.
Hence gl. dim EndR M = 2. �



14 ELEONORE FABER

This lemma immediately shows that for a complete local reduced ring R of Krull-dimension
1, one has gs(R) = {1} if and only R is regular. For rings of Krull-dimension 2 a slightly
weaker statement holds: if R is a singular complete normal domain with residue field of
characteristic 0, then gs(R) = {2} if and only if Spec(R) is a simple singularity, cf. [DFI15,
Cor. 4.13]. For a ring of Krull-dimension d ≥ 3 it is not clear how to interpret the equality
gs(R) = {d} in terms of singularities of Spec(R).

For the remaining results, we make use of the classification of the complete equicharacter-
istic 0 curve singularities of finite CM type by Greuel–Knörrer [GK85]. Here we say that
X = Spec(R) is a complete equicharacteristic 0 curve singularity if (R,m) is a complete local
CM ring of Krulldimension 1 and k = R/m is algebraically closed and of characteristic
0. For the general classification of one-dimensional local rings of finite CM type, a good
overview can be found in [LW12].

Proposition 5.2. Let X = Spec(R) be a complete equicharacteristic 0 curve singularity with R
of finite CM type. Then 3 ∈ gs(R) if and only if Spec(R) is not regular or an A2n-singularity.

Proof. First note that the only Gorenstein curves of finite CM-type are the simple plane
curves, see [GK85, Korollar 1]. The non-Gorenstein curves of finite CM-type are the ones
birationally dominating the simple plane curves, see e.g. [Yos90]. Let R be any of the
finite CM type rings. Then from [DFI16, Thm. 4.6] it follows that 3 is contained in the
global spectrum if and only if R is not an A2n-singularity. �

Proposition 5.3. Let X = Spec(R) be a complete equicharacteristic 0 curve singularity and
assume that R is 1-step normal. Then if R is Gorenstein, Spec(R) is either regular with gs(R) =
{1}, an A1-singularity with gs(R) = {1, 2, 3} or an A2-singularity with gs(R) = {1, 2}. If R
is not Gorenstein, then there exists a generator/cogenerator M such that gl. dim EndR(M) = 3.

Proof. If R is regular, then the only indecomposable CM-module is R itself and gl. dim EndR(R) =
gl. dim R = 1, which implies that gs(R) = {1}. Therefore assume that R is not regular.
We will consider R as an order over the DVR T as e.g., in [Die91, Iya01]. Since R is com-

plete, it has a canonical module ωR, which is given as HomT(R, T). Consider M = R⊕ R̃,
then by Leuschke’s theorem [Leu07], the global dimension of EndR(M) ≤ 2. It is equal
to 2 by the same reasoning as in the proof of lemma 5.1. If R is of finite CM type then
Prop. 5.2 shows that 3 ∈ gs(R) if and only if Spec(R) is not of type A2n. If R is of in-
finite CM-type, then by Prop. 4.2, the maximal ideal m is equal to the conductor of the

normalization, and hence m is an ideal in R̃. Then, since R̃ is regular and thus of finite
CM type, by Thm. 4.4 of [Iya03] (generalization of [EHIS04], Thm. 1.1) the representation
dimension of R is bounded above by 3. Since R is not of finite CM-type it is equal to 3

by [Iya03, Thm. 4.1.3]. Explicitly, one may take M = R ⊕ ωR ⊕ R̃, by [Iya03, Thm. 4.1.3]
gl. dim EndR M ≤ 3 and it is equal to two if and only if add M = CM(R).

�

Theorem 5.4. Let X = Spec(R) be a complete equicharacteristic 0 curve singularity. Then
3 ∈ gs(R) if and only if Spec(R) is neither regular nor an A2n-singularity, n ≥ 1. Equivalently:
Spec(R) is an A2n-singularity if and only if gs(R) = {1, 2}.

Proof. One direction is clear: if R is regular, then gs(R) = {1}, as argued in Prop. 5.3. The
global spectrum of an A2n-singularity is gs R = {1, 2}, by [DFI16, Thm. 4.4].
For the other direction use the same notation as in the proof of Lemma 5.1 above. If l = 1
then the assertion follows from Prop. 5.3. Now assume that l ≥ 2. Then there is a chain
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R ⊆ R1 = EndR m ⊆ · · · ⊆ Rl = EndRl−1
mRl−1

= R̃. Suppose that 3 6∈ gs(R). Argue
by induction: for l = 1 we have shown the assertion. Now we may assume that Rl−i for
all i = 0, . . . , k ≤ l are A2i-singularities. Then Rl−i−1 →֒ Rl−i is a radical embedding, see
[EHIS04] for the definition of this term. If Rl−i−1 were not of finite CM-type then Theorem
[Iya03, Thm 4.4] would yield an endomorphism ring of global dimension 3. If Rl−i−1 is of
finite CM-type, then Prop. 5.2 shows that the only possibility is an A2i+2-singularity. �

Remark 5.5. It would be interesting to consider also chains of endomorphism rings that
involve endomorphism rings over modules of rank ≥ 2, in particular, one could make
use of trace ideals in order to find suitable modules M that are defined on a large integral
extension of R.

6. ACKNOWLEDGEMENTS

The author wants to thank the anonymous referee for their helpful comments, additional
references, and suggestions to improve the paper.
The work in this paper benefited from discussions with Ragnar Buchweitz. The author is
deeply thankful for his advice - as well as for many discussions about Mathematics, Life,
the Universe, and Everything.

REFERENCES

[Bas63] H. Bass. On the ubiquity of Gorenstein rings. Math. Z., 82:8–28, 1963. 4
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