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Efforts to increase agricultural productivity, adapt to climate change, and reduce the

carbon footprint of agriculture are reflected in a growing interest in climate-smart

agriculture (CSA). Specific indicators of productivity, adaptation and mitigation are

commonly used in support of claims about the climate smartness of practices. However,

it is rare that these three objectives can be optimized simultaneously by any one strategy.

In evaluating the relative climate smartness of different agricultural practices, plans

and policies, there is a need for metrics that can simultaneously represent all three

objectives and therefore be used in comparing strategies that have different benefits

and trade-offs across this triad of objectives. In this context, a method for developing

a Climate Smartness Index (CSI) is presented. The process of developing the index

follows four steps: (1) defining system specific climate smartness; (2) selecting relevant

indicators; (3) normalizing against reference values from a systematic literature review;

and (4) aggregating and weighting. The CSI presented here has been developed for

application in a systematic review of rice irrigation strategies and it combines normalized

water productivity (WP) and greenhouse gas intensity (GHGI) The CSI was developed for

application to data from published field experiments that assessed the impact of water

management practices in irrigated rice, focusing on practices heralded as climate-smart

strategies, such as Alternate Wetting and Drying (AWD). The analysis shows that the CSI

can provide a consistent judgment of the treatments based on the evidence of water

efficiency and reduced GHGI reported in such studies. Using ameasurable and replicable

index supports the aim of generating a reliable quantification of the climate smartness

of agricultural practices. The same four step process can be used to build metrics for a

broad range of CSA practice, policy and planning.

Keywords: climate-smart agriculture, climate smartness index, rice, AWD, water management

INTRODUCTION

Climate-Smart Agriculture (CSA) has been heralded as the basis of transformative changes toward
sustainability. As a response to climate challenges, CSA founded on mitigation, adaptation and
productivity pillars has been presented as an approach in agriculture aimed at simultaneously
achieving three goals: increasing productivity, adapting to climate change, and reducing the GHG
emissions (Lipper et al., 2014). To bemeaningful, these generic CSA objectives need to be translated
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into specific properties of agricultural systems according to the
relevant spatial and temporal scales and agro-climatic contexts of
those systems (Rosenstock et al., 2016).

In many agricultural systems, it would not be possible to
optimize for all three of these broad objectives simultaneously
(Suckall et al., 2015; Notenbaert et al., 2017). The complex
compatibilities and trade-offs between mitigation, adaptation
and productivity objectives have contributed to ambiguities in
how the CSA concept is interpreted in agricultural policy and
planning (Thornton et al., 2018). It is not clear, for example,
whether a strategy that optimizes yield is more or less climate -
smart than one that optimizes mitigation, or one that opts for a
compromise across both. It is also important to recognize that
“climate smartness,” is a relative concept, and this is part of the
reason for its ambiguity (Neufeldt et al., 2013).

The way we define and measure climate smartness should
depend on the comparative question that is being asked. We may
which to ask whether one agricultural practice is more or less
climate smart than another in a given context or set of conditions,
or we may which to ask whether it is more climate smart to adopt
a give practice in context A vs. context B (with these contextual
differences being delineated spatially or temporally or both). We
may also ask whether you get a larger benefit from switching from
one practice to another in context A or context B. In all of these
cases, we might adjust our choice of indicators and what we take
as reference values, to reflect the contexts/practices against which
we are comparing.

Although the productivity objective of CSA is relatively
unambiguous, adaptation and mitigation require some system-
specific interpretation (Wollenberg et al., 2016). Relevant aspects
of mitigation include reducing direct emissions from agricultural
inputs and machinery, reducing field level emissions related to
the anaerobic decomposition of organic matter, or the longer
term storage of carbon in soils, for example (Smith et al.,
2008; GIZ, 2014). The significance of these diverse sources and
sinks differs greatly by production system and agro-ecological
condition. In the case of adaptation, objectives should be
considered relative to predominant climatic risks in a given
context and these may relate to varied combinations of water
scarcity, precipitation and temperature extremes, flooding, frost
and heat stress that might impact the crops development (Wall
and Smit, 2005; FAO, 2017).

There is no single replicable measure of climate smartness that
captures its three objectives simultaneously and systematically
accounts for the trade-offs between them. However, frameworks
for monitoring and measure the climate smart properties
of agricultural systems are being increasingly developed and
utilized Frameworks such as “targetCSA” designed by Brandt
et al. (2017) and Climate-smart agriculture rapid appraisal
(CSA-RA) designed by Mwongera et al. (2017) offer a means
to quantitatively assessing suitability and priority indices for
CSA practices at a regional scale in Africa. The CGIAR
Research Program on Climate Change, Agriculture and Food
Security (CCAFS) have outlined an approach to measuring
climate smartness using expert judgment (World Bank, 2014).
The impact of adopting a particular climate-smart practice
on each CSA pillar is scored separately in a range from 0

(“has no impact”) to 5 (“Very high”), and the average of
these numbers forms the final score. Whilst the individual
scores based on expert judgements have broad application
and context-specificity, they are not easily reproducible for
the purposes of comparative studies. Similarly, the World
Bank uses a group of CSA indices–the CSA Technology
Index (CSA-Tech Index) and CSA Results Index (CSA-Res
Index). Such indices are used in monitoring the suitability,
implementation and progress of agriculture projects and use
a large list of indicators of mitigation, adaptation, and
productivity, grouped in different categories that are scored
based on a specific threshold set accordingly to projected
scope of the projects (World Bank, 2016), and so have limited
general applicability.

The methodological approaches [rural participatory methods,
Principal component analysis (PCA) to select indicators,
analytic hierarchy, and expert judgement approach among
others] adopted in the design of these CSA assessment
frameworks, and the range of indicators drawn on within
them, are indicative of the complexity of measuring climate
smartness, as well as the importance of the context for its
interpretation. However, it should be mentioned that even
with the methodological differences among CSA indices and
the CSI, there is commonality in their structure. All are
derived from some degree of theorization of what CSA is, the
translation of these principles into effective proxies, and an
approach to weighting and aggregating them This structure
is widely used in the construction of composite indicators
and explained in detail by Nardo et al. (2005), OECD (2008),
Mazziotta and Pareto (2013) and Baptista (2014). For the
purposes of planning, monitoring and evaluating CSA, it is
important to enrich the pool of CSA metrics with indices
and indicators that integrate several dimensions (biophysical,
economic, social, and environmental) in different spatial and
temporal scales. Such metrics can support the analysis and
monitoring of either the performance or the suitability of
agricultural practices, or help to identify the climate-smart
potential of agricultural systems.

Drawing on guidelines for the development of composite
indicators (OECD, 2008; Mazziotta and Pareto, 2013; Baptista,
2014), we present a four-step process that can be applied in
developing replicable qualitative indicators of climate smartness
for a given context or set of research questions. We illustrate
the process by presenting an index constructed for application
in the systematic review of rice irrigation systems. A variety of
irrigation regimes, such as AWD, are heralded as climate smart
technologies within these systems (Wassmann, 2010; FAO, 2013;
Rosenstock et al., 2016). By replacing the continual flooding of
paddy rice systems, with a carefully managed regime of applying
irrigation water only when soil moisture dips below a given
threshold, it is thought that water inputs can be reduced by
up to 30%, and land-based methane emissions (which are high
under the anaerobic conditions that continual flooding creates)
can be reduced by 48% (Richards and Sander, 2014). This
GHG reduction is meaningful considering that irrigated rice, is
responsible for∼10% of global emissions in the agriculture sector
(Smith et al., 2014).
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MATERIALS AND METHODS

Design of Climate Smartness Index (CSI)
To design a composite index that provides a measure of climate
smartness, a four-step approach was followed, and applied in the
design of a CSI for irrigated rice systems. First, a conceptual
definition of climate smartness in irrigated rice systems was
developed (section Step One: Defining Climate Smartness in
Irrigated Rice System). Second, a set of indicators to represent
the critical climate smart trade-offs in these systems were selected
(section Step Two: Indicators of Climate Smartness in Irrigated
Rice). Third, these indicators were normalized by reference
values (section Step Three: Normalization and Selection of
Literature-Derived Reference GHGI and WP Values). Finally,
the normalized indicators were weighted and aggregated (section
Step Four: Weighting and Aggregation).

Step One: Defining Climate Smartness in Irrigated

Rice System
Among the climate events that affect the rice crop (floods, heat
stress, salinity, and droughts), water scarcity-related risks have
become a substantial constraint for rice production (Pandey
et al., 2007; Serraj et al., 2011; Tivet and Boulakia, 2017; Zhang
et al., 2018; Kim et al., 2019). Several studies reported economic
losses in rice crop by drought in north and north-eastern of
China (Lin et al., 2013; Sekhar, 2018) and South Asia and south-
east Asia (Pandey et al., 2007; Li et al., 2015; Prasanna, 2018),
in addition to projected yield losses in some temperate and
tropical regions within the next 50 years under “no adaptation”
scenarios (Challinor et al., 2014). Added to the concern about
water availability in drought-prone regions, GHG emissions from
rice also represent a remarkable issue. Rice crop contributes∼9–
11% to annual total non-CO2 emissions by agriculture (Smith
et al., 2014). The major source of those contributions come from
methane production under anaerobic conditions in flooded fields
(Bouman et al., 2007; Suryavanshi et al., 2013).

Both, methane emissions and rice yields are highly sensitive
to soil water content (Van Den Pol-van Dasselaar et al., 1998;
Bouman et al., 2007; Singh et al., 2017) thus, water management
becomes an important aspect of rice production and GHG
mitigation (Meijide et al., 2017; Yang et al., 2017). Reductions
in soil water content (either by climate events or reduction of
irrigation frequency) contribute to reducing the CH4 production
in the soil (Jiao et al., 2006; Haque et al., 2016). However, the
relationship between soil water and GHG emissions is not strictly
linear since other factors like temperature, pH and carbon inputs
may constrain or promote the conditions for GHG production
(Gaihre et al., 2016; Han et al., 2016). Furthermore, during soil
drainage periods, a trade-off between CH4 and N2O could take
place. The nitrous oxide produced by nitrification/denitrification
process, could offset the potential mitigation of CH4 during
soil draining and re-wetting events, or even increase the carbon
footprint since the GWP of N2O is 9.5 times higher than CH4

(Johnson-Beebout et al., 2009; Kudo et al., 2014; Liu et al., 2016).
For its part, water reduction may also affect rice yield.

Water stress promoted by reduction of soil water moisture
can potentially reduce the productivity of the crop by affecting

processes like tillering, panicle formation, flowering initiation,
grain filling among others (Ookawa et al., 2000; Hayashi et al.,
2006; Bouman et al., 2007). To avoid yield losses, continuous
flooding conditions are traditionally implemented by the farmers
since yield and total water input (TWI) has a positive correlation.
However, this relationship has a limit. Beyond an attainable yield,
the use of extra inputs will not necessarily lead to an increment
in yield and, by the contrary, would reduce water productivity
(Wichelns, 2002).

In water constrained conditions, the relationships between
GHG emissions and yield and between water inputs and yield
are key determinants of the climate smartness of an irrigation
strategy. However, it may not be possible to optimize both of
these relationships simultaneously, either because of the low
capacity of the system to respond to the interventions (e.g.,
Sandy soils have high infiltration rates and thus water retention
strategies are hardly successful) or by cross-effect processes (e.g.,
crop residue incorporation are beneficial for productivity
but might increase GHG emissions by organic matter
decomposition processes As such it is the trade-off between
GHG emissions/yield and water inputs/yield, a measure of
climate smartness that must account for the potential trade-offs
between these.

Step Two: Indicators of Climate Smartness in

Irrigated Rice
To represent the trade-off between water use/yield and
/GHG emissions/yield, we constructed an index comprised of
water productivity based on irrigation and rainfall (WP) and
Greenhouse Gas Intensity (GHGI). Both WP and GHG are
listed as performance indicators in the Performance indicators
for sustainable rice cultivation published by Sustainable Rice
platform (SRP, 2019), The Climate-Smart Agriculture indicators
published by the World Bank (World Bank, 2016) and, the
Climate-Smart Agriculture Sourcebook (FAO, 2013).

WP is defined as the ratio between rice yield (kg grain/ha)
and the TWI from irrigation and rainfall, expressed as m3

(Equation 1).

P(kg grain/ m3) =
yield (kg grain/ha)

TWI(irrigation + rainfall) (m3/ha)
(1)

For its part, GHGI (or also called Yield-scaled GWP) is defined as
the ratio between the total field-based GHG emissions expressed
as Global Warming potential (GWP, kg CO2-eq /ha /season) per
yield rice, expressed as kg grain/ha grain (Equation 2).

GHGI
(

kg CO2−eq/kg grain
)

=
GWP(kg CO2−eq . ha. season−1)

yield (kg grain/ha)
(2)

Step Three: Normalization and Selection of

Literature-Derived Reference GHGI and WP Values
To transform the indicators into dimensionless and comparable
values, GHGI and WP were normalized using the min-max
normalization method (OECD, 2008; Mazziotta and Pareto,
2013). This normalization re-scales these indicator values from
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0 to 1, giving them an easily associated “more is better” or
“less is better” attribute, and thus facilitating the interpretation
of each indicators’ contribution in the CSI (Pollesch and Dale,
2016). This normalization method, has been used previously in
environmental indices like the pollution index and composite
environmental impact index (Khanna, 2000; Sabiha et al., 2016)
as well as sustainability indices like City Development Index
(CDI), HumanDeveloped Index (HDI) among others (Böhringer
and Jochem, 2007; Gómez-Limón and Sanchez-Fernandez, 2010;
Muthuprakash and Damani, 2019). As a method it has benefits
both in terms of the simplicity of its calculation and the scope
it offers for adapting the CSI to the context in which it is being
applied. When using the CSI in a comparative analysis, it is
straightforward to select reference values that are representative
of the fixed conditions that are being compared, and to normalize
the index against these.

For this type of normalization, minimum and maximum
thresholds of WP and GHGI were required. For application in
a systematic literature review of the climate smartness of rice
irrigation, we derived normalization values from our reviewed
literature. The search was made in ScienceDirect and Google
Scholar databases using the following keywords searched in the
article titles: “rice” and “water productivity”; “rice” and “GWP”;
“rice and “GHGI”; “rice” and “agronomic management”; and
“water management”; “rice” and “yield”; “rice and “water use.”

Data from field experiments that reported all or any of
the following variables: yield, TWI, GHG emissions (CH4

and N2O), GWP (Global Warming potential, expressed in
CO2-eq ha−1 season−1), and Water Productivity based on

irrigation and rainfall, were selected. For this search, the studies
that reported the use of the closed chamber technique as
GHG sampling method were selected, Eddy Covariance and
incubations techniques were excluded due to methodological
and fluxes calculation differences. GHGI and WP values from
80 studies published between 2005 and 2019 were consulted
(see Supplementary Materials 1 and 2). A total of 499 GHGI
values were collected from the studies consulted (Figure 1A). The
average for GHGI was 1.24-kg CO2-eq/kg grain, and minimum
and maximum values were 0.01 and 7.65 kg CO2-eq/kg grain,
respectively. In the case of WP, references values were obtained
from a dataset compiled from 33 studies that resulted in 381
WP values (Figure 1B). The average WP was 0.79 kg grain/m3

and the minimum and maximum values 0.12 and 3.69 kg
grain/m3, respectively.

Thus, these reference values were used a GHGI and WP used
to calculate the index. The indicators were normalized on a scale
of 0 to 1 as shown in Equations (3) and (4):

GHGI(N) =
GHGIobs − GHGImin

GHGImax − GHGImin
(3)

WP(N) =
WPobs −WPmin

WPmax − WPmin
(4)

GHGImin (= 0.01-kg CO2-eq/kg grain) and WP min (= 0.1 kg
grain/m3) are the minimum reference values of both variables
and, GHGImax (= 7.8 kg CO2-eq/kg grain) and WPmax
(= 3.7 kg grain/m3) are the maximum values.

FIGURE 1 | Frequency distribution of Greenhouse Gas intensity (kg CO2-eq/kg grain, A) and Water Productivity (kg/m3, B) data points from reviewed studies. Red

dotted line indicated the average of the dataset.
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The values found in the literature are intended to represent a
relevant reference point based on representative agronomic
practices of irrigation, N management, tillage, residue
incorporation in relevant rice producer regions. These should be
adapted for the systems and questions to which a CSI is being
applied. It is important to recognize that these reference values
are, themselves, not absolute. New studies may report higher or
lower max/min values in the future. Given that reference values
come from different contexts to which the CSI is being applied
(as the case described here), care should be taken not to interpret
them as attainable goals. The climate smartness results derived
from the index should be interpreted as relative scores that are
bounded by ref. values, rather than absolute scores, within which
there is a specific climate-smart threshold.

Step Four: Weighting and Aggregation
Improvements in individual indicators may be interpreted as
climate smart where these represent a particular priority within
a given system. For instance a reduction in GHGI contribution
may be more of a priority in rice growing environments (i.e.,
those where there are particular policy incentives to reduce
agricultural emissions) than in others. In our case, normalized
GHGI and WP (that take values from 0 to 1) were assigned an
equal weighting, this type of weighting is commonly used when
indicators are considered equally important and there are no
statistical grounds for choosing a different weighting (Gan et al.,
2017). The equal weighting assignment also corresponds with
the CSA principle of the trade-offs between productivity with
mitigation or adaptation are equally considered climate-smart
since the prioritization of one CSA pillar in specific should be
evidenced in the index instead of being induced by the weighting.

To aggregate the normalized indicators, the additive
aggregation method was used. This aggregation method provides
a compensatory effect on both indicators (Munda and Nardo,
2005). This compensation represents the trade-off between the
amount of GHG produced by a unit of grain yield and the
amount of water used and allow the possibility of offsetting a
disadvantage of an increasing of GHGI by a sufficiently large
increasing of WP and vice versa.

The normalized GHGI value was subtracted from normalized
WP to represents the compensatory effect of a GHGI increment
over the overall climate smartness in a certain rice system. On
the contrary,WP contributes positively to the index, representing
the climate smartness associated with efficient use of water. Thus,
the climate smartness score can progressively increase when WP
increases and GHGI decreases. Conversely, the climate smartness
could be diminished by an increment in GHGI simultaneously
with a decreasing WP (Equation 5).

CSI = WP(N) − GHGI(N) (5)

Given this configuration, the scale of CSI ranges from −1 to
1. A high CSI score (close to 1) indicates a situation of high
water-efficient rice production and low greenhouse gas emissions
relative to literature-derived reference values. Conversely, low
CSI scores represent conditions where the rice crop has a high
GHG footprint and low water efficiency.

Application of the Climate Smartness
Index (CSI)
From the database compiled in step three of the material
and methods section, studies with available data to calculate
the index–those representing controlled experiments comparing
continuous flooding with other irrigation management strategies
and in which yield, GHG and water input data were available–
were selected. This resulted in a subset of 16 studies, which are
summarized in Table 1. A paired comparisons analysis between
AWD and continuous flooding treatments was carried out, using
the CSI.

Alternative water management strategies to continuous
flooding (CF), take a variety of forms. In furrow irrigation, water
saturated soil conditions were maintained along crop cycle while
Sprinkler Irrigation used a pivot irrigation system to keep optimal
soil water content. For its part, in Controlled Irrigation (CI),
the irrigations events are determined by the water requirements
at different growth stages (Yang et al., 2014). Finally, AWD
promotes the alternation of dry and wet periods, where the dry
periods are maintained until the soil water content in the first
20 cm (rhizosphere zone) drops to pre-defined soil water content
thresholds. Those thresholds can be conservative–“safe-AWD”
(soil water potential > 20 kPa); or more drastic water stress
conditions (soil water potential < −20 kPa).

RESULTS

Across the 16 studies, the range of CSI values for AWD
treatments ranged from −0.3 to 0.72, while the range for CF
was −0.62 to 0.44. Other water management strategies like FI,
SI, CF-30%, CF-70% have a closer CSI range with CF treatments
(−0.67 to 0.5).The broad CSI range in the water treatments might
be the result of differences in the agro-ecological context of the
studies. Due to the lack of representability, a limited geographical
analysis of CSI was possible. From the 16 studies, 6 are from
China, with a mean CSI ranged from 0.33 to 0.08, that was
considerably higher compared with the mean CSI of the other
Asian countries represented in the sample like Vietnam, India,
Thailand, Indonesia, and Java (mean CSI=−0.27 to 0.20).

At study level, the highest CSI was scored by the treatments
assessed by Linquist et al. (2015) (mean CSI = 0.43; n = 12).
This average CSI is the result of a high mean WP (1.71 kg/m3),
compared with the mean WP among the studies used to set the
referencesmax. andmin.WP values (0.79 kg/m3), combinedwith
a low GHGI (mean GHGI = 0.156 CO2-eq/kg grain); that was
significantly lower than the average GHGI from the dataset of
(1.24 kg CO2-eq/ kg grain). The lowest climate-smartness were
evidenced in the treatments reported by Tran et al. (2017) (−0.49
to−0.11) and Fangueiro et al. (2017) (−0.67 to 0.23).

Despite high CSI variability within similar water treatments,
in all the studies the water management alternatives scored
higher CSI than CF treatments (Figure 2). According to CSI
calculated for the results reported by Yang et al. (2012),
Controlled Irrigation (CI) treatment showed higher climate
smartness compared with CF, similarly the results reported by
Fangueiro et al. (2017), showed that Sprinkler irrigation (SI)
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TABLE 1 | Summary of selected studies used to validate the CSI.

References Soil Agronomic management

Country Texture pH Planting method Water management Organic amendment

Chu et al., 2015 China Sandy loam – T CF-AWD Straw

Chidthaisong et al., 2017 China Clay 4.8 PB CF-AWD –

Fangueiro et al., 2017 Spain Loam – DS SI-CF –

Jain et al., 2014 India Loam 8 TPR-SRI-MSRI CF-SRI/AWD-MSRI/AWD –

Lagomarsino et al., 2016 Italy Silty clay loam – DR CF-AWD –

Liang et al., 2017 China – 6 T CF-AWD –

Linquist et al., 2015 United States Silt Loam 5.60 DR CF-AWD –

Setyanto et al., 2018 Java Loam – T CF-AWD –

Sibayan et al., 2017 Philippines Clay 7 T CF-AWD Organic amendment

Sun et al., 2016 Philippines – 7.6 T CF –

Tarlera et al., 2016 Uruguay Loamy clay 5.5-6.3 DS CF-AWD –

Tirol-Padre et al., 2018 Vietnam Indonesia Thailand Loam–Clay Loam 3.5-5.8 DS-T-PB CF –

Tran et al., 2017 Vietnam Loam 4.18 DS CF-AWD –

Wang et al., 2018 China Sandy Loam – DS CF-FI-AWD Wheat straw

Yang et al., 2012 China – – T CI-CF –

Studies selected from the dataset in Step Three: Normalization and Selection of Literature-Derived Reference GHGI and WP. T, Transplanted; DS, Direct seeding; DR, Dry-seeding; PB,

pre- germinated broadcasting method; TPR, conventional puddled transplanted; SRI, Conventional System of Rice Intensification; MSRI, Modified System of Rice Intensification; CF,

Continuous Flooding; AWD, Alternate Wetting and Drying; FI, Furrow Irrigation; CI, Controlled Irrigation; SI, sprinkler irrigation.

scored higher CSI than CF, although that scored the lowest CSI
among the studies (mean CSI = −0.19, n = 15). The CSI also
showed differences when was calculated for different seasons.
Tirol-Padre et al. (2018), reported results for wet and dry growing
seasons in Southeast Asia, where dry season scored higher CSI
(mean CSI = −0.04) than the same CF treatment during the wet
season (CSI=−0.19).

CSI of Contrasting Water Managements:
CF vs. AWD
CSI scores were calculated and compared along paired
experimental studies of water saving strategies-categorized as
either AWD and Continuous flooding (CF). The overall climate
smartness associated with water management practices can be
evidenced using the CSI metric. Seventeen paired comparison
between CF and AWD were analyzed. The results showed that
AWD scored higher than CF in all cases. Those differences could
be associated with changes in Water productivity (indicated by
the vertical arrows in Figure 3), GHGI (indicated by horizontal
arrows in Figure 3) or both (arrows with some slope degree).
The implementation of AWD in all cases, improved the
climate smartness independently of the site. The magnitude of
the changes generated by the AWD implementation can be
evidenced by the CSI differences between paired comparisons.

The greater differences between paired comparisons were up
to 0.5 in treatments reported by Linquist et al. (2015), due to
the difference of WP that was double in AWD. These treatments
presented a relative low GHGI (below to the average) that
did not change between treatments. Paired comparisons with
GHGI upper the average and WP below to average, showed CSI
differences between 0.12 and 0.19, mainly associated with the
reduction on GHGI. The CSI differences provide a quantitative

measure of the adoption impact, however, might not inform
about what originated those differences.

The study that showed the largest CSI difference between
treatments was (Linquist et al., 2015), which showed a CSI
difference of 0.26 between CF (mean CSI = 0.22) and AWD/40
(mean CSI = 0.560). It is recalled that this AWD/40 treatment
represents the most severe AWD option, in terms of water
reduction, that Linquist et al. (2015) assessed for. AWD/40 was
the treatment with the lowest TWIs and with a yield penalty
of −13%. However, the AWD/40 treatment showed an increase
of 63% in irrigation water-use efficiency and a reduction of
CH4 emissions by 86%, in comparison with continuous flooding
treatments (Linquist et al., 2015).

In contrast to the CSI results of Linquist et al. (2015), the
CSI differences between AWD and CF treatments carried out by
(Tarlera et al., 2016), showed a closer difference. Although AWD
held higher CSI (CSI = 0.17) comparing with CF (CSI = 0.12)
this slight difference was the result of a reduction in GWP
rather than water savings benefits. It should be noted that even
with a difference of 46% in GWP between CF and AWD, the
trade-off between water-saving (12%) and yield losses (−11%),
under AWD, did not represent a gain in water productivity, and
consequently did not improve the CSI significantly.

Apart from CSI differences between AWD and CF, seasonal
differences were evident. In the case of experiments reported
by Tran et al. (2017), the winter-spring season trial achieved
higher CSI (mean CSI= 0.24) for both AWD and CF treatments
compared with the CSI scores in the summer-autumn season
trial (mean CSI = −0.14). Those differences resulted from high
GWP during the summer-autumn season. According to the
authors, this might be due to differences in the air temperature
added to the short fallow period between both cropping seasons.
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FIGURE 2 | CSI scores of the selected studies. Yellow circles represent max and min CSI values in the studies and green circles represent the CSI average. The labels

in the right axis indicate the water management treatments that were assessed. CF, Continuous Flooding; CF-70%, 70% of normal irrigation; CF-30%, 30% of normal

irrigation; AWD, Alternate Wetting and Drying; AWD/60, AWD treatments were irrigated until soil moisture reached 60% of saturated volumetric water–measured at

5 cm depth when the plots were re-flooded; AWD/40, AWD treatments were irrigated until soil moisture reached 40% of saturated volumetric water–measured at 5 cm

depth when the plots were re-flooded; AWD/40CF, AWD treatments were irrigated until soil moisture reached 40% of saturated volumetric water–measured at 5 cm

depth when the plots were re-flooded, up until the plants reached the reproductive growth stage; after which a flood was maintained up until the field was drained for

harvest; CI, Controlled Irrigation; SI, Sprinkler irrigation; CF-WS, Continuous Flooding during Wet Season; CF-DS, Continuous Flooding during Dry Season; FI, Furrow

Irrigation; SRI/AWD and MSRI/AWD, Irrigation was given on twice a week to keep soil just moist (3.5 cm).

The fallow left in the field during summer-autumn season
translates into carbon sources for anaerobic bacteria populations,
responsible for methane production. For its part, results reported
by Liang et al. (2017) also showed seasonal differences in CSI.
In the early season experiments, the CSI between AWD and CF
was 0.04. Meanwhile, in the late rice season, it was 0.09. This
difference between seasons resulted from a reduction of TWI
during late rice and a yield increment of 13%.

The CSI also changed between AWD and CF treatments
when these were combined with other agronomic managements.
Chu et al. (2015) reported that AWD and CF treatments
with straw incorporation scored lower CSI (CF+S = −0.01,

AWD+S = 0.19) than the same water management without
the straw incorporation (CF-S = 0.14, AWD-S = 0.23). In
both AWD+ Straw and AWD-Straw, the water saving was
similar (19–20%), however, the emissions increased 2.53 times
when the straw was incorporated under CF condition, resulted
in a negative CSI. This rise of GHG emissions is caused
by the anaerobic litter breakdown under CF, which produces
methane (Zschornack et al., 2011; Das and Adhya, 2014).
The same increment of CH4 emissions was evidenced in
AWD+Straw, however, the dry periods promoted along the
crop cycle allowed for greater soil aeration, constraining the
anaerobic respiration.
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FIGURE 3 | Scatterplots of the relationship between Global Warming Potential

(GHGI) and Water Productivity (WP) plotted over a heat map indicating CSI

values. Gray circles represent AWD treatments and black circles Continuous

flooding treatments. The arrows link paired treatments from the same studies

and the numbers close to the arrows indicate the CSI difference between

them. The vertical dotted line represents the mean GHGI of studies in the

dataset and horizontal dotted line, the mean WP.

DISCUSSION

How Climate-Smart Are the Water
Management Alternatives in Rice? Putting
CSI in Practice
The way that indicators have been combined within the CSI
is done so on the understanding that the critical factors
affecting climate smartness in irrigated rice systems are the
relationships between water input and yield and between GHG
emissions and yield. Furthermore, it I recognized that these
two relationships may not be optimized simultaneously and it
is therefore important to consider the potential for trade-offs
between them. Indeed, this is illustrated in examples of AWD
trials, in which water savings and emissions reductions outweigh
yield costs, when compared with continuous flooding practices
(e.g., Linquist et al., 2015; Tarlera et al., 2016).

The CSI analysis presented here suggests universal
improvements in the climate smartness of water management
alternatives when compared with continuous flood irrigation.
However, the performance of water management systems is also
influenced by the agro-ecological conditions, climate change and
social dynamics where they are implemented (De Silva et al.,
2007; Sikka et al., 2018). This contextualized understanding
of irrigation management is emerging within a growing body
of experimental trials of these techniques. For instance, Dou
et al. (2016) reported that clay soils favored water and nutrient

retention more than sandy soils, resulting in higher tiller
production and grain filling of cultivars. Similarly, Carrijo et al.
(2017), in their meta-analysis of the impact of AWD on yield
and water use, concluded that high Soil Organic Carbon (SOC)
content, low bulk density and aggregate stability can result in
better AWD performance.

Consequently, we cannot explain the climate smartness
associated with AWD without considering suitability. Nelson
et al. (2015) designed a methodology based on a water balance
model to assess the suitability of AWD. The authors claimed that
sites with a negative water balance will be more suitable than
regions with a positive water balance, where the rainfall excess
could lead to extra cost by drainage labor. This corresponds with
the results of Sibayan et al. (2017), who reported a significant
reduction of water inputs in AWD, compared with CF, during the
dry season (> 50%) compared with a 20% of reduction during
wet season. As a consequence, AWD treatments under the dry
season (CSI = 0.25 to 0.31) resulted in a higher CSI score than
AWD treatments during the wet season (CSI=−0.11 to−0.16).

The way that the CSI is aggregated allows an easy association
between high WP-low GHGI with climate-smartness, and low
WP-high GHGI, with low climate-smartness in irrigated rice
systems. Consequently, a reduction of GHG emissions might
not be considered climate-smart by itself if it is associated with
significant yield penalties. In the same way, where improved
WP is associated with increased GHG emission, this will
not necessarily represent a climate-smart change. However,
situations in which individual CSA pillar improve considerably
with respect to others, or even at the expense of them, should be
carefully considered, as CSA priorities may not be the same in
all cases (Campbell et al., 2014; Lipper et al., 2014; Totin et al.,
2018). Regarding the relative nature of CSA, it would be possible
to alter the weighting of the components of the CSI, in order to
offer a measure of climate-smartness representative of contextual
priority indicators.

While the use of composite indices may result in a loss
of information (Baptista, 2014; Pollesch and Dale, 2016),
metrics like the CSI can help to reduce the ambiguities
associated with the interpretation of CSA; responding to a
concern over the consistency of claims about what is and is
not climate smart (Rosenstock et al., 2016; Saj et al., 2017;
Karlsson et al., 2018; Taylor, 2018). In this sense, both the
methodological approach and CSI results, bring objectiveness to
the communication of evidence related to climate-smartness in
rice. Thus, under an agreed climate-smartness definition and a
replicable quantification of this, subjective interpretations could
be avoided. The “climate-smart” labeling of agricultural systems
or agronomic strategies, based on biased interpretations of CSA
indicators or the misconception of a mandatory “triple win”
goal, are examples of that. In both cases, the CSI could offer a
transparent measure of climate-smartness.

Considerations About the Climate
Smartness Index (CSI) Design
Since its launch by the FAO in 2009, Climate Smart
Agriculture has been reshaped and consolidated by an
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increasing pool of scientific evidence related with the
impact of agronomic practices on CSA pillars and their
suitability (Lipper and Zilberman, 2018). However, the context-
dependent nature of CSA and the comprehensive range of
cropping systems and environments where the agriculture is
developing, add to the considerable challenge of quantitatively
measuring and comparing the climate smartness of practices
(Wollenberg et al., 2016; Torquebiau et al., 2018).

The approach to developing a CSI presented here, offers a
means to quantitatively measuring and comparing the combined
mitigation, adaptation and productivity properties of agricultural
practices. The specific CSI presented is a suitable metric for
contexts in which the primary climate-driven constraint, relates
to water availability; and where there is concern over changing
climate risks, such as drought, changing rainfall patterns or
increasing temperatures and evaporation rates in the field.
We have normalized this CSI for application in a systematic
comparative review of rice irrigation management, by using
reference values from this literature.

As explained by Dobbie and Dail (2013) and Mazziotta
and Pareto (2013) indicator selection should be underpinned
by a clear theoretical framework, explaining in this case what
represents CSA in a given context. For the CSI proposed, the
theoretical framework was focused on explaining the context
in which the optimization of water use and the reduction of
GHG could be considered climate-smart. For this, a water-
scarcity climate risk context was given. This specification is
important since rice is also threatened by other climate risks like
sub-emergence, soil salinity and high temperatures (Mohanty
et al., 2013), and thus the climate smartness meaning may change
according to it.

Some studies, like Tivet and Boulakia (2017) in Vietnam, and
Geetha Lakshmi et al. (2016) in India, have associated low GHG
emissions and high water productivity with climate smartness.
However, the conceptual framework present here, also recognizes
the importance of the relationships between water use and yield
and water use and GHG emissions, as well as the potential that
these relationships may not be optimized simultaneously within
a rice irrigation system (Wassmann, 2010; Saharawat et al., 2012;
Xu et al., 2015; Yao et al., 2017). The CSI could offer an easy
interpretation of the trade-offs between indicators instead of
relying on them being analyzed separately.

Another key aspect of CSI design was the selection
of indicators, which is considered an important step in
the design of composite indices and should be selected
according to their relevance, robustness, availability, accuracy,
etc. (Mazziotta and Pareto, 2013; Reytar et al., 2014; Pollesch
and Dale, 2016). The selection of WP and GHGI was based
on a deductive approach (Wiréhn et al., 2015), over the
theoretical understanding of the variables as indicators of
mitigation and adaptation (FAO, 2013; World Bank, 2016;
Devkota et al., 2019; SRP, 2019), and the trade-offs that
they could represent. Although the deductive approach might
be subjective, WP and GHGI have been recognized by
Reytar et al. (2014) as a good proxy for environmental-
related with water (Water productivity) and climate change
(GHGI). The authors analyzed the indicators according to

availability, accuracy, consistency, frequency and differentiation
and concluded that WP and GHGI have high availability and
are highly relevant for decision making as well as differentiating
by countries or regions, however, its accuracy and consistency
is medium.

The selection of the indicators also corresponds to the
trade-off that they represent. Both indicators are expressed in
terms of grain yield, representing the relation between the water
inputs and GHG emissions involved in rice production. In this
sense, an increment of WP would be given by either an increase
in productivity or reduction of water inputs (Tuong and Bouman,
2003; Heydari, 2014). The water-saving is desirable, however,
if this represents a significant yield penalty, are not desirable
for farmers (Bouman and Tuong, 2001; Wu et al., 2017) and
unsustainable in the medium and long term. Similarly, by using
GHGI as an indicator of mitigation is also considering the
mitigation associated with increasing yields that could avoid
increases in emissions by rice area expansion (Adhya et al., 2014).

The CSI has been bounded using generic reference values of
WP and GHGI, these values are used to create a finite set of
possible values that the index could take, within realistic and
reliable boundaries. Given the normalization method used (Min-
Max), the references min and max values selected from the
literature and used to normalize the indicators are not necessarily
constants into the CSI. This type of transformation is not stable
since new data becomes available at some point and might be out
the range of the references values (OECD, 2008). Such reference
values can be changed at the light to discoveries, or be fitted
according to a specific spatial or temporal baseline, or according
to target and thresholds established in the frame of policies
(Pollesch andDale, 2016;Muthuprakash andDamani, 2019). The
generic nature of the reference values used explains whywe see, in
some contexts, a relatively low sensitivity to irrigation strategy in
the CSI. As climate-smart agriculture (CSA) is a relative concept
the reference values could be set up based on clear-described
targets or contextualized baseline conditions. For instance, the
CSI compared between Asian countries showed a difference
between China and the rest of Asian countries represent in the
study. This gap is, in part, a result of the high yield traits of
Chinese rice varieties and so it may be appropriate to use a
different reference value when evaluating CSI within China, as
opposed to within Asia as a whole, so that the CSI is more
sensitive to differences in practice within this context.

Application and Potential of the CSI
Approach
The methodological approach presented in this paper can
be replicated for the design of metrics that support climate
smartness assessments:

• Comparing the relative climate smartness of different practices
in a given context, based on experimental site data.

• Comparing the climate smartness of a single practice across
contexts (across space and time).

• Comparing the climate smartness of a contextualized practice
to a hypothetical target or reference (which could be used for
normalizing the index).
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• Comparing response ratios between contrasting
treatments (i.e., AWD vs. CF) across different agro-
environmental contexts.

Consistently with the context-dependent nature of the CSA
approach, the approach to developing a CSI set out here is
designed to be flexible enough to be adapted to different
cropping systems under several climate contexts, by the
modification of the CSI indicators, reference values and
aggregation options required. For instance, direct seasonal
emissions may not represent the dominant source of emissions
in all agricultural cropping systems, in these cases, the amount
of sequestered carbon or indirect contributions (e.g., use of
inorganic fertilizers, intensive tillage, post-harvesting residues
management, among others), would represent more accurate
proxies for mitigation. Similarly, adaptation objectives are
context-specific, and associated with different primary climate
risks (e.g., in rice systems there may be a primary concern with
submergence, pests and diseases; heat stress, drought stress, and
soil/water salinity).

The replicable and quantitative metric that a CSI represents
within these applications, makes it potentially valuable in
informing the targeting of agricultural support programs and
development initiatives, and in helping to direct agronomic
research agendas and evaluation methodologies, for which
climate smartness is a central objective. However, it is important
to highlight that there are some situations within which the
CSI could be open to misinterpretation. It should avoid being
interpreted as an absolute measure of the climate smartness of
a practice (as opposed to a relative one) and nor should it be used
to compare of contrasting agronomic management in different
contexts (e.g., AWD in Asia vs. CF in Africa).

CONCLUSIONS

An approach to developing a climate smartness index is
presented and then applied in a systematic review of irrigated
rice systems. The process of developing the index follows
four steps: (1) defining system specific climate smartness; (2)
selecting relevant indicators; (3) normalizing against reference
values; and (4) weighting and aggregating by additive methods.
The CSI presented here offers a novel contribution to the

growing body of literature on CSA by providing a single
quantifiable metric of climate smartness. The approach is applied
in comparative measures of the climate smartness of irrigation
strategies in which the predominant mitigation concern relates
to field level emissions, and the predominant adaptation actions
aim for tackle the limitations in water availability. Future
developments of this work may focus on the development of
equivalent metrics for application in other agricultural systems
and contexts, contributing to the building of a replicable and
comparable evidence base for climate-smart agricultural practice
and planning.
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