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RESEARCH Open Access

Specific trophoblast transcripts transferred
by extracellular vesicles affect gene
expression in endometrial epithelial cells
and may have a role in embryo-maternal
crosstalk
Masoumeh Es-Haghi1†, Kasun Godakumara1†, Annika Häling1, Freddy Lättekivi1, Arina Lavrits1, Janeli Viil1,
Aneta Andronowska2, Tamer Nafee3, Victoria James4, Ülle Jaakma5, Andres Salumets6,7,8,9 and Alireza Fazeli1,3*

Abstract

Background: Successful establishment of pregnancy hinges on appropriate communication between the embryo
and the uterus prior to implantation, but the nature of this communication remains poorly understood. Here, we
tested the hypothesis that the endometrium is receptive to embryo-derived signals in the form of RNA.

Methods: We have utilized a non-contact co culture system to simulate the conditions of pre implantation
environment of the uterus. We bioorthogonally tagged embryonic RNA and tracked the transferred transcripts to
endometrium. Transferred transcripts were separated from endometrial transcripts and sequenced. Changes in
endometrial transcripts were quantified using quantitative PCR.

Results: We show that three specific transcripts are transferred to endometrial cells. We subsequently demonstrate
a role of extracellular vesicles (EVs) in this process, as EVs obtained from cultured trophoblast spheroids incubated
with endometrial cells induced down-regulation of all the three identified transcripts in endometrial cells.
Finally, we show that EVs/nanoparticles captured from conditioned culture media of viable embryos as opposed to
degenerating embryos induce ZNF81 down-regulation in endometrial cells, hinting at the functional importance of
this intercellular communication.

Conclusion: Ultimately, our findings demonstrate the existence of an RNA-based communication which may be of
critical importance for the establishment of pregnancy.

Keywords: Embryo-maternal communication, Extracellular vesicles, Non-coding RNA

Plain English summery
The phenomenon of an embryo attaching to the mother

has fascinated scientists for generations. The embryo is

essentially an outside presence in the uterus because

only one half of its genetic information is originating

from the mother. Why doesn’t the mother’s system

refuse the attachment? One possibility would be a com-

munication between the embryo and the mother before

any attachment, convincing the mothers cells that the

embryo is not a threat. Using this general theme, we

developed a hypothesis that if a communication takes

place, it could be in the form of RNA exchange.

We used an artificial trophoblast (outermost later of

the embryo) to represent an embryo just about to im-

plant, and endometrial cells (cells lining the inner wall

of uterus) as the mothers’ cells for this experiment. We

labelled the RNA in the embryo cells and put embryo
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and mothers’ cells together to see if any communication

would take place. We were able to capture the labelled

RNA inside the mother’s cells thus confirming that com-

munication between embryo and the mother occurs and

it uses RNA as the medium.

It was also apparent by the way the transport took

place, that RNA is being transferred between the cells

packaged in extracellular vesicles, the cargo ships of the

cell world. We believe that these observations could be a

stepping stone in the path of understanding the first

communication between a baby and the mother.

Background
The development of the mammalian embryo into a

fully-fledged organism depends critically on its success-

ful implantation into the uterine wall. However, as a

non-self-entity, the embryo must avoid rejection by the

mother’s immune system, necessitating an intricate set

of negotiations before implantation can occur. Thus, the

interaction between the fertilised embryo and the mater-

nal tract arguably represents the most important diplo-

matic process in placental mammals. Despite this, very

little is known regarding the language in which these ne-

gotiations are carried out.

That the female reproductive tract is able to detect

and respond to the presence of gametes and embryos is

well established and evident in the transcriptomic and

proteomic profiles of the oviduct/fallopian tube and

endometrial cells [1–4], suggesting that some form of

signal is transmitted by the embryo. While such signals

may exist in a variety of forms, several lines of evidence

are pointing to the exchange of noncoding RNA

(ncRNA) from embryo to mother [5] and vice versa [6]

as a mean of communication leading to alterations of

transcriptomic and epigenomic profiles of the maternal

tract.

Recent investigations have pointed to the exchange of

different forms of ncRNA as a major component of cell-

to-cell communication [7–9]. These exchanges seems to

be partly mediated through extracellular vesicles (EV)

[10]. The term EV describes a membrane bound particle

with a diameter of 40 to 1000 nm [11]. Subdivisions of

EVs such as exosomes (40 - 100 nm) are termed accord-

ing to their size and biogenesis [12]. EVs carry DNA,

RNA and proteins and thus can facilitate cell-to-cell

communication via the exchange of these molecules

[13]. Different forms of RNA have been described as

cargo of EVs, i.e. mRNA, ncRNA such as microRNA

(miRNA) and long non-coding RNA (lncRNA) [10].

MiRNAs are small (∼22 nucleotides) non-coding single

stranded RNAs which are master post-transcriptional

regulators of gene expression. Over 2000 miRNAs have

been discovered in the human genome, which collect-

ively regulate over a third of the genes in the human

genome [14]. LncRNA are defined as autonomously

transcribed RNA with more than 200 nucleotides. Long

intergenic/intervening RNA (lincRNA) are lncRNA which

do not overlap protein coding genes [15]. There are over

30,000 lncRNAs discovered and annotated, approximately

half of which are lincRNA [16]. There are over 150

lincRNA with a described putative function. Generally, the

function of lincRNA is to modify gene expression by dir-

ectly affecting nuclear architecture [15]. Expressions of

many lincRNA are known to be altered in several types of

cancers including endometrial carcinoma [17, 18] as well as

in polycystic ovary syndrome [19]. LincRNA LINC473 is re-

ported to be significantly involved in decidualisation by

regulating some crucial decidual factors and WNT4 [20].

To best of our knowledge there are currently only two

studies that have indicated the uptake of embryonic

ncRNA by the endometrial cells [5] and vice versa the

uptake of the maternal ncRNA by the embryos [6].

However, both of these studies focused on miRNA, and

the role of other ncRNAs in maternal-embryo communica-

tion has not been addressed. Hence, to fully understand the

extent of communication between mother and embryo it is

important to investigate the potential of other RNA species

exchanged between the embryo and the mother. In the

current investigation, we tracked and captured both coding

and ncRNA exchanged in cell-cell communication model

using a genetic labelling system based on copper (I)-cata-

lysed cycloaddition reaction, also known as bioorthogonal

click chemistry [21]. Bioorthogonal tagging of metabolites

(such as nucleic acids, proteins, glycans and lipids) uniquely

enables tracking the tagged substance in vivo and in vitro

[22–24], while not disrupting other physiological processes.

During neurogenesis, for instance, it is possible to visualize

bioorthogonally labelled RNA as it spreads over dendron

cells using nascent RNA synthesis in presence of 5-ethynyl

uridine (EU) [25]. Application of a similar EU-RNA label-

ling system in the present study led to the discovery of tran-

scripts transferred from trophoblast to endometrial cells.

Given the well-recognized ethical and technical limitations

associated with the study of human embryo-endometrial

dialogue in vivo [26], we used an established human

in vitro implantation model using RL95–2, a human epithe-

lial cell line derived from a moderately differentiated endo-

metrial adenocarcinoma [27] that exhibits pronounced

adhesiveness to trophoblast-derived JAr cells [28]. Although

JAr and RL 95–2 cells are not perfectly similar to the

trophoblast and receptive endometrium, there is evidence

to infer a significant similarity due to the extensive use of

these cell types in embryo adhesion and communication

models [29–32]. We identified specific trophoblast tran-

scripts that were transferred by EVs into endometrial RL95

cells, leading to the down-regulation of the same transcripts

in the co-cultured recipient endometrial cells. Furthermore,

EVs/nanoparticles captured from conditioned culture
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media of viable human embryo down-regulated the

expression of at least one of the transcripts in the RL95

cells. Interestingly, co-culture of EVs/nanoparticles ob-

tained from the conditioned culture media of degener-

ating human in vitro fertilization (IVF) embryos did not

alter the expression of the particular endogenous tran-

script in RL95 cells. We suggest that these intriguing

findings represent the first steps towards deciphering

the ‘spoken language’ between the embryo and the

mother at early stages of conception.

Materials and methods
Cell culture and spheroid formation

The human endometrial adenosquamous carcinoma cell

line (RL95–2) was obtained from American Type

Culture Collection (ATCC CRL-1671, Teddington, UK).

RL95–2 was cultured in Dulbecco’s Modified Eagles

Medium (DMEM 12-604F, Lonza, Verviers, Belgium)

supplemented with 1% Penicillin/Streptomycin (P/S,

Gibco™ 15140122, Bleiswijk, Netherlands), 5 μg/ml Insulin

(human recombinant insulin, Gibco, Invitrogen, Denmark),

1% L-glutamine (Sigma, 59202C, Saint Louis, USA) and

10% fetal bovine serum (Gibco™, 10500064) at 37 °C in 5%

CO2 atmosphere.

The human choriocarcinoma cell line (JAr) from the

first trimester trophoblasts was acquired from ATCC

(HTB-144™, Teddington, UK). JAr cells were cultured in

a T75 flask in RPMI 1640 media (Gibco, Scotland) sup-

plemented with 10% FBS, 1% L-glutamine and 1% P/S at

5% CO2 in 37 °C. At confluency, JAr cells were washed

with Dulbecco’s phosphate-buffered saline without Ca+ 2

and Mg+ 2 (DPBS, Verviers, Belgium), harvested using

trypsin-EDTA (Gibco® Trypsin, New York, USA) and

pelleted by centrifugation at 250 g for 5 min. 1 × 106

cells/ml were cultured in 5 ml of supplemented RPMI

1640 medium in 60mm Petri dishes at 5% CO2 in 37 °C.

The cells were kept on a gyratory shaker (Biosan PSU-2

T, Riga, Latvia), set at 295 rotations per minute (rpm)

for 18 h [33]. The viability of produced spheroids was

confirmed by Live/dead® viability/cytotoxicity assay kit

(Molecular Probes, Eugene, Oregon, USA), according to

the manufacturer’s instructions. Briefly, a working solu-

tion was prepared with the final concentration of 2 μM

and 4 μM for calcein AM (acetoxymethyl ester of cal-

cein) and EthD-1 (ethidium homodimer-1), respectively.

The working solution was added directly to spheroids

and incubated at room temperature for 30 min and the

viability of spheroids (majority of cells emitting green

fluorescence) was confirmed with florescent microscopy.

The multicellular spheroids were used to mimic tropho-

blast cells in vitro.

The human embryo kidney (HEK) 293 T cell line was

cultured in DMEM/F-12 supplemented with 10% of heat

inactivated FBS (Gibco), and 1% L-glutamine (Sigma).

All cells were grown in T75 flasks at 37 °C in a 5% CO2

atmosphere. The media was changed every second day

until confluence of the cells. One million cells were

counted with a haemocytometer and cultured overnight

on a gyratory shaker to form multicellular spheroids as

described above.

5-ethynyluracil tagging of trophoblast spheroids

Produced spheroids were either used without labeling

(based on the particular experimental design) or labelled

with 5-ethynyl uridine (EU). For labeling, about 2 × 103

spheroids were incubated in 5 ml culture media supple-

mented with EU at a final concentration of 0.2 mM in

60mm pPetri dishes at 5% CO2 in 37 °C. The spheroids

were kept on gyratory shaker (Biosan PSU-2T), set at

295 rpm for 18 h. The day after labeling, spheroids were

washed by placing them in a 50 ml tube. The super-

natant, including single cells and incomplete spheroids,

was removed. Spheroids were re-suspended in 20ml

pre-warmed culture media and after settlement, the

supernatant was removed. The washing step was re-

peated to remove the EU molecules from the spheroid’s

environment. The labelled spheroids were prepared for

co-culture system.

Non-contact co-culture of trophoblast spheroids with

endometrial cells

Endometrial cells were cultured (seeding density 1.25 ×

106) in each well of 6-well plate until 60% confluency.

For co-incubation of trophoblast spheroids with epithe-

lium, a 0.4 μm membrane insert was inserted in each

well (Falcon® Permeable Support for 6 Well Plate with

0.4 μm Translucent High Density PET Membrane). The

depth of the insert allowed the membrane to be

immersed in the culture media covering the epithelial

cells but not in direct contact with the cells (so-called

the non-contact co-culture system). Then, approximately

2 × 103 labelled spheroids were inserted on a 0.4 μm

membrane insert in each well of a 6-well plate. The

labelled spheroids and endometrial cells were co-

incubated in serum-starved media consisted of DMEM

(DMEM/F12, Verviers, Belgium v/v 1:1) supplemented

with 1% L-glutamine, 1% P/S, transferrin (10 mg/ml;

BioReagent, Cat. No. T8158), selenium (25 mg/L; Sigma,

Cat. No. 229865), bovine serum albumin (1 mg/ml;

HyClone™, Cat. No. SH30574), linoleic acid (4.7 mg/ml;

Sigma, Cat. No. L1012) and insulin (5 mg/ml) for 24 h.

Total RNA extraction and quality control

Total RNA was extracted from endometrial cell line,

conditioned media and EVs by TRIzol Reagent and etha-

nol precipitation (TRIzol® reagent; Invitrogen). To increase

the efficiency of RNA extraction, 2 μl glycogen (Ultra-

Pure™ Glycogen, Cat. no. 10814–010, Thermo Fisher
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Scientific, Bleiswijk, Netherlands) was added to the lysis

buffer per sample. The RNA pellet was washed three

times by 70% ethanol. Quality and quantity of the ex-

tracted RNA samples were analysed by Bioanalyzer Auto-

mated Electrophoresis instrument (Agilent technologies,

Santa Clara, CA) using Agilent RNA 6000 Pico Kit (Agi-

lent technologies) and Agilent Small RNA kit (Agilent

technologies).

Affinity precipitation of EU-labelled RNA

EU-labelled RNA was affinity precipitated according to

the manufacturer’s instruction of Click-iT Nascent RNA

capture kit (Thermo Fisher Scientific, Waltham, MA;

Cat. No. C10365). Briefly, the extracted total RNA from

cell lines, conditioned media and/or EVs were biotinyl-

ated in click-it reaction mixture with a final concentra-

tion of 1 mM biotin azide. The click-it reaction mixture

was incubated for 30 min at room temperature while

gently mixing using a gyratory shaker with 500 rpm.

Biotin-azide (PEG4 carboxamide-6-azidohexanyl biotin)

was attached to alkyne reactive group of the EU-labelled

RNA using click chemistry. Biotinylated RNA, was incu-

bated with 12 μl MyOne™ Streptavidin T1 magnetic

Dynabeads® into Click-iT RNA binding buffer for a final

volume of 74 μl. The mixture of RNA and bead was in-

cubated in the dark at room temperature for 40 min

while mixing using a gyratory shaker, 500 rpm speed to

prevent the beads from settling. After biotinylated RNA

binding to Dynabeads, beads were washed three times

with two wash buffers that were included in the kit (pre-

warmed to 65 °C), while mixing vigorously with a

gyratory shaker at 700 rpm to remove the non-

specifically attached RNA. After the last wash, the beads

were immobilized by the DynaMag™-2 magnet and wash

buffer was completely removed. Beads were re-suspended

in 15 μl nuclease free water and were directly used for

cDNA synthesis for sequencing and quantitative polymer-

ase chain reaction (qPCR).

cDNA library preparation and sequencing of captured EU-

labelled RNA from endometrial cells

Ovation RNA-Seq System V2 (NuGEN technologies, San

Carlos, CA, Cat.No.7102–32) was used for cDNA library

synthesis. The manufacturer’s protocol was slightly

modified to allow single strand cDNA to be synthesised

(ssDNA) from on-bead RNA fragments. The modifications

were as follows, 2 μl of First Strand Primer Mix was added

to 14 μl on-bead RNA fragments and incubated for 5min

at 65 °C, followed by cooling on ice for 5min. Then, 0.5 μl

of first strand enzyme mix and 5 μl of first strand buffer

mix were added to the mixture resulting in a final volume

of 20 μl. The mixture was incubated at 43.5 °C for 60min

on an Eppendorf thermomixer (700–800 rpm) to prevent

the beads from settling. Finally, the mixture was thermal

shocked at 85 °C for 10min and beads were rapidly immo-

bilized by a magnet allowing the collection of cDNA from

the supernatant. Ten μl of first strand cDNA was used in

the double strand synthesis step. Double strand cDNA syn-

thesis was performed according to NuGEN manufacturer’s

instructions. cDNA quality was measured by High Sensitiv-

ity DNA 1000 Assay Kit (Agilent technologies). Double

stranded cDNA was subsequently used for barcoded library

preparation. Libraries were prepared using the AB Library

Builder™ System (Thermo Fisher, Cat. No. 4477598) and

Ion Xpress™ Plus Fragment Library Kit (Thermo Fisher), ac-

cording to the manufacturer’s instructions. The barcoded

libraries were sequenced on two Ion 540™ Chips (Thermo-

Fisher Scientific Inc., CA, USA, Cat. No. A27766) with four

libraries per chip using the Ion S5 XL sequencer (Thermo

Fisher Scientific Inc).

Differential expression analysis of RNA-seq data

The experimental methods used for detecting trans-

ferred transcripts resulted in the selective enrichment of

transferred transcripts. This enrichment was quantified

by conventional differential expression analysis methods

since the measured effect was the alteration in the rela-

tive quantity of transcripts in one experimental group

compared to another. Sequenced reads were first aligned

to the hg19 human reference genome using the Torrent

Mapping Alignment Program (TMAP; Thermo Fisher

Scientific), using mapping algorithm map 4 with default

parameters. TMAP is a sequence alignment software

optimized specifically for mapping reads produced by

Ion Torrent sequencing platforms. Read counts were

obtained for 55,766 annotated coding and non-coding

genomic elements in the hg19 human reference genome.

Differential gene expression analysis of RNA-sequencing

(RNA-seq) data was performed using the Generalized

Linear Model (GLM) pipeline of edgeR package in R

[34, 35]. The genomic elements failing to surpass

counts per million (CPM) cut-off of 0.7 for at least 3

out of 4 samples in at least one of the experimental groups

were omitted from further analysis. The threshold CPM ≥

0.7 translates to 10 aligned reads per genomic element di-

vided by the mean of total sequenced reads of all samples

in millions. The differentially expressed transcripts were

considered significant if the false-discovery rate (FDR)

reported by edgeR was less than or equal to 0.05 (FDR ≤

0.05). Integrative Genomics Viewer (IGV) was used to

inspect the coverage of differentially expressed (enriched)

transcripts.

cDNA synthesis and qPCR analysis for quantification of

EU-labelled transferred transcripts

EU-labelled RNAs from the complete conditioned media

and EVs were affinity precipitated and the copy number

of EU-labelled ZNF81, exonic-LINC00478 and intronic-
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LINC00478 were quantified. For cDNA synthesis of EU-

labelled transferred transcripts, a mixture of random

hexamer and oligo (dT) primers was used (SuperScript®

VILO™ cDNA synthesis kit, 11,754 050). For EU-labelled

RNA on bead, the cDNA synthesis was performed ac-

cording to the Click-iT RNA Capture Kit. The primers

for transferred transcripts (ZNF81, exonic and intronic-

LINC00478) were designed by Beacon designer 8 (PREM-

IER Biosoft International, Palo Alto, CA) and reads se-

quences were used as template (Additional file 1: Table

S1). For quantification of EU-labelled ZNF81 and exonic-

LINC00478, cDNA products were amplified in EvaGreen

assay system (Solis BioDyne, Tartu, Estonia) with the fol-

lowing program: 95 °C for 15min, followed by 40 cycles of

95 °C for 20 s, 60 °C for 20 s, and 72 °C for 20 s. For melt-

ing curve analysis, the fluorescence signals were collected

continuously from 65 °C to 95 °C at 0.05 °C per second.

For quantification of EU-labelled intronic-LINC00478,

the cDNA product was amplified in EvaGreen master

mix, including 5% DMSO with following real-time

touchdown PCR program: starting with 31 cycles of

94 °C for 20 s, the decreasing annealing temperature for

20 s, and extension of 72 °C for 20 s. The annealing

temperature decreased 0.1 °C per cycle from 63.6° to

60 °C. For melting curve analysis, the fluorescence sig-

nals were collected continuously from 65 °C to 95 °C at

0.05 °C per second.

For spike-in and normalizing of candidate transferred

transcripts, 100 bp from Isopenicillin N-CoA synthetase

gene was used (Biomer.net company, Ulm/Donau,

Germany, molecular weight: 32239 g/mol, 100 pmol/μl)

(Spike-in synthetic RNA Sequence refer to the Table.1).

Synthetic RNA was serially diluted 20 times. For the first

serial dilution, 1 μl of synthetic RNA was added to 39 μl

RNase-free water to final concentration of 2.5 μM. Serial

dilutions were prepared with a dilution factor of 4x.

Serial dilutions were reverse-transcribed and amplified

using real-time PCR and the cycle threshold (Ct) values

of dilutions were plotted against the copy number of

transcript. Exponential calibration curve was fitted. In

parallel, 1 μl of synthetic transcript was added to the sam-

ple during TRIzol RNA extraction and then the Ct of syn-

thetic RNA in this sample was assayed to calculate the

RNA extraction efficiency and normalizing factor [36].

Confocal laser scanning and imaging of EU-labelled RNA

The transferred EU-labelled RNAs were tracked by

Alexa Fluor 488 azide (Included in Click-iT® RNA Im-

aging Kit; Invitrogen, C10329). After 24 h co- culture of

endometrial cells with EU-labelled spheroids, the condi-

tioned media was removed and the endometrial cells

were incubated with pre-warmed cell tracker working

solution for 30 min (CellTracker™ Deep Red dye; Life

Technologies, C34565). After incubation the cells were

washed with DPBS, fixed with 4% formaldehyde (Thermo

Fisher, GmbH) and permeabilized with 0,1% Triton X-100

in PBS (AppliChem GmbH, Darmstadt, Germany). Next,

the EU-labelledRNA was detected using the Click-iT®

RNA Imaging Kit (Invitrogen, C10329) according to the

kit protocol. Confocal laser scanning microscopy was

performed using LSM510 Laser Scanning Confocal

Microscope (LSM 510 Duo; Carl Zeiss Microscopy

GmbH, Jena, Germany).

EVs purification and nanoparticle tracking analysis (NTA)

Co-culture EVs were harvested from conditioned media

of trophoblast spheroids/endometrial cell co-culture.

Three millilitres of conditioned media from each well of

6-well plate dish was collected and 3 μl from RNase in-

hibitor (Solis BioDyne, Tartu, Estonia) was added to

conditioned media. Conditioned media was centrifuged

at 400 xg for 10 min. The supernatant was further cen-

trifuged at 4000 g for 10 min and the supernatant was

further centrifuged at 20,000 g for 15 min to get rid of

cell debris and apoptotic bodies. The supernatant was

filtered two times with 0.2 μm filter. To isolate EVs,

Table 1 The table of primers and sequence information

Transcript Name Primer Sequence (5′-3′)

ZNF81 Forward primer: TGATACAGAAGACTTGAGATT
Reverse primer: TCACAAAGTATTCACATTACC

Exonic LINC00478 Forward primer: TCAAGTTCAGTGTTTGGTTAA
Reverse primer: GGCAGAATCGTGAATAGC

Intronic LINC00478 Forward primer: AACAGGTCACAATGGTGGAATG
Reverse primer: TGAAGCAACTGAAGATCCACAA

Beta-2-microglobulin Forward primer: CGGGCATTCCTGAAGCTGA
Reverse primer: TGGAGTACGCTGGATAGCCT

Beta-actin Forward primer: GTGCGCCGTTCCGAAAGT
Reverse primer: ATCATCCATGGTGAGCTGGCG

Synthetic RNA Spike-in (100 bp
from Isopenicillin N-CoA synthetase)

Spike-in Forward primer: TACTGCATCCCGCTCTAC
Spike-in Reverse primer: CGCTCATCAAGTCGTTCA
Spike-in RNA sequence: UUGGGCAGAAACCGGGCCCCAACGGUGACCGCACCUACU
ACUGCAUCCCGCUCUACCACGGAACGGGGGGCAUCGCGGCCAUGAACGACUUGAUGAGCGG
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filtered conditioned media was concentrated to 500 μl

with Amicon® Ultra-15 centrifugal filter devices (10 kDa

cut-off). EVs were isolated using size exclusion chroma-

tography (SEC). A cross linked 4% agarose matrix of

90 μm beads were used (Sepharose 4 fast flow™, GE

HealthCare Bio-Sciences AB, Uppsala, Sweden) in a 30 cm

column. Fractions 7–10 (fraction size 1ml) were collected.

Fractions were concentrated using Amicon® Ultra-15

centrifugal filter devices (10 kDa cut-off). Isolated EVs

were quantified using NTA (ZetaView, Particle Metrix

GmbH, Inning am Ammersee, Germany). When prepar-

ing spheroid-derived EVs, conditioned media from 24 h

cultures of spheroids in 60mm dishes were used.

Collection of human embryo conditioned culture media,

EV/nanoparticles purification and characterization

Experiments with human IVF embryo conditioned cul-

ture media were carried out under the ethical approval

of Research Ethics Committee of the University of Tartu,

approval number 267/T-2. Human embryos were pro-

duced by IVF or intracytoplasmic sperm injection (ICSI).

They were cultured individually for 17–21 h (day 1) in

sequential fertilization media (Sequential Fert™, Origio,

Måløv, Denmark), 48 h (day 3) in sequential cleavage

stage media (Sequential Cleav™, Origio) and additionally

48 h (day 5) in sequential blastocyst stage media (Se-

quential Blast™, Origio). At day 3, embryos with equal

size blastomeres and no fragmentation were considered

as normal. At day 5, embryos with identifiable inner cell

mass, trophoblast and blastocyst cavity were considered

normal while embryos with degrading cells were considered

as degraded. Embryo conditioned media (50 μl) was col-

lected and subjected to low speed spin (400 x g, 2000 g).

EVs/nanoparticles were isolated from the media using SEC.

Namely 8–10 fractions with the volume of 1ml were

collected for further concentration in 10 kDa Amicon®

Ultra-15 Centrifugal Filters (Merck Millipore, Burlington,

Massachusetts, United States). Concentration of EVs/nano-

particles were measured using NTA (ZetaView).

Western blot analysis

Purified EVs from trophoblast spheroids were precipi-

tated by adding 200 μl of water, 400 μl of methanol and

100 μl of chloroform to 200 μl of EVs. The solution was

vortexed and centrifuged 14,000 g for 5 min at room

temperature. After removing the top layer, precipitated

proteins were washed with 400 μl of methanol and cen-

trifuged again. The pellets were air-dried, resuspended

in 0,5% SDS and the protein concentrations were deter-

mined by Bradford assay. 30 μg of protein were heated

for 5 min at 95 °C in reducing (for Apo A-I detection) or

in non-reducing (for CD63, CD9 and CD81 detection)

Laemmli buffer and resolved in 12% SDS-PAGE accord-

ing to standard protocol. Proteins were transferred onto

polyvinylidene difluoride membrane (Thermo Fisher

Scientific), followed by blocking in 5% non-fat dry milk

in PBS-T (0,05% Tween-20, Thermo Scientific, Mich-

igan, USA) for 1 h at room temperature. Subsequently,

membranes were incubated with the primary anti-CD63

(sc-5275, 1:1000, Santa Cruz Biotechnology Inc., Dallas,

TX), anti-CD9 (MA1–80307, 1:1000, Thermo Fisher

Scientific, Loughborough, UK), anti-Apo A-I (sc-376,

818, 1:1000, Santa Cruz Biotechnology Inc. Dallas, TX),

and anti-CD81 (555,675, 1:1000, BD Biosciences, New

Jersey, USA) antibodies overnight at 4 °C in 5% milk-

PBS-T solution and then with horseradish peroxidase

conjugated goat anti-mouse secondary antibody (sc-516,

102, 1:1000, Santa Cruz Biotechnology Inc. Dallas, TX)

for 1 h at room temperature. Membranes were washed

three times for 5 min in PBS-T after each incubation

step. Protein bands were detected using ECL Select™

Western Blotting Detection Reagent (GE Healthcare,

Buckinghamshire, UK) with ImageQuant™ RT ECL Imager

(GE Healthcare, Buckinghamshire, UK).

Electron microscopy

Suspension of EVs was deposited on formvar-carbon-

coated 200 mesh cooper grids (Agar Scientific, Essex,

UK) for TEM analysis according to the method de-

scribed by Thery et al. 200,615. Briefly, EVs on grids

were fixed in 2% paraformaldehyde (P6148, Sigma-

Aldrich, Schnelldorf, Germany) and 1% glutaraldehyde

(O 1909–10, Polysciences, Warrington, USA), before be-

ing contrasted in uranyl oxalate [mixture of 4% uranyl

acetate (21447–25, Polysciences, Warrington, USA) and

0,15M oxalic acid (75,688, Sigma-Aldrich, Schnelldorf,

Germany)] and embedded in a mixture of methylcellu-

lose (M6385, Sigma-Aldrich, Schnelldorf, Germany) and

uranyl acetate (21447–25, Polysciences, Warrington,

USA). Samples were observed with a JEM 1400 trans-

mission electron microscope (JEOL Ltd. Tokyo, Japan)

at 80 kV, and digital images were acquired with a nu-

meric camera (Morada TEM CCD camera, Olympus,

Germany).

Statistical analysis

Data were presented as mean ± standard error of mean

(SEM). In experiments that warranted statistical analysis

for comparison of means, one-way ANOVA was used

with appropriate post hoc analysis after testing the

homogeneity with Leven’s test.

Experimental design
Characterization of transcripts transferred from

trophoblast to endometrial cells

To identify the RNA species that originate from tropho-

blast spheroids and are transferred to the endometrial

cells, the trophoblast spheroids were incubated with the
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endometrial cells in the non-contact co-culture system

as described earlier. The experimental group consisted

of EU-labelled spheroids while non-EU-labelled spher-

oids were used as a negative control. After 24 h co-

incubation, the transferred EU-labelled transcripts were

affinity precipitated from the total RNA obtained from

the endometrial cells. The first and second strand cDNA

were synthesized and cDNA library was prepared for

sequencing of the precipitated EU-labelled RNA as

described earlier. Total RNA-seq was conducted with

synthesized cDNA from experimental group (n = 4) and

negative control group (n = 4) (Fig. 1). The bioinformat-

ics analysis of RNA-seq data and differential expression

analysis of the detected transcripts were performed to

identify the putatively transferred RNA sequences. After

identification of putatively transferred RNA sequences,

the presence of the candidate RNA species was con-

firmed in the endometrial cells by qPCR.

Identification of the route of transfer of RNA from

trophoblast cells to endometrial cells

To illustrate the route of RNA transfer from trophoblast

cells to endometrial cells, conditioned media was col-

lected from the EU-labelled trophoblast spheroid/endo-

metrial cell co-culture of 24 h (experimental group). A

similar co-culture of unlabelled spheroid/endometrial

cells was used as a negative control. Conditioned media

from each group was divided into two similar parts by

volume. One part was used for EV purification. Total

EU-labelled RNA was extracted from both conditioned

media and isolated EVs using affinity precipitation. Ex-

tracted RNA was quantified for the expression of trans-

ferred transcripts by qPCR.

Visualization of transferred transcripts by confocal

microscopy and Alexa Fluor 488 azide

The transferred EU-labelled RNAs were visualized in

endometrial cells by Alexa Fluor 488 azide. After 24 h

co-incubation of endometrial cells with EU-labelled

spheroids, the endometrial cells were stained with Alexa

azide and the confocal microscopy imaging was per-

formed on both experimental and negative control

group, concurrently.

The effect of trophoblast spheroid co-culture on

expression of specific RNA transcripts in endometrial cells

Approximately 1 × 103 trophoblast spheroids were co-

cultured with 5 × 105 endometrial cells for 24 h in 12

well cell culture plates with 0.4 μm translucent inserts.

Total RNA from endometrial cells were isolated and

analysed for the expression of candidate transcripts by

qPCR. As controls, endometrial cells co-cultured with

HEK293 spheroids and untreated endometrial cells were

also analysed.

The effect of trophoblast derived EVs on expression of

specific RNA transcripts in endometrial cells

To demonstrate the effects of EVs on endometrial tran-

scripts, EVs derived from JAr cells were incubated with

endometrial cells in the ratio 50:1. (2.5 × 107 EVs: 5 × 105

cells) (). EV number was similar to the amount of EVs

produced by 1000 trophoblast spheroids in 24 h. Un-

treated controls were prepared with endometrial cells

without EV treatment. Endometrial cells treated with

similar concentrations of EVs derived from HEK293

spheroids and untrated endometrial cells were used as

negative controls. After 24 h of incubation, the cells were

lysed for total RNA extraction. cDNA was prepared and

qPCR was performed for candidate transcripts. Beta

actin and Beta-2-microglobulin were used as control

genes to evaluate the behaviour of unaffected genes in

endometrial cells (Additional file 1: Table S1).

The effect of human IVF embryo-derived EVs/

nanoparticles on specific RNA transcripts from

endometrial cells

On day 3 post IVF, conditioned media were collected

from 4 embryos that developed narmally untill day 5

and from 4 embryos that degenerated on day 5. The em-

bryos developed until day 5 and conditioned media were

again collected from 4 normal and 4 degenerated em-

bryos. Conditioned media from each group were pooled

and EVs/nanoparticles were isolated. EVs/nanoparticles

were then supplemented to endometrial cells in 50:1 ra-

tio (1 × 107 EVs/nanoparticles: 2 × 105 cells). Endometrial

cells without EVs/nanoparticle treatment were used as

negative control. After 24 h of incubation total RNA was

extracted from cells, cDNA was prepared and qPCR was

performed for candidate transcripts. Beta actin and beta-

2-microglobulin were used as control genes.

Results
EU-labelled transcripts were visualized in endometrial

cells by confocal microscopy

To identify possible trophoblastic RNA species that are

transferred to the endometrial cells, trophoblast-derived

JAr spheroids were incubated with the endometrial cells

in a non-contact co-culture system. Produced spheroids

were either used without labelling (based on the particu-

lar experimental design) or labelled with 5-ethynyl

uridine (EU). Figure 1 depicts the overall strategy of

biorthogonal labelling of trophoblast cells and capture of

EU-labelled RNA in the endometrial cell.

Using confocal microscopy, we observed that EU-

labelled spheroids exhibited the green fluorescence

signal of Alexa 488 in the nuclei and especially in the

nucleoli of the spheroids, confirming the successful EU

incorporation into RNA while unlabelled control spher-

oids showed virtually no staining (Fig. 2a, a1). When
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incubating endometrial cells with EU-labelled spheroids

for 24 h we could detect single green fluorescent dots in

the cytoplasm of the cells while the overall cytoplasmic

staining was low (Fig. 2b) indicating the possible transfer

of EU labelled RNA from spheroids to endometrial cells.

We did not detect any similar concentrated dots with

green fluorescence in the endometrial cells co-incubated

with unlabelled spheroids (Fig. 2b1). The presence of

EU-labelled transferred RNA in the cytoplasm of endo-

metrial cells was confirmed by 3-dimensional confocal

scanning with and without cell tracker dye (Fig. 2c, c1).

Identification of putatively transferred transcripts from

trophoblast spheroids to endometrial cells

Trophoblast spheroids with EU labelling (experimental

group) were co-incubated with endometrial cells in a

non-contact cell culture system to identify the transferred

transcripts. Unlabelled spheroids were co-incubated with

endometrial cells as a negative control. After 24 h of

incubation, total RNA from endometrial cells were col-

lected and affinity precipitated to capture EU labelled

RNA. Captured RNA was used for RNA sequencing

(RNA-seq).

Fig. 1 Bioorthogonal labelling strategy. a 5-ethynyl uridine (EU) labelling of trophoblast spheroids. Spheroids were placed in culture media
supplemented with EU overnight. b Non-contact co-culture of trophoblast spheroids and endometrial cells. EU (green) is incorporated
into nascent RNA resulting in EU labelled RNA (green). RNA is packaged into extracellular vesicles (EV) and transferred to the endometrial
cells through the translucent barrier. EV containing the labelled RNA is uptaken by the endometrial cells. In the endometrial cytoplasm,
RNA is released through the degrading EV membrane. c Experimental setup. Negative control is prepared using unlabelled trophoblast
spheroids/endometrial cells. Experimental group consists of EU labelled trophoblast spheroids/Endometrial cells. d Affinity precipitation
procedure. Labelled RNA is attached to biotin azide by click chemistry. Magnetic beads attached to streptavidin is used to selectively
precipitate EU labelled RNA
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The percentage of the EU labelled RNA recovered

from the total RNA obtained from cells exposed to EU

labelling was calculated to determine the efficiency of

EU labelled RNA capturing procedure. In EU labelled

spheroids, only 12.66% (± 1.01%) of RNA was precipi-

tated by affinity precipitation procedures.

In endometrial cells co-incubated with labelled JAr

spheroids, 2.85% (± 0.45%) of RNA was precipitated. In

endometrial cells co-incubated with unlabelled JAr

spheroids (negative control), 1.13% (± 0.2%) of RNA was

precipitated. The results indicated that approximately

35% of the supposedly EU labelled precipitated RNA

might be unlabelled and non-specifically captured by the

magnetic beads.

RNA-seq yielded on average 13.5 million reads per

sample with average read length of 178 base pairs. The

proportion of base pairs exceeding Phred quality score

of 20 (base call confidence ≥99%) was 0.81 ± 0.01 (mean

of all samples ± SD). The sequencing data has been

uploaded to the NCBI SRA repository (www.ncbi.nlm.

nih.gov/sra) under the accession number PRJNA527834.

The results of read alignment to the hg19 human

Fig. 2 Visualization of 5-ethynyl uridine (EU)-labelled RNA in trophoblast spheroids and endometrial cells. a RNA in trophoblast spheroids were
labelled with 5-ethynyl uridine (EU) and stained with Alexa azide. Green florescence is evidence of successful labelling. a1 Unlabelled spheroids
(negative control) did not show fluorescent signal. b Endometrial cells were stained with Alexa azide after 24 h incubation with labelled spheroids
to visualize the transferred transcripts. Green dots in endometrial cells indicate labelled RNA transfer. b1 Endometrial cells co-incubated with
unlabelled spheroids were used as negative controls. Negative control did not exhibit any specific fluorescent signal. c, c1 3-dimentional confocal
scanning of endometrial cells with cytoplasmic EU labelled RNA with and without cell tracker dye. Scale bar 4 μm
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reference genome varied extensively between the sam-

ples with alignment percentage ranging from 31 to 91%.

This did not, however, have a major effect on the group

averages, as the average alignment percentages were 51

and 55% for the experimental and control group,

respectively.

Differential expression (DE) analysis, showed statisti-

cally significant enrichment of eighteen genomic ele-

ments in the endometrial cells. These elements were

presumed to be transferred transcripts from trophoblast

cells to endometrial cells (Fig. 3a, b, Additional file 1:

Table S2). The alignments of individual reads to the 18

genomic elements of interest were visually inspected

using Integrative Genomics Viewer (IGV), to estimate

the full sequences of potentially transferred transcripts.

This enabled the exclusion of genomic elements, for

which the counted reads were presumed to be originat-

ing from random RNA fragments not specifically

enriched but rather representing the random noise of

the EU-labelled RNA capturing process.

The genomic sequences were considered to be specif-

ically enriched when the alignment of reads originating

from random RNA fragments were aligned to specific

sequences and were: i) detected in at least three biological

repeats out of four in the experimental group and ii) were

not detected in any of the negative control samples. Only

three candidate transcripts passed these stringent selection

criteria: an intronic-non-coding region and an exonic-

coding region, originating from LINC00478 locus of

chromosome 21 (Fig. 3c) and one exonic region from

ZNF81 gene (Fig. 3d). These transcripts were selected for

further analysis.

The presence of EU-labelled intronic-LINC00478

(Fig. 3e), exonic-LINC00478 (Fig. 3f) and ZNF81 (Fig. 3g)

were also confirmed in endometrial cells by qPCR after

24 h co-incubation and there was a significant difference

between the experimental group and the negative control

group. Sanger sequencing of qPCR products confirmed

the sequences of the candidate transcripts (Additional

file 1: Table S3).

EU-labelled intronic-LINC00478 transcript was detected in

conditioned co-culture media

Conditioned media was collected from EU labelled

spheroid/endometrial cell co-culture (experimental group)

and unlabelled spheroid/endometrial cell co-culture (nega-

tive control). Half of the conditioned media from each

group was used to extract EVs. Whole RNA of the condi-

tion media and EV were extracted and subjected to affinity

precipitation. Precipitated RNA was analysed for the pres-

ence of candidate transcripts using qPCR.

The presence of EU-labelled intronic-LINC00478

transcript in conditioned media was confirmed by

qPCR (Fig. 3h). Copy number of this transcript was

significantly higher in RNA extracted from complete

conditioned media (including free RNA, RNA bound

to proteins and RNA in EVs) compared to the RNA

extracted from EVs. The conditioned media of the nega-

tive control also exhibited the presence of a small copy

number of (7 times less than that of the experimental

group) intronic-LINC00478 transcript. The presence of

EU-labelled exonic-LINC00478 transcript or EU-labelled

ZNF81 transcript were not detected in conditioned media

or in EVs via our qPCR assay conditions due to the low

copy numbers present in the samples.

Trophoblast spheroid derived nanoparticles were

confirmed as EVs using nanoparticle tracking analysis

(NTA), electron microscopy and Western blot analysis

Conditioned media from trophoblast spheroids were col-

lected and nanoparticles were isolated using sequential

centrifugation and size exclusion liquid chromatography

(SEC). isolated particles were characterized using NTA,

western blotting for EV specific proteins and electron

microscopy.

NTA revealed a population of particles largely under

200 nm with majority of the particles in 75–135 nm

range (Fig. 4a). Electron microscopy showed uniform

particles of less than 200 nm with identifiable lipid bi-

layer membranes, circular cross section and characteris-

tic “cup shape” (Fig. 4b).

Western blot analysis showed that EVs’ specific pro-

tein markers CD63, CD9 and CD81 were enriched in

trophoblast spheroid derived EVs compared to tropho-

blast spheroid conditioned culture media, while apolipo-

protein A-I (a negative marker for EV) was not enriched

(Fig. 4c).

Transferred transcripts were significantly down regulated

in endometrium

Endometrial cells were co-incubated with trophoblast

spheroids and HEK293 spheroids in separate groups.

Similar numbers of endometrial cells were supplemented

with trophoblast spheroid derived EVs and HEK293

spheroid derived EV in separate groups. HEK293 spher-

oids and HEK293 derived EVs were used as a negative

control along with untreated endometrial cells. After 24 h

of co-incubation, endometrial cell RNA was analysed for

the expression of candidate transcripts using qPCR.

The three transferred transcripts showed significant

down-regulation in endometrial cells co-cultured with

trophoblast spheroids compared to untreated controls

and endometrial cells co-cultured with HEK293 spher-

oids. Transferred transcripts were also significantly

down-regulated in endometrial cells treated with tropho-

blast derived EVs compared to untreated controls and

endometrial cells treated with HEK293 derived EVs

(Fig. 5a, b, c). Control genes (beta-actin and beta-2-
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Fig. 3 RNA sequencing of transferred 5-ethynyl uridine (EU)-labelled transcripts. a Volcano plot from RNA sequencing data of EU-labelled
transferred transcripts affinity precipitated from endometrial cells co-incubated with EU-labelled trophoblast spheroids. RNA extracted from
endometrial cells co-incubated with unlabelled spheroids were used as negative control. The rate of false discovery is plotted against fold
change, demonstrating the 18 putatively transferred transcripts which were significantly enriched in experimental group (black dots). Candidate
transferred transcripts were highlighted by red dots (ZNF81 and LINC00478). b Heatmap displaying the relative abundances of transcripts
enriched in the experimental group compared to the negative control. The values presented on the heatmap are z-scores calculated based on
the normalized read counts. Unsupervised hierarchical clustering of samples based on Euclidean distance calculated from presented z-scores is
displayed alongside the heatmap. c Position of enriched intronic- LINC00478 and exonic- LINC00478 in relation to chromosome 21. d Position of
enriched ZNF81 in relation to chromosome X. Copy number of EU-labelled (e) Intronic-LINC00478 (f) Exonic-LINC00478 and (g) ZNF81 were
measured in endometrial cells co-incubated with EU-labelled trophoblast spheroids (Experimental group) by using qPCR and absolute
quantification. Endometrial cells co-incubated with unlabelled trophoblast spheroids were used as a control (Negative control). Data is presented
as mean ± SEM. (*) p < 0.05 vs negative control. h Presence of intronic-LINC00478 was observed in EU-labelled spheroid/endometrial cell co-
culture conditioned media (Experimental group, E-CM) and extracted EVs (Experimental group, E-EV), and in EU-unlabelled spheroid/endometrial
cell co-culture conditioned media (Negative control, NC-CM). Exonic-LINC00478 and ZNF81 were not detected in either group. Data is presented
as mean ± SEM
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Fig. 4 Confirmation of trophoblast spheroid derived nanoparticles as extracellular vesicles (EVs). a Nanoparticle tracking analysis (NTA) of
trophoblast spheroid derived extracellular vesicles (EVs). Number and size profiles of EVs were analysed using ZetaView™ nanoparticle analyser.
The profile exhibits a typical distribution of particles mostly less than 200 nm. Data is presented as mean ± SEM. b The transmission electron
microscopy for EVs’ morphology. EVs visualized after staining in 2% uranyl acetate following by uranyl oxalate and methylcellulose. Scale bar =
200 nm. Classic morphological characteristics such as uniform shape, clearly discernible lipid bilayers and “cup shape” is observed. c Western blot
analysis of trophoblast spheroid derived EVs (EV) and trophoblast spheroid conditioned media (CM). Specific protein markers for EVs (CD63, CD9
and CD81) are enriched in EV samples while negative control Apo A-I is not enriched

Fig. 5 Quantification of transferred and control transcripts’ expressions in endometrial cells. Expressions of (a) Intronic-region of LINC00478, (b) Exonic
region of LINC00478, (c) ZNF81, (d) beta actin and (e) beta-2-microglobulin in endometrial cells in co-culture with trophoblast spheroids, co-culture
with HEK293 spheroids, treated with JAr derived extracellular vesicles (EVs), treated with HEK293 derived EVs and untreated control. Spheroids were co-
incubated with endometrial cell monolayer for 24 h. Isolated EVs were incubated with endometrial cells for 24 h. Whole RNA of endometrial cells was
quantified using qPCR for expression of transferred/control transcripts. Data is presented as mean ± SEM. (*) p < 0.05 vs untreated control
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microglobulin) did not show a significant change of gene

expression between the groups (Fig. 5d, e).

Embryo derived EV/nanoparticles alter the expression of

specific transcripts in endometrial cells

Conditioned media was collected from both viable and

degenerating human embryos at day 3 and day 5 post

IVF. EVs were isolated from conditioned and supple-

mented to endometrial cells. After 24 h of EV supple-

mented incubation, whole RNA from endometrial cells

were collected and analysed for the expression of candi-

date genes by qPCR.

The size profile of nanoparticles derived from embryo

conditioned media (Fig. 6a, b) exhibits the characteristics

of a typical EV population. EVs derived from both day 3

and 5 normal quality embryos induced a significant

down-regulation of ZNF81 transcript (Fig. 6c). EVs de-

rived from day 3 and 5 degenerating embryos did not in-

duce similar change in the expression of ZNF81. Control

genes (beta-actin and beta-2-microglobulin) did not

show a significant change of gene expression between

the groups (Fig. 6d, e).

Discussion
A new paradigm has arisen in the scientific literature,

pointing to the transfer of genetic material, and in par-

ticular different forms of RNA as an important mediator

of the process of cell-to-cell communication [37], exam-

ples of which have been documented from across diverse

taxa. There is evidence of plant cells using ncRNA to

communicate within and between the cells [8, 38–40].

These examples are not limited to communication be-

tween the members of one species. Inter-species and

inter-kingdom communication using ncRNA is also evi-

dent. A recent example is the case of miRNAs from the

parasitic plant Cuscuta campestris targeting host mes-

senger RNAs in the host plants and changing the tran-

scription profile of the host plant [41]. Plants use

Fig. 6 Embryo-derived extracellular vesicles (EVs) alter the expression of specific transcripts in endometrial cells. a, b Size profiles of embryo and
embryo culture media derived nanoparticles strongly resemble a typical size profile of a population of comparable EVs. Gene expressions of c
ZNF81, d Beta-2-microglobulin and e Beta actin in endometrial cells treated with human IVF day 3/5 normal/degenerating embryo-derived EVs,
pure culture media derived EVs and untreated control. Isolated EVs were incubated with endometrial cells for 24 h and whole RNA of cells was
quantified using qPCR. Data is presented as mean ± SEM. (*) p < 0.05 vs untreated control
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ncRNA to fight fungal infections by inhibiting fungal

growth [42–44]. In the human context, ncRNA is also

likely to play a major role in intercellular communica-

tion. A well-known example is the communication and

exchange of genetic material involving cancerous cells

metastasing to different tissues39,40. It seems that cancer-

ous cells are capable of signalling the cells of distant tis-

sues, resulting in the remodelling of those tissues to

better support metastatic tumour growth. The signals

conveyed by cancerous cells seem to be in the form of

ncRNA [9, 45–47].

In nearly all these scenarios, ncRNAs seem to be

transferred from one cell to another. Thereafter, the

transferred material acts upon gene expression regula-

tion in the recipient cells and changes the transcriptomic

profile of them. The consequences of such communica-

tion would lead to alterations in the function and physi-

ology of the cells, and ultimately may even result in the

occurrence of disease or in the case of reproduction may

affect conception and maintenance of the pregnancy.

There is evidence of the exchange of miRNA between

the pre-implantation embryo and the endometrium [5]

and vice versa [6]. Exchanged ncRNA could perform a

number of functions in the target cells. Considering the

lack of immune response towards embryo, which should

be identified as “non-self”, from the maternal immune

system, one such function could be the modification of

maternal immune response. Indeed, there are evidence

of maternal immune system treating the embryo as a

“temporary self” and assume “immune ignorance” [48–50].

Initiation and regulation of such unique immune response

could be due to epigenetic modification caused by trans-

ferred genetic material by the developing embryo.

In the present study we used biorthogonal click chem-

istry to track trophoblastic RNA and its uptake by endo-

metrial cells. Compared to other enzyme dependent

labelling solutions such as 5-bromouridine (BrU), 5-

iodouridine (IU), or 5-fluorouridine (FU) which rely on

indirect immunofluorescence, EU has a significant ad-

vantage to be compatible to be used in Click-chemistry

and downstream applications requiring affinity precipita-

tion of labelled RNA [51]. However, the efficiency of tag-

ging is around one nucleotide in 35, which is not

significantly different from the other labelling methods

[52]. Another important factor causing approximately

35% non-specifically captured unlabelled RNA in our

investigation is the problems associated with RNA Re-

covery using affinity precipitation protocols.

In the current investigation the origins of three tran-

scripts were identified to be transferred from embryonal

to endometrial cells: an intronic-non-coding region and

an exonic-coding region, originating from LINC00478,

and an exonic-coding region originating from ZNF81

gene (Additional file 1: Table S2). In the case of

transcripts originating from LINC00478, Dfam v2.0 soft-

ware showed that this transcript matches with LTR7B

family (ERV1 endogenous retrovirus super family) [53].

Open reading frame prediction demonstrated that 5 kbp

upstream of this region might be a considerable potential

for endogenous retrovirus protein [54]. The regulatory

role of endogenous retroviruses elements in development

of human pre-implantation embryo has been strongly em-

phasized [55]. It has been demonstrated that LTR7B and

LTR7Y are enriched in the eight-cell/morula and blasto-

cyst stage embryos, respectively. LTR7 copies can produce

specific class of lncRNA [56] and in human embryonic

stem cells they are involved in the regulatory network of

pluripotency [57]. Specific class of ncRNA can also be

produced from endogenous retrovirus ERV9, activating

the transcription of erythropoiesis genes [58]. These ele-

ments can be horizontally transferred via EVs during

intercellular communication. For instance, it has been

confirmed that the RNA sequence of retrotransposon

from human ERVs can be packaged into the EVs and

transferred and spread during tumorigenesis [59]. In

addition, the protein products of endogenous retroviral el-

ements (such as envelope glycoprotein syncytin-2) are es-

sential for early embryo and placenta development during

implantation and these proteins are transferred by exo-

somes and are up-taken by endometrial cells [60–62].

We were not able to precipitate measurable amounts

of ZNF81 transcript from EU labelled spheroid derived

EVs due to the low efficiency of EU labelled RNA cap-

ture system. It has been shown that zinc-finger protein

family can cooperate with transposable elements to form

an epigenetic regulatory network [63–65]. In the case of

ZNF81, it is believed that this protein has the potential

binding site for LINE elements (long interspersed nu-

clear elements) involved in regulation of many gene ex-

pression regulatory networks [63].

In all the three identified transferred transcripts, the

endogenous expression of the same transcripts in the

endometrial cells was significantly down-regulated after

JAr cell or JAr cell-derived EVs’ co-culture (Fig. 5).

Down-regulation of gene expression in target cells has

been observed in the context of intercellular communica-

tion in different cell types [66, 67]. RNA-mediated gene

expression down-regulation could be achieved using one

of the several pathways, such as post-transcriptional gene

silencing, co-suppression, quelling, and RNA interference

(RNAi) [68]. Recent investigations have postulated that

negative feedback mechanisms are utilized by lncRNA to

regulate self-expression [69–71]. LincRNA are capable of

increasing or decreasing self-expression or the expressions

of specific target genes by interacting with chromatin-

modifying complexes to modulate the epigenetic land-

scape of chromatin [72, 73]. Although the effect of RNA

transfer on endogenous RNA down-regulation observed

Es-Haghi et al. Cell Communication and Signaling          (2019) 17:146 Page 14 of 18



in the current study is likely achieved by the RNA-

mediated gene expression regulation, the exact molecular

mechanism remains to be discovered by the future studies.

However, the possible involvement of RNA-independent

mechanism cannot also be entirely excluded due to the

heterogeneous nature of EV cargo. To confirm that the

EV-transferred transcripts are responsible for the down-

regulation of the same endogenous genes, a gene knock-

out trophoblast model producing EVs without particular

transcripts would be essential. Such knock-out tropho-

blasts will produce EVs without transferred transcript and

will allow detailed analysis of counterpart endogenous

gene expression and protein function in endometrial cells

treated with these modified EVs.

Up to this point, all of the conclusions arrived are based

on data gathered using in vitro analogues of trophoblasts.

We have used EVs isolated from IVF human embryo con-

ditioned media to confirm that the observed phenomenon

is common for both in vitro model and the embryo. One

of the main criticisms of assisted reproduction has been

its high tendency to cause multiple births. To avoid the

issue, single embryo transfer is often practised. Selecting

the best embryo for transfer is important in single embryo

transfer procedures [74]. Until very recent past, the selec-

tion was done using morphological criteria, such as the

number of blastomeres, the absence of multinucleation,

early cleavage to the two-cell stage, a low percentage of

cell fragments in embryos, the blastocoelic cavity expan-

sion and the cohesiveness and number of the inner cell

mass and trophectodermal cells [75, 76]. Despite of the

evolution of the selection criteria for IVF embryos, the

rate of live birth remains as low as 30% [77]. Protein bio-

markers from culture media (soluble human leukocyte

antigen-G (sHLA-G) and ubiquitin) [78, 79] and cumulus

cell transcriptomic markers (cyclooxygenase 2 (COX2),

steroidogenic acute regulatory protein (STAR), and pen-

traxin 3) have been proposed as tools for embryo selection

[80–82] without major improvement in the embryo im-

plantation rate.

EVs isolated from conditioned culture media of IVF

embryos as early as on day 3 after fertilization have the

potential to be used as non-invasive biomarkers for em-

bryo selection. In the current study we provide evidence

that EVs/nanoparticles isolated from embryo conditioned

culture media can induce a measurable effect on endo-

metrial cells and the effect is only seen when using condi-

tioned media from morphologically good-quality embryos

as opposed to degenerating embryos. Although the min-

imal requirements for EV studies require NTA, Western

blot analysis of EV specific proteins and electron micros-

copy as per International Society for Extracellular Vesicles

(ISEV) guidelines [83], due to the low number of particles

isolated from single embryo culture media, Western blot

analysis are currently not feasible in this context.

However, with the NTA results, it could be argued that

these nanoparticles are highly likely to constitute EVs. In

the current study endometrial ZNF81 expression was sig-

nificantly down-regulated after EV-co-incubation originat-

ing from good-prognosis day 3/5 IVF embryos. To the

contrary, the EVs from poor prognosis embryos were un-

able to initiate any changes of endometrial cells. We there-

fore suggest that with the further development, the EV-

based method could be used as a non-invasive tool for

selecting high-quality IVF embryos for transfer.

The dose of the EVs received by endometrial cells

should also be considered as a limiting factor in the

model. Multiple spheroids were used instead of one,

which would be more in line with the natural environ-

ment of the embryo-maternal interface, because of the

very low amount of EVs released from a single spheroid.

Analysing such minuscule amounts of RNA is extremely

difficult especially considering the low efficiency of label-

ling observed. It should also be pointed out that in vivo,

only a few endometrial cells need to be affected by the

communications from an embryo, while in the in vitro

model, the effect should be seen in thousands of cells to

be detected by qPCR.

Conclusion
In conclusion, we present the evidence of non-contact

transfer of embryonic RNA transcripts to endometrium

in an in vitro embryo-maternal cross-talk model. RNA is

taken up by the endometrial cells and the expression of

endogenous transcripts are altered as a result. The effect

can be seen in endometrial cells treated with EVs

derived from IVF embryos suggesting that the RNA is

transferred through EVs. EVs derived from human IVF

embryos also have the potential to change the endometrial

transcripts. Interestingly, only good-prognosis embryos in-

duced the observed effect while degenerated embryos

failed to initiate any changes. Physiological effects of ob-

served transcript changes are still not fully understood

and require follow-up studies. However, with further de-

velopment, these observations could be taken as a step

further in the path towards understanding the first lan-

guage of communication between mother and embryo.
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