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Period Adaptation of Real-Time Control Tasks with Fixed-Priority

Scheduling in Cyber-Physical Systems

Xiaotian Daia, Alan Burnsa

aDepartment of Computer Science, University of York, United Kingdom

Abstract

Long-lived, non-stop cyber-physical systems (CPS) are subject to evolutionary changes that
can undermine the guarantees of schedulability that were verified at the time of deploy-
ment. At the same time, knowledge gleamed from extended periods of execution will can
be exploited to reduce the uncertainties that were inevitably presented in the system mod-
els that are used to define the temporal behaviours of the control tasks. In this paper we
utilise this knowledge and present an adaptation method that actively extends the period of
control tasks at run-time based on historical measurements. This can lead to lower power
consumption or to the accommodation of increased computation resource demands from
other components of the CPS. The method relies on online monitoring and model-based
prediction to degrade control performance while having a minimal and acceptable impact
on ongoing operations. Cloud-based computing is used to facilitate decision making and of-
fload the local computation. We evaluate the effectiveness of the proposed method through
experiments of control-scheduling co-simulation.

Keywords: Cyber-Physical Systems, Control-Scheduling Co-Design, Period Adaptation,
Adaptive Scheduling, Digital Twin, Model-Based Engineering, Ada

1. Introduction

Cyber-physical systems (CPS) often contain a number of control functions that require
long-lived and non-stop execution. During the operation of a CPS, considerable knowledge
about its execution behaviour can be obtained and exploited. For example, if long-term
trends in resource usage are identified [1], adaptation can be made to accommodate ad-
ditional computation requirements. In this paper, an adaptation method that uses online
monitoring and model prediction is introduced, which can be used to reduce the resource
requirements of the control tasks in a CPS.

Before a system is deployed Prior to the deployment of a system in the field, there is only
limited knowledge about the system’s uncertainties and the interactions between different
aspects of the external environment etc. Also the uncertainties introduced by scheduling
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are not able to be fully accounted for during the design phase, and the worst-case execution
time is not always accessible or precise. This means that the system model is inevitably
conservative. To improve the situation, the real behaviour of a system can be observed,
and the control performance can be assessed at run-time. If there is evidence that control
performance can be safely degraded, system schedulability can be improved by increasing
the control intervals of control-related tasks. This released capacity can then be used to:

• cater for non-control tasks in the system that are experiencing evolutionary increases
in demand [2], e.g. tasks concerned with communication, data processing, system
monitoring, diagnosis, fault recovery, decision making etc.;

• save energy in battery powered systems by reducing processor speed, core usage, ac-
tivation time, etc [3]. Most modern processors support dynamic power management
[4], e.g., power saving mode, dynamic voltage and frequency scaling (DVFS), etc. For
example, the reduced equivalent CPU utilization will create idle time during which
the CPU can stay in the sleep mode. Energy saving is particular beneficial to battery-
powered systems;

• improve the quality of other aspects of the system which have been implemented using
methods that can benefit from longer execution times, for example, anytime algorithms
[5, 6, 7];

• accommodate increased resource demand due to future system upgrades, and/or in-
crease the resilience of the system due to task overruns.

In this paper, we present an online adaptation method that uses ideas of digital twin
digital twining and model-based engineering, which is based on feedback measurements and
a decision planner, to safely degrade control performance in a predictable and managed way.
The desired control quality is defined statistically through a degradation degree parameter.
This parameter reflects the tolerance of degraded control performance that is acceptable.
Depending on the application, the acceptance region can be relative large or can be very
limited. In both cases, we assume one or more control tasks are initially running with
conservative periods which are then gradually increased in small and controlled minor steps.
During this adaptation process, performance predictions are made in advance, and a step
change in period is only made if sanctioned by the predication. The consequence of the
period change is monitored and feedback is used to improve the predictor.

This paper is organised as follows. Background of real-time control is reviewed in Sec-
tion 2. A general overview of the adaptation method is given in Section 3. The performance
prediction and the run-time system support is discussed in Section 4 and Section 5, respec-
tively. In Section 6 an evaluation based on a control-scheduling co-simulator is made to
demonstrate and verify evaluate the effectiveness of the proposed method, followed by a
discussion on some aspects implementation details of the approach in Section 7. Finally, a
summary of the work is given in Section 9.
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2. Real-Time Digital Controller Implementation

A real-time control task is the entity that executes the software implementation of a
digital feedback controller. A general structure of feedback control with a digital controller
in the loop is given in Fig. 1. To implement such a controller on an embedded platform,
the control functions need to be abstracted into individual tasks. After a digital control
task is running on a computer, the controller will behave differently than the ideal periodic
execution according to the applied scheduling algorithm. and be scheduled with a real-time
scheduler, which will introduce interference and constraints on the control period.

PlantDigital Controller

ADC

Reference
Input Error

Actuating 
Signal

Output
Feedback

Signal

-

+
DAC

Sensors

Control 
Input

Figure 1: A digital controller in a feedback control system

2.1. Control Loop Timing

In the control community, it is often assumed that sampling and control are performed
equidistantly and simultaneously with a fixed interval. However, as a digital controller is
running on a computer, the controller will behave differently than the ideal periodic execution
according to the applied scheduling algorithm.

Consider a system with three control tasks that are scheduled by a fixed priority scheduler
(FPS), in which tasks are scheduled preemptively according to their priorities (a smaller task
index indicates a higher priority). A timing diagram of this case is shown in Fig. 2. Due
to the nature of sharing resources in a multiprogramming environment, the timing of a
control task is not fully deterministic. Among all three tasks, task 1 has the highest priority
and hence is not suffering from interferences. However having the lowest priority, task 3
has the largest interferences and jitter. This example shows that in a multiprogramming
environment, a control task without the highest priority will be occasionally preempted and
suffer interferences from higher priority tasks in the same system. This process will introduce
artefacts such as sampling jitter and control delay which will affect control outcomes [8, 9].

To explain the details more, an illustration of the timing of a single control task is
given in Figure 3. In the diagram, hi is the task period, τs,j is jth sampling delay and
τio,j is jth input-output latency. The sampling delay and jitter can be eliminated by using
a programmable ADC that is synchronised to the task period. However, the scheduling-
introduced input-output latency, or control delay, cannot be precisely predicted as it could
be different for each job instance. From the scheduling point of view, if τs,j = 0, this is
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Figure 2: Task timing of multiple tasks scheduled by FPS
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Figure 3: Control task timing (single task)

equivalent to the control task’s response time, which consists of its own execution time, the
interference time from higher priority tasks and the blocking time from lower priority tasks.

The influence of timing variations is dependent on the controlled plant and the controller.
Some control systems are robust towards variations in control interval and latency, but others
are less tolerant. A study on the influence of jitter on control performance is described in
[10], where the notion of ‘jitter margin’ is introduced. Overall, it is hard to analytically
work out the exact effects on control that are introduced by task scheduling.

2.2. Control Performance Evaluation

To evaluate the goodness of control from run-time measurements, a comprehensive per-
formance index (PI) should be used that can quantitatively evaluate the control quality.
It is important, as a first step of our method, that the performance metrics are defined
numerically and generally.

To analyse the performance of a real-time controller, some numerical performance metrics
need to be defined. There are many commonly used criteria for evaluating the performance
of a designed controller, for example, percentage of overshoot, settling time, deviation from
a reference output, control error variance, etc [11]. A Performance Indicator (PI) can be

4





seen as a numeric evaluation of the performance of the target control system. To meet the
requirement of this work, it should be able to reflect the true quality of a controller running
under different conditions. Ideally, it should satisfy the following properties:

• it can be quantified and is numerically comparable;

• it can be normalised;

• it can reflect relative long-term behaviour;

• it is insensitive to initial states and noise.

Control error, i.e., the difference between the desired and the actual output, is a straight-
forward measure of the instant performance. However, this metric has large fluctuations as
each of its evaluations is dependent on the current system state. To smooth short-term vari-
ations, some form of integral error is applied to evaluate controllers, e.g., integral of absolute
error (IAE), integral of time-weighted absolute error (ITAE), integral of squared error (ISE),
etc. In some circumstances this integral error is known as control cost. To handle this issue,
we use the integral of absolute error (IAE) to smooth short-term variations, which is a PI
that is often used in optimal controller designs.

Note that a higher control cost IAE means indicates worse performance. When the cost
is measured at run-time, there could still be inconsistent variations due to scheduling and
system noise (even it is smoothed by integration). Thus a range population of possible costs
could be observed, that can be represented modelled as a distribution.

2.3. Control Task Period

The control performance, or Quality-of-Control (QoC), of a digital control system is
largely affected by the sampling period of the controller task. In the work of [12], it is
shown that the performance of a digital controller has a monotonic decreasing relationship
in regards to the control period. This claim is generally true for most systems, although a
counterexample is given in [13] for a non-inverted pendulum.

The selection of a control task’s period depends on the dynamics of the controlled plant,
the desired control performance, and the resources that are available on the hardware plat-
form. It is often hard for a control engineer to determine which is the right period to use
at the system design stage. Following a rule-of-thumb or experimental simulations is good
common practice. However as no scheduling effects are considered, the selected period could
be too pessimistic and thus waste system resources. Ideally, a period should be adequate
to satisfy control performance under required specifications, whilst using the least CPU re-
sources. In the following sections, we will discuss an adaptation method that attempts to
deliver this behaviour after deployment.
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3. Adaptation Method Overview

This work is identified as control-scheduling co-design [12], in which scheduling efforts
are considered explicitly in the design process of real-time controllers. Resource constraints
are also considered during the design of a digital controller.

Our work is also a form of feedback scheduling [13, 14], in which the scheduler has the
ability to monitor system states, and make corresponding actions by adjusting scheduling
parameters (e.g., task attributes such as task periods, execution times, deadlines and prior-
ities). In this work, we only focus on changing task periods.

In contrast to off-line optimal control period assignment [10, 11], our method is an online
adaptation method. The philosophy applied is to tune control task periods gradually and
slowly, in which changes are made across a large time span, e.g., hourly or daily. This makes
our approach much less dynamic than other feedback-based period allocation methods, in
which a decision of change is made every tens or hundreds of milliseconds. This work is also
related to graceful degradation [15], in which planned and pre-designed degradation is made
in order to avoid serious system failures.

As in each adaptation cycle only a small change is applied and the consequence of the
change is also observed and considered, our method is less aggressive than some of the ex-
isting adaptation methods, for example, state-aware and resource-aware feedback [16, 17,
18].

3.1. System Structure

In this system, it is assumed that each element of the physical plant is controlled by an
individual control task executing on an embedded computer, which has connectivity to a
more powerful machine ‘in the cloud’. All tasks are executing concurrently and indepen-
dently. Each task is responsible for sampling, updating system state and calculating control
signals.

Fig. 4 shows the basic structure of the proposed method. The system is composed of a
server and one or more clients. The client/server structure distributes the computational
load that is required, as the server has much more processing power than the local embedded
computer. The traces of control and scheduling performance are measured at the local sys-
tem with a monitor module, and transferred to the cloud server for processing and analysis.
The planner on the cloud will make a decision if a longer period can be applied, utilising a
model-based predictor and the run-time observations. The observed data will also be used
to update the prediction model which forms a feedback loop.

To use this method, some general assumptions on the properties of the deployed system
are applied:

1. The embedded computer (local system) consists of a uniprocessor and a preemptive
scheduler using fixed-priority scheduling (FPS);

2. All tasks in the system are released periodically and are initially schedulable, given
the control tasks are using periods that can satisfy control specifications. The system
has the ability to monitor task execution and response times, which is often supported
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Figure 4: Block diagram of the proposed adaptation method

by POSIX-compliant kernels and real-time programming languages such as Ada (see
Section 7.3);

3. The system itself has limited resources but has connectivity to a more powerful cloud
server, e.g., IBM Bluemix, Amazon Web Services (AWS) or Google Cloud. The con-
nection link does not need to be reliable or timing predictable.

3.2. Task Model and Problem Formulation

Given a control application that is represented as a task set taskset Γ = {Γc ∪ Γnc}, in
which Γc is the subset of all the control tasks and Γnc represents the subset of tasks that
are not control-related. For each control task τi ∈ Γc, a flexible task model is used [14], of
which the task period is a variable parameter. A task is defined, using the normal symbols
as τi ≡ {Ci, T

0
i , Ti, Di}. T

0
i is the initial period as well as the lower boundary on the period,

and Ti is the current period. The schedulability of the initial task set taskset is checked
through response time analysis by using optimal priority assignment based on the initial
periods.

The control aspect of a system can be represented as time-domain differential equations
that describe the relationship between the control signal inputs and the system response.
Define the controlled plant of control task τi as Pi. The system dynamic model of Pi is
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represented in the standard state-space form:

{

ẋi(t) = Aixi(t) + Biui(t) + ωi(t)

yi(t) = Fixi(t) + ei(t)
(1)

in which xi(t) is the system states vector; ẋi(t) is the first derivative of xi; ui(t) is the
control input; yi(t) is the system output; Ai is the system dynamic matrix; Bi is the input
matrix; Fi is the output matrix; ωi ∼ N (0, σ2

ω) is system process noise, and ei ∼ N (0, σ2
e)

is measurement noise. The notation N (m,n) means normal distribution with mean m and
variance n. This model is used in the controller design as well as the prediction module in
the cloud.

The optimization objective The problem of adaptation can be understood as an opti-
mization problem, in which the optimization objective is to minimise the overall resources
used by the control tasks under given control quality constraints, which is formulated as
follows:

minimise
Ti

∑

Ui =
Ci

Ti

, i ∈ Γc

subject to
PI i(Ti)

PI0i
≥ 1− λd(i), i ∈ Γc

(2)

The Performance Index (PI) is defined as an inverse of a control cost J (see Section 4.2),
i.e., PI = 1/J . Using PI, the performance of period Ti and an arbitrary period T ′

i can be
compared. The degradation factor λd is defined as the fraction of the expected performance
at a desired period, PIi(Ti), and the ideal expected performance PI0i (when Ti = T 0

i ). This
introduced design parameter is used to make tradeoffs between task utilization and control
performance. It is important that the performance index should be comprehensive and
should also be a monotonic decreasing function with regard to the task period. By defining
the degradation factor, the system designer can control the tolerance of QoC (Quality of
Control) quality-of-control (QoC) degradation as a consequence of manipulating periods.
The subscript i in Equation Eq. (1) and Equation Eq. (2) will be omitted if there is only
one control task.

4. Performance Prediction

It is important for the system to determine the consequence of applying a new period,
and making advance predictions is a straight-forward way of estimating such influence. The
adaptation relies on a performance prediction process, which is done through a model-
based performance predictor using a Monte Carlo model that runs in the cloud server. The
predictor has the ability to predict the performance distribution of a given digital controller
when operating at a particular rate with a given task model. Monte Carlo is a method
for evaluating a model that is complex, non-linear, or involves more than just a couple of
uncertain parameters. Monte Carlo approximates results (i.e., the predictions) from a large
number of repeated experiments through random sampling.
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In this work, a Monte Carlo method is used for analysing how task scheduling uncertain-
ties and variations would propagate to affect control system performance. It is used as the
original control problem is hard to solve by a deterministic and analytical calculation. From
a hybrid system point of view, each control action introduces a jump - i.e., a sudden change
in system dynamics. Although control jobs are released periodically, the actual execution
and outputs are not equally distributed in time. The overall control output is therefore the
consequence of the contributions of multiple control job releases.

4.1. Monte Carlo Predictor

The overall predictor structure is shown in Fig. 5. The predictor is formed of a simulator,
a system dynamic model, a taskset model and a correction model to generate performance
profiles. The Monte Carlo simulator module is a hybrid system that is formed of a discrete
and a continuous computation models. The discrete model (Fig. 6) is a timed finite state
machine. In the diagram, t1: is the delay due to phasing of the first released job after
the operation point is changed, t1 ∈ (0, Ti). The worst-case is when the operational point
changes right after the task is released. In this case, the control task will only be aware of
the change after its next release; t2: is the execution delay after the task is released due to
interference from higher priority tasks; t3: is the input-output latency, which is partly due
to task interference and partly from task execution; t4: the delay for the next release of the
job; cond: is a conditional to terminate the simulation. This termination criterion is either
the system has reached steady state or the maximum allowed simulation time has passed.

The continuous module simulates control system dynamics with an ODE solver. It takes
inputs of control signals, and produces system responses as output, which can then be used
to calculate the performance index. The system dynamic model that is used can either be
obtained from first principles or from empirical modelling. If the system model is in the
form of a transfer function, it will be converted into a state-space model.

During the process of the simulation, the continuous model receives control inputs and
sends plant outputs to the discrete model, while the discrete model decides when and how to
update the input signal, according to the states of the discrete timing model. Collaboratively,
these two subsystems simulate the real run-time behaviour of the digital controller.

4.2. Predicting Control Performance

The performance of a designed controller is quantitatively evaluated by control cost J .
In our work, the Integral of Absolute Error (IAE) is used to describe the cost, which has
the general form:

J =

∫ tss

0

|e(t)| · dt (3)

The control error, e(t), is defined as the difference between the desired reference r(t) and
the actual output y(t). For practicability, the error is only integrated from t = 0, when the
reference starts to change, to t = tss when the system is in steady-state (after which the
margin of control error is within 5%).

The integral operation smooths the fluctuations in the system output due to short-term
transients of system states. However, as there are variations due to scheduling and noise,
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Figure 6: Discrete module that simulates a periodic control task.

each measure of J could be different. In this case, multiple runs of the simulation can be
done to obtain a distribution for J . As there is no evidence to prove that the J distribution
would follow a certain category of parametric distribution, we use the cumulative distribution
function (CDF) to model the data. Depending on the conservativeness of the requirement,
the expectation of performance, J̄ Ĵ , is determined from:

Ĵ = E[J ] = {X|cdf(x < X) ≥ αd} (4)

in which cdf(·) is the cumulative distribution function, and αd is a decision threshold with
αd ∈ (0, 1] (with a typical value of 0.95). Note that the definition of expectation in this
context is slightly different from the traditional explanation, which is to describe the average
output. While in our case, more extreme cases will also need to be considered.

4.3. Prediction Refinement by Error Correction

Ideally, the predictions from the Monte Carlo model are expected to match the measure-
ments of the actual system. However in reality, there are many factors that would affect the
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accuracy of the prediction, such as modelling error in the system dynamics, random pro-
cesses and measurement noises, incorrect assumption of the response time distribution, and
integral error due to numerical approximation. This will lead to imprecise and sub-optimal
predictions, or even cause the adaptation process to fail.

Many of these errors are impractical to be directly measured or modelled. It is also
difficult to analyse how these factors would translate into errors of in performance mea-
surements, even if the error source is identified. As a consequence, a correction model is
proposed to refine the predictions in order to handle the errors and improve the utility of the
prediction. It is assumed that the predictions (Ĵ) are biased by a factor β with the addition
of zero-mean Gaussian noise ǫ ∈ N (0, σ2). Hence the actual performance measurement (J)
is given by:

J = Ĵ + β + ǫ (5)

In particular, the bias β parameter is estimated with the following criterion:

minimize
β

Dn = sup
x

|cdfJ(x)− cdfĴ(x)|

subject to ∀x : cdfJ(x) > cdfĴ(x)
(6)

in which cdfJ(·) is the cumulative distribution function of the control cost, cdfĴ(·) is the
cumulative distribution of the estimated control cost, and Dn is the Kolmogorov-Smirnov
(K-S) statistic [15] [16], which is the maximal distance between the CDFs of the two dis-
tributions. This criterion makes sure the predictions are more conservative than the actual
measurements. It is assumed that the prediction error is sustained when making predictions
for a small period change, as the main error sources are independent of task period.

5. The Run-Time System

The Monte Carlo simulation introduced in the previous section is executed in the cloud,
which significantly reduces the computational load on the local system. In order to achieve
adaptation, there is also a need for run-time support on the local computer. The run-
time system is formed of two modules: monitor and executor. The monitor module runs
on the client side. It is the process for collecting system observations and performing basic
conformance analysis. The executor module communicates with the cloud, and is responsible
for uploading observed traces, accepting adaptation decisions and informing the kernel to
make changes.

The overall flow of the adaptation system is given in Fig. 7. Unlike off-line period
assignment methods, the period in this work is updated in multiple iterations. Each iteration
only applies a small change to the period. Assuming the control task is running with its
initial period T 0

i . When a new request of target utilization is received, a plan is made for
changing the current period to the required period, by dividing the objective into fixed
small step changes. Based on the system model, a prediction is made by the Monte Carlo
Predictor for the new period T ′

i = Ti +∆Ti, in which ∆Ti is the step size. If the predicted
performance can satisfy the performance requirement defined by the system, the new period
is passed to the scheduler, and the scheduler will change the period of the control task.
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Figure 7: Flowchart of the proposed method (note: this figure is updated)

However, the saved resources will not be immediately available to other tasks. An evalu-
ation phase is then involved to monitor if the system running at the new period can satisfy
the performance requirements. If it is satisfied, the saved capacity, ∆U = U(Ti) − U ′(Ti

′),
will be committed and can be used by other tasks in the system. If not, the task’s period
is returned to its previous value. The prediction model is also updated based on the run-
time observations. The process repeats until a) the required targeted utilization is satisfied
(which is checked every time after a change is settled); or b) the control performance has
reached its bound (i.e. future changes are not sanctioned or are rejected once evaluated on
the plant).

6. Evaluation

To demonstrate the effectiveness of the adaptation method, we give an illustrative exam-
ple that uses a second-order system and a taskset consisting of one control task and multiple
non-control tasks. We also evaluate the effectiveness and robustness by investigating a range
of design parameters. Unfortunately no currently existing scheme attempts to address the
issues identified in this paper, hence a comparative study is not applicable.

The experiment is based on simulation using MATLAB/Simulink. The task scheduler is
implemented as a discrete system using the MATLAB s-function in C++, and is called by the
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Simulink engine during simulation. The scheduler uses standard fixed-priority scheduling,
and the deadline-monotonic policy for task priority assignment. In terms of the controller,
we used a Linear-Quadratic-Regulator (LQR) controller. The taskset used in this experi-
ment is randomly generated using UUniFast [17], with log-uniform distributed periods. The
schedulability of the taskset is checked through response time analysis.

6.1. Demonstration

We started by evaluating a control application that has one control task and five non-
control tasks with higher priorities. Note the tasks with lower priorities will not be affected
so they are not considered Note that the tasks with lower priorities than the control task
will not have interference thus will not be considered. The system dynamic equation (see
Eq.(1)) is defined as follows:

[

ẋ1

ẋ2

]

=

[

10 25
−25 10

] [

x1

x2

]

+

[

0
1.6

]

u, y =
[

2.5 0
]

[

x1

x2

]

(7)

in which the system has a complex conjugate pole pair: p1,2 = 10 ± 25j. The closed-loop
bandwidth of the system is 40.72 rad/s, which suggests an initial control period of 10 ms
(middle rounded value of the usual rule-of-thumb approach). The complete taskset with
other higher priority tasks in the system is given in Table 1. At run-time, these tasks are
assumed to have variable execution times which are normal distributed from Ci/2 to Ci (in
this context normal distribution is cut off at 3σ, so it is only defined in the range of µ− 3σ
to µ + 3σ, with σ = 1/12Ci and µ = 3/4Ci). The decision parameter αd is set to be 0.95,
and the period change ∆Ti in each step is 1.0 ms, which is 10% of the initial period.

Table 1: The task set taskset used in the experiment.

Task Ci (ms) Ti (ms) Di (ms) Control Task?

τ0 0.42 1.57 1.57

τ1 0.10 2.15 2.15

τ2 0.53 4.99 4.99

τ3 0.87 7.77 7.77

τ4 0.48 8.01 8.01

τ5 1.00 10.00 10.00 X

We first set the degradation factor to 0.7 and run the simulation. For each iteration,
the actual system is observed for 1,000 seconds, which will give 400 to 500 measurements
depending on the reference signal. The Monte Carlo predictor generates a prediction based
on 3,000 randomised task executions and then makes an estimation of the PI for the next
step.
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The predicted performance is compared with the actual observed metrics in Fig. 8a, and
the prediction bias is also shown in Fig. 8b. It can be seen that the predictor made relatively
precise predictions, i.e., the deviations between the predictions and observations are small.
However, as the period increases, the prediction error also increases. This is explained as
the variation of the performance indices increases dramatically when the control period is
large. As the predictor is preferred to be more conservative, the extremes that would rarely
happen in a real system would still be used to produce expectations. This can ensure the
conservativeness of the predictor and reduce the chance of invalidation. For this experimental
run, the period is terminated by the predictor at 39 ms, which is four times the initial period,
i.e., the utilization is only 25% of the initial task utilization.
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Figure 8: Experiment results. Each point in the diagrams represents one iteration.

For an actual system, a degradation of 0.7 may be impractical as the control performance
drop could be too high. To give a full spectrum of the system behaviour, we used a range
of degradation factors from 0.05 to 0.70. From Fig. 9a, we can see as the degradation factor
increases, the period that the algorithm terminates at also dramatically increases. For
example, if λd = 0.1, the period can be 25 ms, while if λd = 0.5, the period can be 34 ms. It
can be seen the degradation factor is an important design parameter as it determines when
the adaptation process will have to be terminated.

To better illustrate the trade-off between utilization and performance, we compare the
two metrics against task period in Fig. 9b. It can be seen that as the period increases, the
control performance loss is also gradually increased. On the other hand, task utilization
is reduced as a consequence of using a longer period. However, the benefit of utilization
saved by increasing task period is exponentially decreased, while the penalty to control
performance grows quadratically. This implies that increasing the control task’s period
could have a significant positive impact on scheduling performance in terms of utilization,
with just a small amount of control degradation as penalty. However, over-extending the
period of a control task could dramatically affect control performance while making limited
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Figure 9: Exploring the Degradation Factor

contribution to utilization saving.
This trade-off is controlled by the degradation factor. The degradation factor is an

important design parameter in guiding the adaptation process. As it is a relative measure and
it is used mainly for facilitating numerical computation, sometimes it is not straightforward
to select a proper parameter. In this experiment, it is suggested that the degradation factor
would be less than 0.3 to obtain a good trade-off. However, we used an unstable system in
the experiment which is more sensitive to period changes. For other systems, the degradation
factor would be higher. The selection of a proper degradation factor could be done by off-line
simulation with conservative conditions.

6.2. Robustness

In the previous demonstration, we assumed the actual system is identical to the design
model. In this experiment, we will explore the robustness of the algorithm by looking at
the case in which model mismatch exists (i.e., the system model deviates from the actual
system). Model mismatch is the phenomenon that the system model is deviated from the
actual system. This is common in actual engineering systems, due to many factors such as
modelling error, limited knowledge of the system, and simplification of the physical system.

We evaluate the robustness by applying deviations into the actual system, compared to
the design model. As model differences exist, the actual system behaviour will be different
from expected. This includes both the system dynamic model and the task model. The
experiment configurations are given in Table 2. There are overall 7 experiments including a
baseline E1 (the one described above). The ‘system dynamics’ column in the table indicates
how much percentage of error is added to the system dynamic matrix Ai (defined in Eq.(1)).
The ‘task model’ column indicates what task model is used in the simulation: ‘WCET’ for
always using the worst-case execution times, ‘BCET’ for the best-case execution times, and
‘NORM’ for normally distributed between these two extremes.
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Table 2: Experiment configuration for evaluating robustness

Experiment System dynamics error Task execution model

E1 0%

NORME2 -5%

E3 +5%

E4 0%
WCET

E5 +5%

E6 0%
BCET

E7 -5%

The results are shown in Fig. 10. From the figure it can be seen that the actual system
outputs could be very different if there are errors in the original model. The worst-case is E5

in which both system dynamics and task model are worse than ideal. The best two cases are
E6 and E7 in which the best-case execution time model is applied. Nevertheless, in all cases,
the predictions are more conservative than the actual observations, and it can be seen the
predictor is able to correct itself to accommodate different situations. For example, in E6

and E7, as the actual observations are much better than the model, the prediction corrects
itself so it will not be too conservative.
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Figure 10: Results of robustness evaluation. The lines with ‘x’ marks are the predictions and the lines with
‘△’ marks are the actual observations.
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7. Analysis and Discussion

From the standard response time analysis, we can see that extending the period of a task
will not change the worst-case response time of that task. Also, it will have no influence
on higher priority tasks. Thus the schedulability of the system is sustained [18, 19]. The
priority ordering will be unaffected if the priority assignment policy is deadline-monotonic
as task deadlines are not changed. However, if rate-monotonic priority ordering is used (and
deadlines change with period), extending the period without changing priorities would affect
the optimality of the priority ordering.

7.1. Implementation Overhead

Although most of the computation load is distributed to the cloud server, the implemen-
tation of the method still requires additional computation and communication in the local
embedded computer. In particular, these are:

Computation overhead: the additional overhead of computation mainly comes from cal-
culating performance statistics and run-time monitoring. The process can be run as a low
priority background service to create minimum interferences to other running tasks in the
system.

Memory overhead: as traces and statistical data is buffered into memory before being
sent to the cloud server, some memory storage is required. Depending on the sampling rate
and reliability of the communication link, this size can range from a hundred bytes to a few
kilobytes.

Communication overhead: the communication overhead is minor. As only packets con-
taining statistical data are transferred to the cloud server, the communication bandwidth
required by the method is negligible. Also as the communication is not in the control loop,
the real-time and reliability requirements of the network are also low.

Cloud computing cost: as data is collected and analysed on the cloud, its cost needs to be
considered. Most of the cloud service provides a variety of configurations, including number
of cores, memory size and communication bandwidth. For our method, the requirement of
performance is low, hence even a minimal configuration (e.g., 1-core CPU @ 2.0 GHz, 2 GB
RAM, 200 MB disk) with relatively low cost could work. Considering that most CPS now
have cloud services already, the expected cost would be even lower.

7.2. Multiple Control Tasks

In the experimental evaluation we considered the case in which only one control task
exists in the system. For a more general case in which multiple control tasks exist in the
system, it is essential to prioritise each task for adaptation. To control the influence of
adaptation, we recommend that only one task at a time is in an adaptation cycle and can
change its period. Assuming all control tasks are equally important, we propose the following
three policies that can prioritise control tasks:
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Highest Priority First (HPF) The higher priority task has the largest margin and the
highest interferences with non-control tasks, and also changing the higher priority task first
can avoid the need for recalculating periods of lower priority task.

Least Sensitivity First (LSF) The task is selected according to the sensitivity of its
performance index by changing its period. This is evaluated by a sensitivity function:

∆J =
∂J

∂h
∆h

∣

∣

∣

h=Ti(k−1)
(8)

Least Uncertainty First (LUF) Select the controller that behaves closest to its prediction
model, i.e., minimal prediction bias and error.

If the importance, or critical level, of the control tasks are not equal, it is always preferable
to change the task with the least importance first.

7.3. Implementation in Ada

It is important to consider, when evaluating a new software architecture, whether the
necessary facilities and primitives are actually available in the tools and languages used
to implement current embedded and cyber-physical systems. In this section we briefly
assess the capabilities of Ada in terms of the support it can provide for the period adaption
scheme introduced in this paper. However, before considering these specific requirements it
is perhaps useful to highlight the main features that the Ada programming language support
that aid in the production of real-time software:

• support for concurrent programming, both static and dynamic models, and including
input and output jitter control;

• access to clocks, delay primitives and timeout recognition;

• low-level programming facilities that allows device drivers and interrupt handlers to
be programmed;

• support for fixed priority and EDF (Earliest Deadline First) scheduling – including
direct support for priority ceiling and deadline floor protocols;

• support for execution time budget control – individual tasks, or groups of tasks, can
execute within defined execution-time budgets, tasks can be programmed to be sus-
pended if they run out of budget;

• support for exception handling and other language features that aid the production of
fault-free and fault tolerant software.

In addition to these facilities the period adaption scheme requires some additional capabili-
ties:
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1. Monitoring task execution times — each task in Ada has an execution time clock that
is updated automatically by the run-time support system (run-time kernel) and which
can be read by any other task; a low priority monitoring task can therefore obtain the
current clock values from all control tasks.

2. Modifying task execution rates — a periodic task is implemented, in Ada, as a re-
peating task within which is a delay statement enforces a cycle time (e.g. 25ms); this
parameter in under the control of the program and hence a planner task can make
changes to this value in any control task (e.g. increase it to 26ms).

3. Modifying task priorities — if task periods and deadlines are changed sufficiently that
the initial priority assignment is no longer optimal then task priorities can be updated
using Ada’s predefined ‘Dynamic Priorities’ package; priority ceiling levels can also be
modified to keep then consistent with the tasks’ priorities.

4. Modifying task execution time budgets — in terms of the adaptability of the complete
system, as execution time is made available from control tasks executing less frequently,
it can be assigned to the budgets of non-control tasks that are able to utilise this new
capacity - Ada allows dynamic budget management to be programmed.

5. Modifying processor speed — although Ada does not provide any facilities for directly
controlling the speed of the processor on which the program is executing, it does allow
code to directly manipulate processor registers; hence if the processor does allow speed
(and hence voltage) to be changed then this capability can be managed at the program
level.

In summary, Ada provides all the necessary features needed to fully implement to pro-
posed scheme.

8. Related Work (this is a new section)

This work contributes to the research on control-scheduling co-design [13, 20, 21]. In
the co-design research, task scheduling is considered explicitly and simultaneously with the
design process for the controllers. The novelty of our work is the idea of digital twining
and utilising historic information to support run-time changes. Also the resource constraint
on the control task varies as a consequence of evolutionary changes from other parts of the
system.

The decision process forms a loop similar to those in feedback scheduling [22, 23]. For
feedback scheduling, the scheduler has the ability to monitor system states and make cor-
responding actions by adjusting scheduling parameters, including task periods, execution
times, deadlines and priorities. In this work, we focus on changing task periods and we have
introduced cloud services into the feedback loop to support more complicated decisions.

The work of optimal control period assignment [12, 11] provides a solution for optimally
select the control period based some performance expectations. In contrast to these method
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that are performed off-line, our work is a run-time method that focus on evolutionary changes
that are not possible to model at design-time. This also distinguish our work from graceful
degradation [24], in which the degradation is planned and pre-designed based on known
possible failures.

Finally, there is an active research on state-aware and resource-aware feedback period
allocation methods [25, 26, 27]. The idea of this work is to change task period frequently
based on system states that are measured every tens or hundreds of milliseconds. The
philosophy we applied is different: the control task periods is gradually and slowly changed,
in which a change could be made across a large time span, e.g, hours or days. This makes
our approach much less dynamic than other feedback-based period allocation methods, but
our scheme focuses on making permanent changes to task periods. The changes our scheme
sanctions are also safe due to the confidence obtain from observing the consequences of
any change. We also have less run-time overhead on the target processor due to the use of
cloud-based computing.

9. Conclusions

In this work, we proposed an adaptive scheduling framework that can accommodate ad-
ditional computing requirements (or reduce power consumption) for cyber-physical systems
at run-time. A cloud facility is proposed as a component in the loop of for monitoring and
improving control and scheduling performance. Also, we designed a method that uses a
system dynamics model and a task timing model to make predictions and instigate future
actions. Finally we contributed a scheme which utilises run-time feedback information to
enhance the precision and robustness of the predictions. The proposed method is demon-
strated through experiments using simulations with one specific second-order system and
a random generated taskset (a more comprehensive evaluation forms a further work). A
few discussions Discussions on the implementation including overhead, support of multiple
control tasks and implementation in Ada are also given.

There are still many other aspects we can further explore. These include consideration
of the case in which the system has dependent control tasks, for example a multi-loop
controller that has cascaded control tasks. Another example is a motion control system
with multiple degrees of freedom, e.g., a humanoid robot, in which more than one control
task has to cooperate and be synchronised. We also want to extend our method to support
adaptation with multiple objectives, in which more than one design objectives and even
conflicted constraints need to be considered. The ultimate aim is to integrate this work
with detection and prediction methods, so the changes in the system can be reflected and
seamlessly compensated by the adaptation.
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