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Abstract. In the paper an output synchronization problem for

networks of linear dynamical agents is examined based on passifica-

tion method and recent results in graph theory. The static output

feedback and adaptive control are proposed and sufficient condi-

tions for synchronization are established ensuring synchronization

of agents under incomplete measurements and incomplete control.

The results are extended to the networks with sector bounded non-

linearities in the agent dynamics and information delays.
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1 Introduction

Controlled synchronization of networks has a broad area
of important applications: control of power networks, co-
operative control of mobile robots, control of lattices, con-
trol of biochemical, ecological networks, etc.[1, 2, 3, 4, 5].
However most existing papers deal with control of the
networks of dynamical systems (agents) with full state
measurements and full control (vectors of agent input,
output and state have equal dimensions). In the case of
synchronization by output feedback additional dynamical
systems (observers) are incorporated into network con-
trollers.

In this paper the synchronization problem for networks
of linear agents with arbitrary numbers of inputs, outputs
and states by static output neighbor-based feedback is
solved based on passification method [6, 7] and recent
results in graphs theory. The results are extended to the
networks with sector bounded nonlinearities in the agent
dynamics and information delays.

2 Problem statement

Let the network S, consist of d agents Si, i = 1, . . . , d.
Each agent Si is modeled as a controlled system

ẋi = Axi + B0f(xi) + Bui, yi = CTxi, (1)
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where xi ∈ R
n is state vector, ui ∈ R

1 is controlling input
(control), yi ∈ R

l is the vector of measurements (output).
Let G = (V, E), be the digraph with the set of vertices V
and the set of arcs E ⊆ V × V, such that for i = 1, . . . , d
the vertex vi is associated with the agent Si.

Let the control goal be:

lim
t→∞

(xi(t) − xj(t)) = 0, i, j = 1, . . . , d. (2)

3 Static control

Let control law for Si be

ui(t) = K
∑

j∈Ni

(yi(t − τ) − yj(t − τ)) =

KCT

∑

j∈Ni

(xi(t − τ) − xj(t − τ),

K ∈ R
1×l,

(3)

where Ni = {k = 1, . . . , d|(vi, vk) ∈ E} is the set of neigh-
bor vertices to vi, τ ≥ 0 is communication delay.

The problem is to find K from (3) such that the goal
(2) holds.

The problem is first analyzed for linear agent dynamics
(B0) = 0) without delays (τ = 0) under the following
assumptions:

A1) B 6= 0, (rankB = 1) and there exists a vector

g ∈ R
l such that the function gTW (s) is hyper-minimum-

phase, where W (s) = CT(sI − A)−1B). (Recall that the
rational function χ(s) = β(s)/α(s) is called hyper mini-

mum phase, if its numerator β(s) is a Hurwitz polynomial
and its highest coefficient βn−1 is positive [7].)

A2) The interconnection graph is undirected and con-

nected.

A2D) The interconnection graph is directed and has the

directed spanning tree.

Let A(G) denote adjacency matrix of the graph G. For

digraph G consider the graph Ĝ A(Ĝ) = A(G) + A(G)T.

Laplacian L(Ĝ) = D(Ĝ) − A(Ĝ) of the graph Ĝ is sym-
metric and has the eigenvalues: 0 = λ1 < λ2 ≤ . . . ≤ λd,
[1, 3]. The main result is as follows.
Theorem 1. Let assumptions A1 and either A2 or A2D
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hold and k ≥ 2κ/λ2, where

κ = inf
ω∈R1

Re
(
g

T

W (iω)
)
. (4)

Then the control law (3) with feedback gain K = −k ·
gT, k ∈ R

1 ensures the goal (2).
Similar results are obtained for undirected and balanced
directed communication graphs.

4 Adaptive control

Let agent Si be able to adjust its control gain, i.e. each
local controller is adaptive. Let each controller have the
following form:

ui(t) = θi(t)yi(t), (5)

where θi(t) ∈ R
1×l – tunable parameter which is tuned

based on the measurements from the neighbors of i-th
agent.

Denote:

yi =
∑

j∈Ni

(yi − yj), i = 1, . . . , N

and consider the following adaptation algorithm:

θi(t) = −gT · ki(t),

k̇i(t) = yi(t)
TggT yi.

(6)

Adaptive synchronization conditions are formulated as
follows.

Theorem 2. Let assumptions A1, A2 hold. Then

adaptive controller (5) - (6) ensures achievement of the

goal (2).
The above results are extended to the networks with

sector bounded nonlinearities in the agent dynamics and
information delays.

5 Conclusions

We propose the control algorithm for synchronization of
networks based on static output feedback (3) to each
agent from the neighbor agents. Since the number of
inputs and outputs of the agents are less than the num-
ber of agent state variables, synchronization of agents is
achieved under incomplete measurements and incomplete
control. Synchronization conditions include passifiabil-
ity (hyper-minimum-phase property) for each agent and
some connectivity conditions for interconnection graph:
existence of the directed spanning tree in case of directed
graph and connectivity in case of undirected graph. Sim-
ilar conditions are obtained for adaptive passification-
based control of network with undirected interconnection
graph, for sector bounded nonlinearities in the agent dy-
namics and information delays.

The proposed solution for output feedback synchroniza-
tion unlike those of [4, 5] does not use observers. Com-
pared to static output feedback result of [4] (Theorem 4)

the proposed synchronization conditions relax passivity
condition for agents to their passifiability that allows for
unstable agents. The paper [4], however, deals with time-
varying network topology. The presented results extend
our previous results [8, 9, 10].

Simulation results for the networks of double integra-
tors and Chua circuits illustrate the theoretical results.
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