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ABSTRACT

Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the
potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to
the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial
properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by
the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5
year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at
30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS
in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database
helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a
relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-
like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just
under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial
distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then
indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.

Key words: Sun: chromosphere – Sun: corona – Sun: activity – Sun: oscillations

1. INTRODUCTION

Our knowledge of the different layers and structures of the
solar atmosphere has improved greatly in the past decades.
However, the structural fine-scale details of the atmosphere still
leave many open questions (see the review papers of e.g.,
Judge 2006; Lipartito et al. 2014). A challenging task is to
identify and catalog the small-scale, localized observable
phenomena (e.g., bushes, fibrils, flocculi, grains, mottles,
spicules, etc.) present in the chromospheric zoo in regards of
their numbers and variety. These often rapidly appearing and
disappearing, fine structures are popularly observed in, e.g., the
He II (»30.4 nm) emission line, Hα (»656.28 nm), and Ca II
(»393.366 nm) absorption lines.

One class of the set of highly dynamic phenomena is the
spicules. They are abundant, spiky-like gas jets at the
chromospheric solar limb (Secchi 1877). Their upward mass
flux is about 100 times that of the solar wind (Sterling 2000; de
Pontieu et al. 2004; Sterling et al. 2010). Spicules are
detectable both on the disk (often called as mottles) and at
the limb at any given moment of time. Depending on their size
and lifetime, spicules can be classed into two groups. Spicules
with 7000–11,000 km length, 5–15 minute lifetime, and 25 km
s−1 propagating speed are called “classic,” or lately debatably
referred to as type-I spicules (Beckers 1968; Zaqarashvili &
Erdélyi 2009). The other group is claimed to contain the
smaller and faster (5000 km average height, 50–100 km s−1

propagation speed) so-called type-II spicules (on disk often
labeled as Rapid Blueshifted Excursiors (RBEs) referring to
one of their distinct observable properties) with shorter lifetime,
10–150 s (de Pontieu et al. 2007, 2012; Sekse et al. 2012;
Kuridze et al. 2015). Spicules, irrespective of their lifetime and

speed, could play an important role in the energy and
momentum transportation from the photosphere to the chromo-
sphere or low corona. Their capability of guiding MHD waves
is discussed by, e.g., Zaqarashvili & Erdélyi (2009).
There are, however, much larger spicule-like, also abundant,

dynamic jets detected to be present in the solar atmosphere:
macrospicules (MSs). The investigation of macrospicules
reaches back at least 40 years. The first modern observation
of macrospicules was carried out by Bohlin et al. (1975). With
the 30.4 nm spectroheliograph onboard the Skylab mission,
Bohlin et al. (1975) identified 25 MSs with lengths of 8″–25″
(some extreme cases were even with 30″–60″). Their lifetime is
about 8–45 minutes without any reported correlation at that
time between the length and lifetime. Most MSs are formed
inside coronal hole (CH) regions. Their name, initially, was
suggested to be “EUV macrospiclues” after the wavelength
band they were detected in.
Labonte (1979) observed 32 macrospicules with the 25 cm

aperture vacuum telescope at Big Bear Solar Observatory using
Hα and D3 filters during an observation campaign of 122 hr.
The length (8″–33″) and lifetime (4–24 minute) of these MSs
were similar to those reported in Bohlin et al. (1975).
Dere et al. (1989) investigated 10 MSs with the UV
spectroheliograph onboard the Spacelab-2 mission. The
properties of the MSs found were similar, again, to those
reported in the previous two studies, but the main innovation is
the development of temporal resolution: Spacelab-2 was able to
observe macrospicules with a lifetime down to three minutes.
The breakthrough came with the age of high-resolution

spacecraft: Solar Heliospheric Observatory (SOHO, Fleck
et al. 2000) opened new avenues in solar physics with much
greater temporal and spatial resolution than before. In the
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context relevant for our paper, we recall that Pike & Harrison
(1997) used SOHO/Coronal Diagnostic Spectrometer (CDS) to
investigate the physics of MSs with the first multi-wavelength
observation and described them as multi-thermal structures.
The authors claimed that X-ray jets and EUV MSs are a
manifestation of the same underlying physical phenomena,
which could be the source of the fast solar wind as well. They
also described, first, an associated “pre-existing bright point,”
which can be a sub-flare brightening.

In a follow-up study, Pike & Mason (1998) employed
SOHO/CDS to detect the rotational properties of MSs. Blue
and redshifted emission was observed on either side of the axis
of MSs above the limb, which suggests the rotation of MSs.
The rotation velocities increase with height, so the macro-
spicules they observed were labeled "solar tornadoes.” The
separation of blue- and redshifted regions on two sides of the
macrospicule is clearly visible.

Parenti et al. (2002) investigated the density and temperature
of MSs. Three data sets, taken by SOHO/CDS and SOHO/
Normal Incidence Spectrometer (NIS), were constructed. The
first data set contains information about the MSs, while the two
others are averaged and used as a “background” to reduce the
noise of the first one. The subtraced spectra showed a number
of new properties: MS density was about - -10 cm10 3 while the
temperature was – ´3 4 105 K. The employed noise-reduction
technique gave an opportunity to investigate the motion and the
trajectory of MSs: a maximum velocity was found to be about
80 km -s 1 during the entire lifetime. The maximum height
reached by MSs was reported to be ´6 104 km above the solar
limb. The average speed of falling back was about 26 km -s 1.

Scullion et al. (2010) examined both on-limb and off-limb
MSs with the high-resolution spectroscopic capability of
SOHO/Solar Ultraviolet Measurements from Emitted Radia-
tion (SUMER) instrument. In the case of two off-limb events,

fast upward propagation was measured between the mid-
transition region (N VII—765Å) and the lower corona (Ne VIII
—770Å) with » -145 km s 1. On-limb observations suggest
that spicules can be precursors for macrospicules.
Madjarska et al. (2011) analyzed three macrospicules with

four instruments (Hinode/SOT, EIS, XRT and SOHO/
SUMER). These co-aligned images revealed that macrospi-
cules do not seem to appear in a spectral line formed over
300,000 K.
On the theoretical side, Murawski et al. (2011) carried out

one of the first numerical simulations for MSs as a velocity-
shock in the transition region. They employed the FLASH code
(Lee & Deane 2009) to solve the two-dimensional MHD
equations by implementing a VAL IIIC solar temperature
model (Vernazza et al. 1981). Many properties of simulated
MSs matched the abovementioned, observed lifetime, length,
and velocity.
Another new era of MS observation has began with the

launch of Solar Dynamics Observatory (SDO) in 2010 (Pesnell
et al. 2012). Onboard the spacecraft, the Atmospheric Imaging
Assembly (SDO/AIA) generates terabytes of full-disk data
with 0 6 spatial and 12 s temporal resolution at e.g., 30.4 nm
wavelength (Lemen et al. 2012).
Kayshap et al. (2013) carried out a detailed description of the

evolution of an individual MS. This jet occurred in the north
polar corona on 2010 November 11 with nearly 24 minutes
lifetime and 40Mm height. Based on its detailed observational
description, a two-dimensional numerical simulation was
performed using the VAL IIIC initial atmospheric model
(Vernazza et al. 1981). A small-scale magnetic flux tube
emerged from the sub-photospheric layers into the previously
existing open magnetic field, then underwent kink-oscillation.
The authors claimed that this kinking motion is the source of
the MS. The flux-emerging model is one of the widely accepted

Figure 1. Series of images about a Quiet Sun macrospicule on SDO/AIA 30.4 nm images. The phenomenon occurred between 12:20 and 12:43 on 03.07.2012 on the
western solar limb. The bottom panel images are overplotted by the tetragon assumption of MS. In the first column, the brightening is clearly visible, which may be the
precursor of the jet itself.
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Figure 2. Distributions, from top to bottom: maximum area, maximum length, lifetime, average velocity and maximum width. In each panel, on the LHS, the
distribution of the actual property can see. Different types of mark are used for different hemispheres: diamonds represent the northern hemisphere (dark blue—
CH, light blue—QS), circles denote the south (green—CH, red—QS). On the right-hand panels, the histogram of each distributions is provided. The dashed line
indicates the fitted log-normal distributions. The vertical line represents the mode of the distribution (light-darker-dark strips correspond to 1σ, 2σ, 3σ
distributions).
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theories of solar jets (for a review of this topic, see
Sterling 2000).

According to the study by Gyenge et al. (2015), using SDO/
AIA data, the spatial distribution of macrospicules shows
inhomogeneous but systematic properties. It is known that the
latitudinal distribution of MSs concentrates around the poles.
However, from the study of Gyenge et al. (2015) the longitudinal
distribution also shows inhomogeneous properties. The long-
itudinal positions tend to focus around certain belts, which
suggests that there is a relationship between the position
occurrence and the generation of the global magnetic field.

Taking advantage of the uninterrupted observations of SDO,
Bennett & Erdélyi (2015) built up a data set with 101 MSs
covering an observation over a 2.5 year long time interval. The
authors claim that features like maximum length (28Mm),
upflowing velocity ( -110 km s 1) and lifetime (14 minute) are
varying in time systematically. Cross-correlation of maximum
length–maximum velocity and lifetime–maximum length showed
a significant correlation ( =k 0.43, 0.66), however the correlation
coefficient is much smaller in the case of maximum velocity and
lifetime (k=0.16). Ballistics of MSs were investigated as well,
which indicates a strong influence of gravity in the rise and fall of
MSs. Taking stock of the ballistics and two characteristic
density values of MSs (r = ´1.0 10 kg m8 3 and r = ´1.0
10 kg m11 3), the authors estimated the formation energy ´1.46

´10 J, 4.78 10 J,17 16 ´ ´3.09 10 J, 1.46 10 J15 14 for 25, 5, 1,
and 0.5Mm scale heights and ´3.66 10 J13 for uniform plasma
distribution cases.

In this study, we focus on the statistical investigation of the
temporal behavior of MSs on timescales spanning considerably
longer than previous studies, i.e., for a time interval of just
under 6 years. This extended temporal investigation yields the
opportunity to analyze the temporal variation of MS properties
and the detection of the oscillatory behavior of their properties
on roughly biannual timescales, well beyond the lifetime of
individual MSs. In Section 2, we introduce the way the
database was built up. In Section 3, we discuss the results of the
statistical analysis. We outline our discussion and conclusions
in the last section.

2. DATABASE

The source and driving force of the majority of solar
phenomena is the large-scale, global magnetic field, which
varies on a long-term, e.g., 11 year time, period. However, the
temporal behavior of jets is always considered on a short
timescale. That may be the reason why previous studies have
investigated only a few MSs over a short time period. The
temporal ranges of jet evolution are much shorter than the
characteristic timescale of the solar cycle. Therefore, invest-
igation of the properties of short-timescale macrospicules over
a long time period is still an uncharted territory with some
interesting questions to answer. To achieve this objective, an
instrument is required (i) to have high temporal and spatial
resolution to properly resolving the jets themselves, and (ii) to
operate continuously for multiple years in order to investigate
long-term evolution in a statistical sense. The ideal choice is
SDO, which was launched in 2010 June, near to solar minimum
between solar cycles 23 and 24. The operation of SDO for a
period of about 6 years, at the time of writing, provides a great
opportunity to acquire the long-term temporal variation of the
properties of MSs in the current solar cycle.

SDO/AIA 30.4 nm images may be divided into three regions
due their overall average intensity. Active regions (ARs) are
bright, fine-detailed areas often near the solar equator; at the
same time CHs are mostly formed around the solar poles and
their reduced intensity is related to the open magnetic field
(Aschwanden 2004). Finally, the Quiet Sun area (QS) is
defined as non-AR or non-CH solar surface. Therefore, the
macrospicules we studied were named and cataloged as coronal
hole (CH–MSs) and Quiet Sun (QS–MSs) macrospicules,
distinguished by the surrounding solar environment. We have
not investigated AR MSs; for reasoning see below.
To build a long-term database with a sufficient number of

observations for statistical analysis, a strict definition of what is
actually considered a MS is necessary. Let us summarize how
we define a MS by the following five points. First, MSs are
“thin” jet phenomena at the solar limb. Second, MSs generated
in ARs are not selected, just those from CH and Quiet Sun
areas. The reason for this apparently perhaps too-restrictive
criterion is that the large-scale magnetic field of ARs is able to
drive MS-like phenomena (Chandra et al. 2015; Sterling
et al. 2016), which could be different in terms of physics from
MSs formed in CH or QS areas (Kayshap et al. 2013). Third,
MSs are shorter than 200 pixels (70Mm). This, perhaps
somewhat arbitrary, upper limit avoids contaminating our data
set with other high-energetic jet phenomena. Fourth, MSs have
to have a visible connection with the solar surface. The lack of
connection may mean that the MS is formed on the “other
side,” i.e., far side, of the solar limb. If far-side MSs were
considered, this may carry an error to the estimate of the
distance between the top and the footpoint of MS. Fifth, and
perhaps most distinctly, 1–2 minutes before the appearance of
the MS jet, a brightening is identifiable at the solar surface. The
presence of brightening actually also confirms that the MS is on
the visible side of the Sun. A number of previous works
discussed the physics of brightening generation (Pike &
Harrison 1997; Sterling et al. 2015).
To provide a temporally homogeneous data set, MSs were

identified and chosen from a 2 hr long interval between 12:00
and 14:00 on every 1st, 7th,15th, 24th day of each month from
2010 January 06 until 2015 December 31.
To turn macrospicules identified by SDO observations to

geometrically, e.g., morphologically, measurable features, MSs
were fitted with tetragons (see Figure 1). Note, we are not
saying MSs have a tetragonal shape. On the contrary, MSs have
an irregular shape. Figure 1 shows a complete evolution of a
QS-MS on the western limb in five images with ∼5.5 minutes
temporal differences. We only approximate their geometric
extent in order to estimate their length, width, etc. A framework
of Sunpy (see e.g., Mumford et al. 2013) was used for this
process. On every tetragon, two of the diagonal points
represent the bottom and top, and the distance between them
measures the actual length of the jet. The distance between the
remaining two points models the width of the MS perpend-
icular to the main axis. Furthermore, the position of bottom
point of the MS was assigned with the actual observing time.
Data about a MS contain the position of four vertices for every
frame of observation, where the MS is clearly visible.
By applying the above outlined criteria to SDO/AIA

30.4 nm observation, 301 MSs have been detected during 5.5
years of sequence of observation. The number of different
types of macrospicule are not equal in terms of location: 158
jets formed (≈52.48% of all MS) in CHs and only 134 took
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place (≈44.50% of all MS) in Quiet Sun regions. Occasionally
a MS was not registered into this dual system, therefore a new
class, named coronal hole boundary (CHB), was assigned to
catalog them. However the number of CHB macrospicules is
only 9 (≈0.02% of all MS). For this reason, we have not
applied the same statistical studies to CHB MS that we have in
the cases of CH or QS macrospicules.

On-disk MSs are often associated with explosive phenom-
ena. These events (therefore MSs as well) are regions of excess
line width, which were observed recently to a greater extent in
CHs than Quiet Sun regions (Kayshap et al. 2015).

3. RESULTS

3.1. Spatial Distribution on the Solar Disk

For each frame during the entire lifetime of a MS, the
position of the four edges of their tetragon is built up from two
polar coordinates: the first represents the distance from the solar
disk center, the second one shows a polar degree from along
the solar limb. From these two data values the actual position of
a MS on the solar disk is easily determinable. Because each
tetragon was fitted individually at different time frames, the
position of the associated MS varies on a small, approximately
3 arcsec distance. This variation is neglectable, so in this study,
the position of the MS is always denoted with the position of
the brightening observed on the first frame.

By estimating the positions of all the observed MSs in our
database, it is clearly visible that MSs are formed mostly
around the solar poles. There may be a bias caused by the
introduced selection criteria, namely we exclude ARs that are
more abundant around the solar equator. Furthermore, the ratio
between the number of CH–MSs and QS–MSs could be
influenced by the solar dynamo: when the poloidal field is more
dominant (e.g., during solar minima), the area of CH regions
may be larger. Therefore the number of CH–MSs could grow
substantially. This effect may be reversed during solar maxima
with less dominant poloidal fields. The histogram of the spatial

distribution shows what is expected: CH–MSs mostly take
place around the solar poles, while QS–MSs cuddle around
them as a “ring” as seen in the right-hand side of Figure 3.
Another interesting aspect is the ratio between the number of

MSs on the two solar hemispheres. For QS–MSs, the
corresponding numbers are nearly equal ( =n _ 69North QS ,

=n _ 65South QS ), but a huge difference is found between the
northern and southern CH–MSs numbers ( =n _North CH

39, =n _ 119South CH ).
Strong asymmetry between the two hemispheres is visible in

the heliospheric current sheet position, therefore the inclination
of polar jets (Nisticó et al. 2015). For the period of 2007–2008
solar minima, the authors found that jets are deflected towards
low latitudes and this deflection is more pronounced at the
north pole than at the south pole. Asymmetry was also reported
in many different magnetic solar phenomena: e.g., sunspots
(Chowdhury et al. 2013; Kitchatinov & Khlystova 2014),
global distribution of the solar wind speed (Hoeksema 1995)
and magnetic field measurements in the interplanetary medium
(Erdős & Balogh 2010). These results suggest an influencing
effect by the solar dynamo (Shetye et al. 2015).

3.2. Measuring Macrospicule Properties

Many different properties of MSs, such as length, lifetime,
width, area, and rise (i.e., emergence) velocity, have been
refined in several studies in the last 40 years. Therefore a
crucial cross-checking point of this study now is how well our
results fit with those reported by others. The tetragon
assumption is a powerful tool to determine key properties in
the following ways: (a) maximum length is the greatest
distance between the bottom and the top points; (b) maximum
width represents the greatest distance between the two side
diagonal points; (c) average upflow velocity is the average of
speed values calculated from spatial difference between two
frames in the emerging epoch of MS life; (d) lifetime is the
temporal difference between the first and last frame where the

Figure 3. On the left-hand side locations of all investigated MSs are plotted around the solar limb. Red, blue and green mark the coronal hole, Quiet Sun and coronal
boundary MSs, respectively. The vertical axis is the heliographic latitude (B). Longitude of central meridian (LCM) is along the horizontal axis. On the right-hand
side,a histogram of CH–MS and QS–MS location is provided with red and blue strips, respectively.
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MS is visible, and (e) maximum area shows the maximal value
of geometrical areas of all tetragons during the whole lifetime
of a MS.

As a first approximation, determining these values for each MS
and plotting them in time, no obvious temporal variation is found.
To have a more accurate understanding of the range of
characteristic values determining MS properties, their histogram
was investigated. A log-normal distribution is fitted to each
histogram as seen in Figure 2. The main properties of each fit
(e.g., mode, median, mean, scattering, distribution) to the data are
in Table 1. These obtained values are found to be in line with
those reported previously in the literature. In particular, three
properties show great similarity: lifetime (16.75± 4.5 minutes),
maximum width ( 6.1 4Mm), and average upflow velocity
(73.14± 25.92 km s−1

). The maximum length is nearly
overestimated here, with 28.05±7.67Mm. These similarities
indicate a positive feedback to the criteria that we have set for
defining MSs, and the applicability of tetragon assumption as
well. For a summary of the comparison of average properties
found here with those reported in earlier studies, see Table 2.

3.3. Cross-correlation of Properties

In the next step, we aim to discover whether there is any
correlation between the properties of MSs found. For this
reason, selected properties are plotted against each other. To
show whether any two properties correlate, a linear fitting is
applied to the data distribution. This fit is displayed in
Figure 4. The correlation coefficients (k ) were also determined,
and it seems to have a relatively small value for both CH
( [ ]= - -k 0.29, 0.012, 0.127, 0.131, 0.195, 0.214, 0.557CH )

and QS ( [ ]=k 0.179, 0.355, 0.373, 0.406, 0.58QS ) type MSs.
This suggests that there is no strong correlation between the
different properties of MSs in general. In both cases, only a small
number of combinations show stronger correlations. “Maximum

length versus maximum area” ( = =k k0.78, 0.87CH QS ), “max-
imum width versus maximum area” ( = =k k0.64, 0.75CH QS )

and “maximum length versus average velocity” ( =k 0.76CH ,
=k 0.81QS ) seem to have relatively strong correlations for both

CH–MSs and QS–MSs. A correlation between data sets cannot
be negligible if the correlation coefficient is greater than around
0.6. In this respect the above stronger correlations seem to be
logical, as area data are derived from the length and width.
Further, “maximum area versus average velocity” ( =k 0.71QS )

and “maximum area versus maximum lifetime” ( =k 0.65QS )

pairs indicate a stronger correlation for QS–MSs only.
Next, there is a visible gap between CH–MSs and QS–MSs

in their average correlation coefficient (∣ ∣ =k _ 0.372,CH avg

∣ ∣ =k _ 0.57QS avg ) and the ratio of the correlation coefficient is

also greater than 0.6 ( =n _ 3 10k CH , =n _ 5 10k CH ). The
source of these differences may be rooted in the underlying,
governing physical differences between the two types of MS,
which should be clarified in future research but is not within the
scope of the present paper.
By investigating the large-scale time-dependence, i.e., solar

cycle evolution, in this study, an interesting effect is visible.
Namely, in Figure 4, the change of marker color represents the
march of time. Red marks show the value of a MS’s property
around 2010 June and the sequential color variation into blue
captures the progress in time. Following the conversion of
color from red to blue leads to a trajectory in each figure. In
some aspects, at least conceptually, these paths are similar to
different branches in the well-known Hertzsprung–Russell
diagram (HRD). To characterize these paths in time, the entire
problem is simplified to a geometrical problem. Fixed points of
these distributions became the geometrical center of “mass,”
which are marked by a green star in each panel of Figure 4. To
give a correct distance of each point from this center point, all
the properties are normalized due the different magnitudes of

Table 1

Preferences of the Fitted Log-normal Distributions

Mode Mean Median
Distribution

1σ 2σ 3σ

Maximum length [Mm] 24.95 28.07 26.99 20.39–35.72 15.41–47.27 11.64–62.56

Maximum lifetime [s] 916.72 1015.88 981.69 755.68–1275.3 581.70–1656.73 447.77–2152.24

Maximum width [″] 3.95 4.98 4.61 3.11–6.83 2.10–10.12 1.42–14.99

Average velocity [km s−1] 59.62 73.25 68.39 47.22–99.05 32.60–143.46 22.51–207.77

Maximum area [Mm2] 69.01 97.787 87.06 53.77–140.97 33.2–228.26 20.5–369.61

Note.1σ distribution covers 68%, 2σ represents 95%, 3σ marks 99.5% of data.

Table 2

Summary of Macrospicules Based on Previous Studies

Bohlin et al. (1975) Labonte (1979) Dere et al. (1989) Bennett & Erdélyi (2015) New Results (1σ)

Length [Mm] 6.24–19.45 6.24–25.67 3.9–17.9 14–68.46 20.39–35.72

Lifetime [minute] 8–45 4–24 �3 2.7–30.6 12.5–21

Velocity [km s−1] 10–150 �60 20–50 54.1–335.5 47.22–99.05

Width [Mm] 3.6–10.9 2.2–6.5 L 3.1–16.1 2.1–10.1

Spectral line He II (l304) Hα (l6562) C IV (l1548) He II (l304) He II (l304)
log temperature of line [K] 4.9 4.0 5.0 4.0 4.0

Number of MS ∼25 32 10 101 301

Spatial resolution [″] 2 0.5 2 1.5 1.5

Temporal resolution [s] �180 ∼60 20, 60 12 12
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values (e.g., lifetime values are three magnitudes greater than

maximum width values). After normalization, the geometric

distance can be easily worked out. As the cross-correlation

distributions suggested, strong temporal variation is visible in

all cases in Figure 5. Multiple strong oscillations are visible in

these plots on short timescales (t <osc 2 years). Furthermore,

the characteristics of the obtained distance curves are different

between CH and QS macrospicules, but there is a dominant

Figure 4. Cross-correlation of a range of MS properties. Variation in color of markers represents the progress in time: red indicates 2010 June, blue indicates 2015
December. A green star indicates the weighted geometric center of property for a given plot. Characteristics of the fitted black line are the k correlation coefficient and
two-sided p-value obtained in a hypothesis test.
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peak around the first half of 2012 in the majority of the distance
plots. All of these suggest that there is a deterministic,
underlying, temporal variation in the raw data, which was not
known previously, to the best of the authors’ knowledge.

Future research of the oscillatory pattern found here may
connect macrospicules to oscillatory behavior found in other,
large-scale solar phenomena, which have already been reported
to show a quasi-biennial oscillation (Fletcher et al. 2010;

Figure 5. Distance plot of each mark in Figure 4 from the center of mass. Red points indicates the north hemisphere values, green marks represent MSs from the
southern hemisphere.

8

The Astrophysical Journal, 835:47 (10pp), 2017 January 20 Kiss, Gyenge, & Erdélyi



Broomhall & Nakariakov 2015) or oscillations with even
shorter periods, e.g., found by Cho et al. (2013), Gyenge et al.
(2014, 2016).

4. CONCLUSION

The aim of this study is to yield a more accurate and precise
statistically relevant characteristic study of the physical
properties of macrospicules. For this reason, a data set is built
by means of analyzing 301 MSs over a 5.5 year long time
interval between 2010 June and 2015 December. The raw data
were obtained by SDO/AIA using the 30.4 nm wavelength
band, where the MS jets were detected at the solar limb. The
underlying fundamental principle of this database is to form
and apply a range of criteria to MSs that can be summarized
into five points. In order to gather information about each MS
that fits well the required criteria at every frame of their
lifetime, these jets are fitted with tetragons. The diagonals
between the edges of the tetragon represent the physical
dimensions of the MS, such as length and width.

Five observed properties of MSs were analyzed in this study:
maximum length, maximum width, average upflow velocity,
maximum area, and lifetime.

Taking advantage of this data set, the spatial distribution of
some key parameters of MSs was investigated first. Because
ARs were excluded from the solar area of investigation, i.e.,
where MSs could be identified, the observed jets are found to
be at high(er) solar latitudes. CH jets accumulate around the
solar poles due to the large-scale open magnetic field of polar
CHs. Quiet Sun MSs form a “ring” around them. Further, a
strong asymmetry is visible in the number of CH–MSs between
the hemispheres. The number of CH–MSs on the southern
hemisphere is almost three times larger than that of the northern
hemisphere. The source of this difference may be the solar
dynamo as has been shown for, e.g., sunspot area (Chowdhury
et al. 2013; Kitchatinov & Khlystova 2014). Future research in
this topic should seek for a connection between asymmetry
indexes of multiple magnetic structures.

Distributions of MS properties in time show a strong
temporal variation. To obtain accurate estimates for the average
properties, the temporal variation was put aside and their
histograms were studied initially. Each histogram was fitted
with a log-normal distribution and their preferences (e.g.,
mode, mean, median, distribution) were determined to
characterize the MS. Comparing our findings to those of the
previous studies (note that values here are 1σ distribution of the
log-normal distributions) we conclude that: lifetime
(16.75± 4.5 minute), width ( 6.1 4Mm), and average
velocity (73.14± 25.92 km s−1

) values are in an agreement,
while length (28.05± 7.67Mm) is slightly greater. Agreement
between the results found in this research and those in the
literature verify the choice of the tetragon assumption.

Last but not least, cross-correlation of the raw data was
investigated. When fitting a linear and cross-correlating, there is
often a lack of a dominant correlation (∣ ∣ =k _CH avg

∣ ∣ =k0.372, _ 0.57QS avg ). In three cases, however, the coeffi-
cients are found to be relatively strong for both types of MS. For
QS–MSs, two further combinations of physical parameters (i.e.,
“maximum area versus average velocity” and “maximum area
versus maximum lifetime”) show a stronger correlation, which
may reveal the underlying physical differences between the
formation of CH–MSs and QS–MSs. Considering the temporal
evolution of these distributions, remarkable paths became visible

in cross-correlation visualizations. To study this behavior, the
distances between the center of mass and each point were
determined. These distance plots in time reveal a strong,
previously unseen, temporal variation in the database.
Broomhall et al. (2009) found that variation of the frequency

shift of the global p-mode oscillation is a superposition of two
oscillators: a stronger one, which has the well-known 11 year
long oscillation, and a weaker one, where the period is around
two years. These oscillations are named quasi-biennial
oscillations (QBOs) and were discovered first by Belmont
et al. (1966). QBOs were found in many global solar
phenomena. Penza et al. (2006) found that the reconstructed
data set of the line depth of three photospheric lines over 25
years shows a QBO. Zaqarashvili et al. (2010) investigated the
stability of magnetic Rossby waves in the solar tachocline and
their results indicate a Rossby wave harmonic with a period of
∼2 years, a possible source of QBOs.
Fletcher et al. (2010) suggest that the source of these

oscillations could be a second dynamo layer near to the solar
surface. Broomhall & Nakariakov (2015) also found QBOs in
measuring proxies of the magnetic field in the Sun. Recently,
Beaudoin et al. (2016) constructed a double dynamo-layer
model that is able to excite QBOs. If localized solar features
like MSs, by means of statistical investigation of their
properties during solar cycle timescales, show a similar
behavior, that would suggest a connection between local
dynamics (e.g., MSs) and the evolution of global magnetic
field (e.g., solar cycle), an unrevealed question with great
potential. Therefore, this will be the focus of our follow-up
research.
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