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12 Abstract

13 Glass Fibre Reinforced Polymer (GFRP) bars have been employed as internal reinforcement for concrete 

14 members when corrosion of the commonly used steel bars is expected to be an issue. While a good bond is 

15 anticipated between GFRP bars and concrete at ambient temperature, the bond performance at high temperature 

16 is expected to be reduced due to the physical and mechanical changes that the matrix undergoes at temperatures 

17 approaching the glass transition temperature (Tg). Up to date this phenomenon has only been marginally 

18 investigated and most of the available bond tests are performed at ambient temperatures after cooling of the 

19 heated specimens.

20 This paper presents the results of an experimental investigation on the bond behaviour of GFRP bars in concrete 

21 and exposed to temperature levels ranging from ~20 °C to 300 °C. The test specimens, consisting of an indented 

22 GFRP bar embedded in a cylindrical concrete block, were heated in an electric furnace. The pull-out tests were 

23 carried out within the furnace only after the temperature level, measured with thermocouples at the interface of 

24 GFRP and concrete, stabilized to the desired value.

25 The paper discusses the effect of temperature on bond behaviour in terms of bond strength, bond stress-slip 

26 relationships and failure modes. A contactless technique measuring the free-end slip during pull-out tests at 
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27 high temperatures was developed and its effectiveness demonstrated. Finally, the experimental results were 

28 used to calibrate the parameters of the two most widely used analytical models: mBPE and CMR. 

29

30 Keywords: A. Glass fibres, B. High-temperature properties, C. Analytical modelling, D. Mechanical testing, 

31 Bond 

32

33 1. INTRODUCTION

34 One of the key aspects of RC members design is the interaction between concrete and reinforcement [1]. 

35 Adequate bond between concrete and reinforcement is necessary to ensure that sufficient force transfer occurs 

36 between the concrete and the reinforcement and composite action can be relied upon.

37 Steel bars are commonly used as reinforcement, however, in application where steel corrosion may be an issue, 

38 Glass Fibre Reinforced Polymers (GFRP) have been increasingly used as an alternative [2–4]. The bond 

39 mechanisms of GFRP bars in concrete are different than that of conventional steel bars due to different material 

40 (i.e. coefficient of thermal expansion (CTE)) and mechanical properties (i.e. modulus of elasticity, lack of 

41 yielding) as well as different surface profiles [5–7]. 

42 Numerous factors affecting the bond behaviour of GFRP bars to concrete have been extensively studied. In 

43 particular, as concrete strength [6,8] and concrete cover [7,9] increase the bond strength increases, however 

44 increasing the GFRP bar diameter [5,10] and the embedment length [11,12] of the bar decreases the mean bond 

45 strength. In addition, studies have showed that the surface profile of the bars (i.e. indented, sand coated, etc.) 

46 [13,14], the test methodology (i.e. pull-out, bending pull-out, direct tension pull-out or push-through bond 

47 tests)[15–17] and the environmental conditions [18,19] also affect the bond performance.

48 The critical temperatures of GFRP bars are lower than those of steel, due to softening of the polymer matrix at 

49 temperature levels close to their glass transition temperature (Tg) [20]. The bond mechanism of GFRP to 

50 concrete relies on the shear transfer through the bar surface, thus greatly depending on the soundness of the bar 

51 coating [13,21,22] which makes the bond susceptible to damage at elevated temperature. Nonetheless, to date, 

52 the only few studies that investigated the effect of temperature on the bond behaviour [15,18,30,31,19,23–29] 

53 of FRP bars present some limitations. In most cases, the investigated temperature levels were below or only 
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54 marginally higher than Tg [18,19,26–28] and some of the test were performed almost two decades ago results 

55 for recently manufactures FRP bars are not available [23,24]. In addition, unexpected failure modes [28] were 

56 recorded, possibly caused by the scant literature to draw upon leading to an inaccurate specimen design rather 

57 than by the effects of pull-out at high temperature. This lack of an acknowledged and univocal test methodology, 

58 including an effective strategy to measure slip at high temperature, had even wider repercussions. In fact, most 

59 of the tests were performed after the heated specimens cooled down [18,19,25–27,29–31], thus investigating 

60 the residual bond capacity, which can be greatly different than the bond strength at high temperature.

61

62 Bond stress-slip relationships

63 The relationship between bond stress and slip has proved to be the most effective way to study the bond 

64 behaviour between reinforcement and concrete [32]. A schematic representation of this relationship is presented 

65 in Figure 1. The pre-peak curve is used to estimate the bond stiffness (i.e., slope) which directly influences the 

66 flexural crack widths and, in turn, the deflection of FRP-RC beams and slabs (i.e., serviceability) [33]. The 

67 post-peak curve is characterized by a steep decrease followed by a portion approximately parallel to the abscissa 

68 which represents the residual bond stress (τr). This gradual reduction of the bond stress allows for sufficient 

69 deformation/slip to take place before bond fails.

70 Relative displacement (slip)
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71 Figure 1. Schematic bond stress - slip relationship

72

73 Modelling the bond stress-slip relationship

74 The literature reports several bond stress-slip models that analytically describe the bond of FRP bars in concrete 

75 (e.g., [8,11,34–37]). Malvar [34] was the first to propose an analytical expression for bond stress-slip 
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76 relationship of FRP bars. However, due to the numerous parameters to be experimentally calibrated and the 

77 inaccurate representation of bond when slip is zero [35], the model was soon replaced by more efficient and 

78 effective alternatives. The BPE model, developed by Eligehausen et al. [38] for deformed steel bars, was 

79 adjusted for FRP bars by Cosenza et al. [36] and is referred to as modified BPE (mBPE) model. The 

80 modification consisted of accounting for the linear elastic behaviour of the GFRP bar, thus omitting the plateau 

81 typical of the second portion of the BPE model corresponding to steel yielding. Cosenza et al. [35] also proposed 

82 a refined model limited to the pre-peak branch of the bond stress-slip curve (CMR model), based on the 

83 consideration that most bond related phenomena occur at service loads (before peak bond stress). 

84 mBPE model

85 In this model the equations for estimating the bond stresses [36] are described by Equations 1 to 3.

86  ascending branch (0 ≤ s ≤ sm)  (1)𝜏𝑏 = 𝜏𝑏,𝑚𝑎𝑥( 𝑠𝑠𝑚)
𝛼

87  descending branch (sm ≤ s ≤ sres) (2)𝜏𝑏 = 𝜏𝑏, 𝑚𝑎𝑥[1 ‒ 𝑝( 𝑠𝑠𝑚 ‒ 1)]

88  along the third branch (s ≥ sres) (3) 𝜏𝑏 = 𝜏𝑟
89 where τb is the bond stress, s is the slip, τb,max is the maximum bond stress, sm is the slip corresponding to τb,max, 

90 τr is the residual bond stress and sres is the slip corresponding to τr. The parameters α and p are calibrated by 

91 curve fitting of experimental data considering that α must not be greater than 1 to be physically meaningful (α 

92 = 0.4 for steel bars).

93 CMR model

94 The CMR model [35] analytically describes the ascending branch of the bond stress-slip relationship by 

95 Equation 4:

96 (4)𝜏𝑏 = 𝜏𝑏,𝑚𝑎𝑥[1 ‒ 𝑒( ‒ 𝑠𝑠𝑟)]
𝛽

97 β and sr are experimental parameters, sr cannot be less than zero.

98 While research is available for calibrating the aforementioned parameters [6,13,39] at ambient temperature (~20 

99 °C), the effect of high temperature has not yet been accounted for.
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100

101 2. RESEARCH SIGNIFICANCE

102 The objective of this research is to develop a robust framework to study the bond behaviour of GFRP bars at 

103 elevated temperatures. To achieve this goal, a bespoke non-contact measurement system has been developed 

104 and integrated within a well-established pull-out test methodology to reliably monitor the behaviour of 

105 specimens exposed to simultaneous mechanical and thermal loading. Furthermore, the experimental results will 

106 become part of a data set augmented over time and used for the calibration of analytical models (i.e., mBPE 

107 and CMR) to predict the bond stress-slip relationship. The calibrated parameters can be adopted by researchers 

108 and engineers to account for the effect of temperature on the bond behaviour of GFRP bars embedded in 

109 concrete.

110

111 3. EXPERIMENTAL STUDY

112 Small-scale pull-out test specimens were chosen to investigate the bond behaviour of GFRP bars at elevated 

113 temperature. In fact, despite resulting in a bond stress higher than those in concrete elements in most practical 

114 conditions [40], the pull-out test proved to be an effective method to study the effects of different factors on 

115 bond behaviour, owing to its simplicity and repeatability [41]. A schematic representation of the specimens is 

116 shown in Figure 2. The cylindrical shape of the concrete block was chosen to provide a uniform concrete cover 

117 and consequently a uniform temperature distribution around the bar. A GFRP bar with a diameter of 8 mm was 

118 selected, resulting in a concrete cover of approximately 49 mm. Such cover, while representative of typical RC 

119 members, it is also larger than 3.5 times the bar diameter, thus preventing the splitting of the concrete block and 

120 promoting the desired pull-out failure [42]. Based on tests recommendations in different international guidelines 

121 and standards [43–45], the bonded length was chosen to be 5 times the bar diameter ( ). The bonded length is 

122 sufficiently short to enable the development of a nearly-uniform bond stress distribution along the embedded 

123 portion of the bar, thus the test can yield critical information on local bond behaviour, yet it is long enough to 

124 adequately capture the effect of bar surface finish and geometry (i.e., different number of ribs/indentations).

125
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127 Figure 2. Schematic representation of pull-out test specimen (dimensions are in mm)

128

129 Concrete

130 Concrete was prepared in the laboratory according to the mixture design presented in Table 1. Prior to casting, 

131 a bond breaker (i.e., bubble wrap) was wrapped around a portion of the GFRP bar, which was then coaxially 

132 inserted into a circular mould obtained from a plastic pipe and held in place by a bespoke wooden fixture. In 

133 addition, screws were introduced radially in the mould reaching the surface of the GFRP bar in order to create 

134 slots for the thermocouples (Figure 3 b). After casting (Figure 3 c), all the samples were covered with a plastic 

135 sheet for one day to prevent moisture loss, demoulded (Figure 3 d), and conditioned at 100% relative humidity 

136 for the first week and stored under standard laboratory conditions (approximately 20 °C and RH=40%) 

137 thereafter [46].

138 Table 1 Concrete mixture design

Aggregates
w/c (%) ag (mm) Coarse (kg/m3) Fine (kg/m3) Cement (kg/m3) Water (l/m3)
0.54 10 1041 777 350 190

Note: w/c = water to cement ratio; ag = maximum aggregate size; cement = CEM II/B-S 42.5 N

139
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140 (a) (b) (c) (d)

141 Figure 3. Details of pull-out test specimens: GFRP bar (a); moulds (b), before (c) and after (d) demoulding.

142

143 The concrete compressive strength (fc) and the tensile splitting strength (fct) of the specimens at the day of testing 

144 were determined according to EN 12390-3:2009 [47] and EN 12390-6:2010 [48], respectively. The average 

145 (Avg.) and the standard deviation (St.D.) of the mechanical properties at ambient temperature are presented in 

146 Table 2. In addition, as the bond strength depends on the concrete strength [49,50], which, in turn, changes with 

147 temperature [51,52], the concrete compressive and tensile splitting strengths were experimentally determined 

148 for the same temperature levels as the pull-out tests. The results, plotted in Figure 4, are in line with those 

149 available in the literature [23,51,53].

150 Table 2 Mechanical characteristics of concrete mixture at ambient temperature

fc fct

Type s N Avg. St.D. Type h d N Avg. St.D.
(mm) (MPa) (MPa) (mm) (mm) (MPa) (MPa)

Cube 100 2 36.0 0.1 Cylinder 200 100 2 2.7 0.3
Cube 150 3 38.7 0.4 Cylinder 300 150 3 3.6 -

Note: s = side; N = repetitions; h = height; d = diameter
151
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153 Figure 4. Compressive and tensile splitting strength of concrete at elevated temperatures

154

155 GFRP bars

156 GFRP bars, made of continuous longitudinal E-glass fibres impregnated in a thermoset vinyl ester resin, were 

157 used in this study. The bars have an indented surface obtained by mechanically cutting groves in the surface for 

158 enhanced bond performance (Figure 3a). Fergani et al. [54] designed and performed an experimental 

159 programme to study the mechanical and physical properties of the same production batch of GFRP bars 

160 employed for this research. The outcomes are summarised in Table 3 in terms of average (Avg.) and standard 

161 deviation (St.D.) of the modulus of elasticity (E), ultimate strain (u), ultimate strength (ffu), coefficient of 

162 thermal expansion (CTE) and glass transition temperature (Tg). In particular, Tg was estimated both as the 

163 extrapolated onset to the sigmoidal change in the storage modulus (Onset) and as the peak of the tan(δ) curve 

164 (Peak) using a Dynamic Mechanical Analysis (DMA) according to ASTM (D570-98, 2010). It should be noted 

165 that GFRP bars have a significantly larger CTE (in radial direction) than concrete (approximately 1.0x10-5 1/°C) 

166 causing additional stresses in the latter as the temperature increases, potentially leading to the splitting of the 

167 cover [55]. However, the higher CTE of the GFRP reinforcement can also improve the bond with concrete if 

168 sufficient cover to resist splitting is provided [49].

169
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170 Table 3 Mechanical characteristics of GFRP bars

E u ffu CTE* Tg

Onset Peak
(GPa) (%) (MPa) (1/°C) (°C) (°C)

Avg. St.D. Avg. St.D. Avg. St.D. Axial Radial Avg. St.D. Avg. St.D.
56.1 1.5 2.8 0.9 1542 27.8 0.6x10-5 2.2x10-5 164.2 1.6 185.7 5.3
*As provided by manufacturer

171

172 Setup and procedure

173 The setup for the pull-out tests is represented in Figure 5. All tests were performed inside an electric furnace 

174 using a servo-hydraulic testing machine with a capacity of 1000 kN. A displacement controlled (1 mm/min) 

175 test method was selected to capture the post-peak bond behaviour. Before testing, the specimens were dried in 

176 an electric oven, at 80 °C for 24 hours, to minimize the possible detrimental effect of water evaporation on the 

177 bond strength, and then the insulating elements were assembled. In particular, a ceramic plate was mounted at 

178 each end of the cylindrical concrete block and a refractory ceramic fibre needle blanket was wrapped around 

179 the portion of GFRP bar within and in proximity of the furnace. The tests were carried out at four temperature 

180 levels, namely: 80 °C, 165 °C, 190 °C and 300 °C, in addition to the reference samples at ambient temperature. 

181 The lowest temperature level (i.e., 80 °C) was considered sufficiently low so that some residual water be still 

182 present in the concrete [53,56]. The next two temperature levels (i.e., 165 °C and 190 °C) were chosen close to 

183 the two different Tg values obtained experimentally, namely 164.2 °C for the onset of the storage modulus and 

184 185.7 °C for the peak of the tan(δ) curve, respectively. Finally, the highest temperature level, 300 °C, was used 

185 to observe the bond behaviour of GFRP bar well above Tg. So as not to impose a too large thermal gradient on 

186 the concrete block, the target temperatures were reached gradually (in approximately 2 hours), at which stage a 

187 10 minutes period of temperature stabilization was allowed before beginning the test. Owing to the relatively 

188 long test setup and procedure, only two nominally identical specimens were tested for each temperature level.
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190 Figure 5. Photo and schematic representation of pull-out test setup and specimen

191

192 Measurement setup

193 The average bond stress, τb, was calculated by dividing the load (P) recorded by the load cell of the servo-

194 hydraulic testing machine by the shear surface (Eq.5), thus assuming a constant bond stress distribution along 

195 the embedment length (lb).

196 (5)𝜏𝑏 =
𝑃𝜋 ∗ 𝜙 ∗ 𝑙𝑏

197 Where ฀ is the FRP bar nominal diameter.

198 While the bond calculation tends to be straightforward, the estimation of the loaded and free-end slips, 

199 especially at elevated temperatures, require more attention. 

200 In order to calculate the loaded-end slip (sle), a potentiometer was rigidly connected to the portion of the GFRP 

201 bar outside the furnace and reacted against a steel plate bolted directly to the reaction frame inside the furnace. 

202 However, such measurement (s) also include the elastic elongation (Δl) of the portion of the bar (L) between the 

203 concrete block and the transducer. Hence, the slip was computed according to Eq.6 and Eq.7.
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204  (6)𝑠𝑙𝑒 = 𝑠 ‒ Δ𝑙
205  (7) Δ𝑙 =

𝑃 ∙ 𝐿𝐸 ∙ 𝐴𝑏
206 Where P is the recorded load, E is the experimentally defined modulus of elasticity of the GFRP bar and Ab is 

207 its nominal cross-sectional area. 

208 As the slip of the free-end of the GFRP bar takes place within the furnace, a non-contact optical measurement 

209 system was employed for its estimation. Steel brackets were rigidly connected to the top insulating ceramic 

210 plate (left and right) as well as to the GFRP bar (in the centre) (Figure 5c). These brackets were coated with a 

211 black, heat-resistant paint with the exception of circular markers of approximately 20 mm in diameter to create 

212 a high contrast target, suitable for image analysis. The brackets on the two sides, acting as reference, had two 

213 markers, while the central one, moving rigidly with the bar, had one. The optical system consisted of tracking 

214 the centroid of each marker in consecutive images and measuring the free-end slip as the average relative 

215 vertical displacement of the central marker with respect to the others. Images were acquired with a CMOS 

216 digital camera having a 4272×2848 pixel resolution (Canon EOS 1100D) and equipped with zoom lenses with 

217 F-number and focal length of 5.6 and 55 mm, respectively (Canon EF-S 18-55mm f/3.5-5.6 IS II). A light-

218 emitting diode (LED) lamp was used to illuminate the measurement surface. During the test, the shutter was 

219 triggered remotely every 10 seconds by the data acquisition system.

220 Finally, the temperature at the bond interface was measured by using thermocouples inserted in the slots 

221 prepared during casting. Three thermocouples were used in some of the samples to assess the temperature 

222 distribution along the reinforcement. The variation of the recorded temperature at different locations within any 

223 of these specimens was sufficiently small (i.e., less than 10 °C discrepancy during the pull-out test at 300 °C) 

224 to consider that adequate insulation was provided.

225

226 4. EXPERIMENTAL RESULTS

227 The experimental results are reported in Table 4, including the maximum pull-out load (Pmax) and the 

228 corresponding values of average bond strength (τb,max, Eq.5), slip at loaded (sm,le, Eq.Error! Reference source 

229 not found.) and free-ends (sm,fe), the initial bond stiffness (Eτ), and the observed failure mode. Table 4 also 
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230 reports the average values (Avg.) of the bond strength and the corresponding slip values of two nominally 

231 identical specimens tested at the same temperature. The average bond strength values were used to calculate 

232 the retention coefficient (R), which is defined as the ratio between the average bond strength at the examined 

233 conditioning temperatures and that obtained at ambient temperature (~20 °C). The bond stiffness (Eτ) was 

234 calculated as the slope of the initial linear ascending branch of the bond stress-slip relationship, when loaded-

235 end slip is considered.

236 The stiffness of the bond-slip behaviour measured at the free-end is considerably higher than that at the 

237 loaded-end, but sufficient bond degradation along the embedded length seems to have developed already at 

238 around 8 MPa and mobilised the free-end, which quickly reached slip values similar to those of the loaded-end.

239

240 Table 4 Pull-out test results (P-O-C: concrete failure; P-O-B: failure of the bar ribs)

T τb,max sm,le sm,fe Eτ Failure
Mode

Specimen Pmax

Avg. R Avg. Avg.
(°C) (kN) (MPa) (MPa) (%) (mm) (mm) (mm) (mm) (N/mm3)

P1 13.3 13.2 0.45 0.43 P-O-C
P3

20
13.4 13.3

13.3 100
-

0.45
0.48

0.46 29.5
P-O-C

P4 8.9 8.9 0.63 0.48 P-O-C
P5

80
9.0 9.0

8.9 67.4
0.62

0.63
0.57

0.52 14.3
P-O-C

P6 7.2 7.1 0.50 0.42 P-O-B
P8

165
7.2 7.1

7.1 53.7
0.53

0.51
0.40

0.41 13.8
P-O-B

P9 4.0 4.0 0.25 0.15 P-O-B
P10

190
4.3 4.3

4.1 31.3
0.36

0.31
0.28

0.21 13.5
P-O-B

P11 1.0 1.0 0.24 0.02 P-O-B
P12

300
1.3 1.3

1.1 7.2
0.19

0.22
0.02

0.02 5.3
P-O-B

Note: R is the retention bond strength compared to the value at ambient temperature;
sm,le for P3 is missing due to malfunctioning of the instrumentation.

241

242 Failure modes

243 All specimens were split open after testing to closely observe the failure mechanism and the conditions of the 

244 GFRP bars (i.e., damage and discoloration). As expected, all samples failed by bar pull-out (P-O) and no 

245 splitting cracks were visible, thus providing evidence that the adopted cover was sufficient to prevent splitting 

246 of the concrete block. Figure 6 shows the surface of the extracted bars (top), as well as the surface of the concrete 

247 along the bonded length (bottom) of two representative samples tested at temperatures below (P4) and above 

248 (P11) Tg.
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250 Figure 6. Surface of the conditioned GFRP bars (top) and concrete (bottom) after debonding failure

251

252 An important observation for temperatures below Tg, failure occurred due to shearing off of the concrete within 

253 the indentations of the GFRP bars, with very limited damage to the bar surface (P-O-C). In contrast, failure of 

254 specimens conditioned at temperatures higher than Tg occurred within the bar by shearing off of the ribs (P-O-

255 B). Charring of the bars was observed only in specimens exposed to the highest test temperature (300 °C), 

256 which also caused some of the glass fibres to be exposed as a result of the vinyl ester resin decomposition.

257

258 Bond strength

259 Figure 7 shows the effect of temperature on bond strength, as well as concrete compressive strength (fc) and 

260 storage modulus of the FRP bar (E). All values are normalized with respect to their reference value at ambient 

261 temperature to ease the comparison. It can be observed that bond strength is highly dependent on both fc and E. 

262 In fact, the significant bond strength reduction at 80 °C coincides with the reduction in fc, while at higher 

263 temperatures the deteriorated properties of the GFRP bar (i.e. E) lead to a further reduction in bond strength.
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265 Figure 7. Effect of temperature on bond strength, concrete compressive strength and FRP bar storage modulus

266

267 Figure 7 also clearly highlights the problem of not having a univocal definition of Tg, potentially leading to 

268 considerably different estimates of bond performance. In fact, the average pull-out bond strength retention can 

269 vary from 53% for specimens exposed to a temperature of 165 °C (corresponding to Tg Onset) to only 31% for 

270 specimens tested at 190 °C (corresponding to Tg Peak). 

271

272 Bond stress-slip relationships

273 Bond stress - loaded-end slip relationships are presented in Figure 8. An analysis of Figure 8 and Table 4 shows 

274 that the initial bond stiffness decreases as temperature increases and that a non-negligible reduction can already 

275 be noticed at a temperature of 80 °C. As for the post-peak behaviour, it can be noticed that, as temperature 

276 increases, the rate of bond deterioration decreases, as does the level of residual bond stress. This can be 

277 attributed to the fact that all main bond-governing mechanisms (adhesion, mechanical interlock and friction) 

278 are affected by the stiffness of the resin matrix, which decreases with exposure to elevated temperatures.

279
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281 Figure 8. Bond stress-slip relationships at different temperatures (P3 is missing due to malfunctioning of the 

282 instrumentation) 

283

284 Comparison of loaded and free-end slip values

285 Bond stress-slip (both loaded and free-ends) curves are plotted for all the tested temperature levels (Figure 9). 

286 It can be observed that in all cases the loaded-end slips are higher than the free-end ones (at same bond stress 

287 level) and this difference decreases as the bond stress reduces after the peak bond stress (i.e. debonding along 

288 the entire embedded length). These findings are in line with experimental data obtained at ambient temperature 

289 and available in literature (i.e., [5,6,9]), thus confirming the reliability of the optical measurement technique 

290 implemented by the authors to measure the free-end slip. 

291
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293 Figure 9. Comparison of bond stress-slip (loaded and free-end) relationships of pull-out tests
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295 5. ANALYTICAL STUDY

296 Parameter calibration of the analytical models

297 In this section, the parameters required for the implementation of the CMR model (i.e., β and sr) and to describe 

298 the ascending branch of the mBPE model (i.e., α) are estimated and discussed. The calibration of these 

299 parameters was achieved by performing a regression analyses of the experimental bond strength and 

300 corresponding slip values (Table 4) using the least-square error method. The results obtained for different 

301 temperature levels and calibrated on the behaviour of the loaded or free-end are presented in Table 5 and Table 

302 6, respectively. In addition to the calibrated values, the average values obtained for nominally identical 

303 specimens ((a)), as well as the goodness of fit (R2), are reported. The calibration based on the free-end results at 

304 300 °C could not be properly carried out. Finally, a graphical comparison of the experimental and calibrated 

305 analytical bond stress-slip relationships is presented in Figure 10.

306 Both numerical and graphical results indicate that the CMR model is more accurate than the mBPE model. In 

307 fact, when considering the behaviour of the free-end, the CMR model returns R2 values consistently above 0.95 

308 and better approximates (dashed line) the experimental behaviour (solid line) throughout the initial stages of 

309 loading. When the behaviour of the loaded-end is examined, a lower degree of accuracy is recorded in both 

310 models. Nonetheless, the CMR model remains marginally more accurate.

311

312 Table 5 Parameters of the constitutive analytical bond stress-slip models (loaded-end)

mBPE model CMR model

Temperature α α 
(a) R2 sr sr 

(a) β β 
(a) R2Specimen

(°C) (-) (-) (-) (mm) (mm) (-) (-) (-)
P1 0.322 0.785 0.114 0.999 0.935
P3

20
-

0.322
- -

0.114
-

0.999
-

P4 0.670 0.939 0.261 0.999 0.953
P5

80
0.500

0.585
0.964 0.178

0.219
0.999

0.999
0.996

P6 0.399 0.933 0.147 0.999 0.970
P8

165
0.749

0.574
0.943 0.241

0.194
0.999

0.999
0.889

P9 0.429 0.790 0.061 0.999 0.937
P10

190
0.415

0.422
0.960 0.099

0.080
0.990

0.995
0.983

P11 0.456 0.784 0.070 0.999 0.827
P12

300
0.896

0.676
0.930 0.101

0.086
0.999

0.999
0.839

313 Note: (a) Average value of nominally identical specimens; R2 - Goodness of fit of the analytical model.

314
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315 Table 6 Parameters of the constitutive analytical bond stress-slip models (free-end)

mBPE model CMR model
Temperature α α 

(a) R2 sr sr 
(a) β β 

(a) R2Specimen

(°C) (-) (-) (-) (mm) (mm) (-) (-) (-)
P1 0.179 0.910 0.106 0.483 0.975
P3

20
0.326

0.253
0.934 0.122

0.114
0.577

0.530
0.965

P4 0.415 0.945 0.105 0.758 0.995
P5

80
0.429

0.422
0.885 0.122

0.114
0.998

0.878
0.981

P6 0.415 0.928 0.112 0.733 0.985
P8

165
0.347

0.381
0.928 0.087

0.099
0.686

0.710
0.973

P9 0.319 0.828 0.053 0.518 0.948
P10

190
0.415

0.367
0.981 0.082

0.067
0.707

0.613
0.997

P11 0.145 N.A. 0.033 0.079 N.A.
P12

300
0.999

N.A.
N.A. 0.010

N.A.
0.999

N.A.
N.A.

316 Note: (a) Average value of nominally identical specimens; R2 - Goodness of fit of the analytical model.

317
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319 Figure 10. Comparison of the mBPE and CMR models with the experimental bond stress-slip relationship.
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320 The effect of temperature on the calibrated parameters (i.e., α, β and sr) is further analysed in Figure 11. It can 

321 be observed that, when considering the behaviour of the loaded-end, temperature does not affect the values of 

322 β (CMR model), which remain approximately equal to 1 (due to the particularity of the model). Conversely, 

323 when the free-end behaviour is considered, β increases before Tg and decreases for temperature close to it (i.e., 

324 165 °C and 190 °C). Comparable trends, albeit with different magnitudes, are also observed for α and sr both in 

325 case of loaded and free-end slip. Finally, at the highest test temperature (300 °C), both parameters of the CMR 

326 model (i.e., β and sr) remain unchanged while the parameter of the mBPE model (i.e., α) significantly increases.

327 It is now evident that temperature plays a central role in the bond performance. In fact, in the experiments, at 

328 different temperatures, different failure modes were observed (Figure 6). Similarly, in the models, in order to 

329 describe such failure modes, different values for the parameters α, β and sr were calibrated. While the limited 

330 number of testing samples might not allow for a broader generalization, it can be safely concluded the selection 

331 of the model parameters should be carefully made based on the expected temperature exposure and their specific 

332 failure mode. In other words, a single value cannot be attributed to the model parameters to robustly describe 

333 the bond behaviour.
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334 Figure 11. Calibrated parameters of analytical models (mBPE and CMR): (a) loaded-end; (b) free-end.

335

336 6. CONCLUSIONS

337 This paper presented an experimental and analytical investigation of the bond behaviour of an indented 

338 8-mm-diameter GFRP bar embedded in concrete and exposed to temperatures ranging from ~20 °C to 300 °C. 
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339 The temperature variation at the GFRP bar and concrete interface was monitored with thermocouples, while 

340 loaded and free-end slips were measured by a potentiometer and a bespoke optical technique, respectively. The 

341 variation in bond behaviour at the tested temperatures was investigated based on observed failure mode, bond 

342 strength, and bond stress-slip relationship. Finally, the mBPE and CMR models were calibrated based on the 

343 experimental results. The main conclusions of this study are summarised below. 

344  All samples failed by bar pull-out. Failure occurred through shearing off of the concrete lugs for 

345 specimens tested at temperature levels lower than Tg, whilst failure developed within the GFRP bar at 

346 higher temperatures.

347  An optical contactless measurement technique was developed and effectively implemented in this 

348 study.

349  Bond strength decreases as the temperature increases. In particular, bond strength retention can be as 

350 low as 30% for specimens exposed to temperatures close to Tg, and it further reduces to less than 10% 

351 at 300 °C. The decrease in bond performance is affected by a reduction in concrete compressive 

352 strength at a relatively low temperature level (80 °C) and in modulus of elasticity of the GFRP bar at 

353 higher temperatures.

354  The calibration of the mBPE and CMR with the experimental results for increasing temperature levels 

355 suggests that the latter provides better accuracy in predicting the bond stress-slip relationships and 

356 highlights the temperature dependence of the key parameters (α, sr and β). In particular, when the 

357 free-end behaviour is considered and for temperatures up to 190 °C, all parameters increase before Tg 

358 and decrease afterwards. Similarly, when considering the loaded-end model and up to 300 °C, the same 

359 trend is observed for α and sr, whilst β remains unchanged. 

360 The current study provides a robust framework to run repeatable pull-out tests at high temperatures. However, 

361 as bond strength at high temperatures is greatly influenced by the bar deformation, the presented experimental 

362 results and conclusions cannot be generalized to FRP bars with different properties or surface profiles. 

363 Additional research will focus on the optimization of the optical contactless measurement technique and will 

364 seek to extend the available experimental data set to include bars of different materials and surface profiles.

365
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