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Abstract

Modelling plays a key role in explaining data in psychology and neuroscience and helps elucidate neural

computations. Recent observations of magnitude-sensitivity (i.e. sensitivity to overall magnitudes and

magnitude differences) in both humans engaged in perceptual decision making and monkeys engaged in

value-based decisions have shown that new assumptions (such as the inclusion of noise that is proportional

to magnitudes of external stimuli) in routinely-used sequential sampling models need to be considered to fit

this type of magnitude-sensitive data. In this paper, we studied different variants of diffusion-type models

and a leaky-competing accumulator model, and compared their behaviour in response to varying input

magnitudes as well as their ability to resemble each other. We evaluated the extent to which these models

can give good fits to simulated reaction time distributions for choices between unequal and equal alternatives.

As a result, in some cases we obtained good fits of model and data, even when the underlying model used

for data generation was different compared to the model used to fit these data. Our results underpin the

importance of both overall magnitude and magnitude difference effects in models describing the sequential

integration of evidence, and contribute to the debate over possible model candidate explanations. We discuss

how magnitude-dependent input noise and lateral inhibition may be used to regulate different magnitude-

sensitive effects and the implications for quantitative analyses of experimental data.

Keywords: decision making, magnitude sensitivity, sequential sampling models, model mimicry

1. Introduction

Decision-making models describing the sequential accumulation of evidence have proven to be important

quantitative tools to describe decision making behaviour in a variety of cognitive tasks (Bogacz et al., 2006;
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Mulder et al., 2014; Forstmann et al., 2016; Ratcliff et al., 2016; O’Connell et al., 2018). Among these models,

the drift-diffusion model (DDM) (Ratcliff, 1978; Ratcliff et al., 2016) has been particularly influential, and5

different variants of the standard DDM have been shown to provide good and psychologically-plausible fits to

a wide variety of behavioural and neural data, such as obtained from motion discrimination tasks (Shadlen

& Newsome, 1996, 2001; Gold & Shadlen, 2007), value-based decision making experiments (Krajbich et al.,

2010; Basten et al., 2010; Krajbich & Rangel, 2011) and the study of social decisions (Krajbich et al., 2015).

Recently, magnitude-sensitive reaction times in decision making have been observed in a brightness10

discrimination task (Teodorescu et al., 2016). In this study, Teodorescu et al. (2016) showed that subjects

have faster reaction times in conditions which maintain the same ratio or difference in evidence between two

stimuli when the overall magnitude is increased. A further demonstration of magnitude-sensitivity in decision

making was provided by Pirrone et al. (2018a), who showed magnitude-sensitive reaction times in equal

alternative decision cases, both in humans performing a perceptual decision making task and in monkeys15

performing a reward-based task. In both experiments, when the overall magnitude of the alternatives

increased, reaction times decreased. The finding of faster decisions when overall intensities are increased

(Teodorescu et al., 2016; Pirrone et al., 2018a) is also in agreement with other observations in perceptual

decision making (Pins & Bonnet, 1996; Stafford & Gurney, 2004; Palmer et al., 2005; Teodorescu et al., 2016;

Pirrone et al., 2018a; Polańıa et al., 2014; Ratcliff et al., 2018; van Maanen et al., 2012; Simen et al., 2016;20

Bose et al., 2019a), even in single trial dynamics Pirrone et al. (2018b), as well as in economic choices (Hunt

et al., 2012; Polańıa et al., 2014). Furthermore, it has been shown that magnitudes also affect the attention-

choice link (Cavanagh et al., 2014; Smith & Krajbich, 2019). In line with an evolutionary perspective on

naturalistic decisions (Pirrone et al., 2014), magnitude-sensitive responses to stimuli have also been found

in other areas, such as collective behaviour of social insects (Pais et al., 2013; Reina et al., 2017, 2018; Bose25

et al., 2017) and in an ongoing decision making task related to dietary choice (Bose et al., 2019b).

Regarding possible model candidates, the new aspect previously discussed by Pirrone et al. (2014) and

advanced by Teodorescu et al. (2016) is that the DDM in its canonical form fails to explain the data they

obtained. Furthermore, Teodorescu et al. (2016) could show that both a DDM with multiplicative noise

(mDDM) and a variant of the leaky-competing accumulator model (LCA) (Usher & McClelland, 2001; Bogacz30

et al., 2006) are able to explain magnitude-sensitive behavioural data. Both models contain components

sensitive to relative as well as absolute evidence, which appears to be necessary to explain experimental data

(Teodorescu et al., 2016; Ratcliff et al., 2018). In the mDDM the relative part is expressed by the drift rate

and sensitivity to the overall magnitude is provided by input magnitude-dependent noise or (Teodorescu

et al., 2016). Ratcliff et al. (2018) also studied an alternative DDM-variant where the authors assume35

magnitude-dependent variability of the drift-rate. This model performed equally well compared with the

mDDM. The LCA is intrinsically sensitive to absolute magnitudes and relative evidence is mediated in the
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LCA through lateral inhibition that couples otherwise independent evidence-integrating units (Teodorescu

et al., 2016).

Regarding magnitude-sensitive data, the results reported by Teodorescu et al. (2016) highlight that40

mDDM and LCA may explain magnitude-sensitive behavioural data equally well, whereas Ratcliff et al.

(2018) found that magnitude-sensitive DDM variants outperform the LCA in their analysis. This raises

the question in the context of magnitude-sensitivity, as to what extent a magnitude-sensitive model is able

to resemble performance predicted by another model sensitive to both overall magnitudes and magnitude

differences? Detached from a magnitude-sensitive context, for example, Ratcliff & Smith (2004) investigated45

mimicry between the DDM and stable Ornstein-Uhlenbeck (OU) processes (see also Busemeyer & Townsend,

1992, 1993, for introduction of OU model and its application to value-based decisions), and showed that

stable OU models with small-to-moderate values of the decay parameter are difficult to discriminate from

the DDM. In another study, Teodorescu & Usher (2013) demonstrated that an independent race model and

a feed-forward inhibition DDM fail to mimic classical DDM or LCA.50

Building on previous studies, we performed a model comparison analysis including different sequential

sampling models. In particular, we focused on four magnitude-sensitive models with multiplicative noise

(mDDM, multiplicative stable OU (mSOU), multiplicative unstable OU (mUOU)), and LCA, i.e. models

responsive to both overall magnitudes and magnitude differences, and compared those models with each

other as well as with a pure DDM (pDDM) model that is only sensitive to relative evidence, i.e. magnitude55

differences which determine the drift rate. Based on the simulation of a brightness discrimination task

(Teodorescu et al., 2016; Pirrone et al., 2018a), we generated artificial decision time data with each model

for four different conditions. Subsequently we fitted each model to each joint data set including all four

conditions. This procedure was repeated for five different parameters sets for each model. Model parameters

were not allowed to vary across conditions. To constrain the sensory input term (e.g. drift rate in the60

diffusion-type models) we took into account a nonlinear transfer function between physical and internal

stimulus in form of a power law (cf. Teodorescu et al., 2016; Ratcliff et al., 2018). This provides a strong

coupling between properties of the external stimulus and internal model dynamics. As a result, we found

that diffusion-type models sensitive to absolute and relative evidence (mDDM, mSOU and mUOU) are able

to mimic each other with similar sublinear-to-linear shapes of the psychophysical transfer function. We65

also observed an asymmetry between LCA and diffusion-type models in the sense that the LCA fits better

diffusion-type models with and without multiplicative noise than the diffusion-type models under study fit

the LCA.
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2. Models and Methods

2.1. Magnitude-sensitive models70

In our study, we consider five different models, four diffusion-type models and a linear LCA model,

under varying conditions to simulate and analyse two-alternative choice tasks. Regarding the diffusion-type

models, we assume that the temporal evolution of the corresponding decision variable, x(t), which describes

sequential accumulation of evidence, may be subject to input-depend multiplicative noise (Teodorescu et al.,

2016; Brunton et al., 2013). The models applied in the present paper may be summarised as

dx = (I1(t)− I2(t) +B x) dt+ Γ(I1, I2) dW (t) , (1)

where I1,2(t) are time-dependent internal representations of the applied stimuli further described below in

Section 2.2, B represents the growth parameter (B > 0) or decay parameter (B < 0), respectively, and dW

is the increment of a Wiener process, which is normally distributed, i.e. dW ∼ N (mean = 0, SD = 1). The

term I1(t) − I2(t) is usually interpreted as drift, i.e. the evidence to decide in favour of one of the options

available. We assume that the internal representation of the drift term underlies a trial-to-trial variability.

This means that we add a small Gaussian random number sampled from N (mean = 0, SD = σdrift) to the

drift at the beginning of each trial. We also take into account that the initial condition is not perfectly

symmetric by assuming starting point variability (SPV) across trials, and sample the starting value x(t = 0)

from a uniform distribution U(−SPV, SPV). The inclusion of across-trial variability in drift rate and starting

point values in diffusion models has been shown to better explain behavioural data (Ratcliff & Rouder, 1998;

Ratcliff & Tuerlinckx, 2002). Γ(I1, I2) is an input-dependent coefficient of the noise term and has the form

(Teodorescu et al., 2016)

Γ(I1, I2) =
√

σ2 +Φ(I21 + I22 ) , (2)

where σ characterises a constant processing noise in the decision variable x(t) and Φ quantifies the strength

of the multiplicative noise originating from the transformed input signals. Through inputs I1 and I2, Γ

depends on the magnitudes of the stimuli (see Eq. (4) below).

Eq. (1) describes noisy accumulation of evidence over time. Using the notation of the present paper,

we obtain the mSOU model if B < 0 and the mUOU model if B > 0. We also note that under specific75

model assumptions these processes might have other properties (Diederich & Oswald, 2014, 2016). Instead,

assuming B = 0 yields the mDDM. Further to this, if we set B = 0 and Φ = 0 a DDM is recovered, which

we call pure DDM (pDDM) throughout this study. In the pDDM, Γ = σ = const. is insensitive to absolute

magnitude-values.

The fifth model in our study is a linear LCA model (Usher & McClelland, 2001; Bogacz et al., 2006)
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which has the form

dy1(t) = (−k y1(t)− β y2(t) + I1(t)) dt+ σ dW1(t) ,

dy2(t) = (−k y2(t)− β y1(t) + I2(t)) dt+ σ dW2(t) ,
(3)

where y1 and y2 describe the activity levels of evidence-integrating units, in response to internal stimulus80

representations I1,2. To avoid negative activity levels we applied max(0, yj), j = 1, 2, at every simulation step.

The activity level of each accumulator is independently affected by fluctuations modelled by Wiener processes

with increments dW1 and dW2, where we again have dWj ∼ N (mean = 0, SD = 1), j = 1, 2. Information loss

in the accumulators is characterised by the leak rate k. Cross-inhibition is included by the terms ∝ β, where

β denotes the inhibition strength. In the LCA model we also take into account starting point variability85

across trials and sample initial conditions from uniform distributions, i.e. yj(t = 0) ∼ U(0, SPV ), j = 1, 2.

2.2. Data generation

We used all five models (pDDM, mDDM, mSOU, mUOU, LCA) to generate decision time data. To do

so, we followed the experimental design by Teodorescu et al. (2016) and Pirrone et al. (2018a), who studied

brightness discrimination of two visual stimuli. The internal representation of the physical stimulus is given

as

Ij(t) = (mj + ξ(t))
γ

, j = 1, 2 , (4)

where the mj represent the stimulus magnitudes (that can be controlled externally in the experiment),

and γ is an exponent characterising the nonlinear relationship between the physical stimulus and its internal

representation. In brightness discrimination tasks typical values of the exponent are given as γ ∼ 0.5 (Geisler,90

1989). However, in recently obtained empirical data relevant for our study, Teodorescu et al. (2016) obtained

participant-specific γ-values between 0.5 and 0.85 based on model fits to the data using a model similar to

the mDDM used in our study. In the same study the authors obtained a value of γ ≈ 0.3 for the LCA model.

Similar values for the LCA model have been obtained from LCA model fits in a similar empirical study by

Ratcliff et al. (2018). However, with regard to diffusion-type models with multiplicative noise Ratcliff et al.95

(2018) find γ-values that are closer to 0.5 in their model fits but those fitted parameter values also show a

standard deviations of approximately 0.3. Taking into account these empirical findings (Teodorescu et al.,

2016; Ratcliff et al., 2018), here we have chosen γ ∼ U(0.3, 0.7) for all data generating models (pDDM,

mDDM, mSOU, mUOU, LCA). We argue that these choices are suitable values for our model comparison

study, as they are motivated by relevant empirical findings and reflect the quantitative difference of γ-values100

observed in experiments (Teodorescu et al., 2016; Ratcliff et al., 2018). ξ(t) is a Gaussian random number,

i.e. ξ ∼ N (mean = 0, STD = 0.1), which is sampled at the beginning of each trial and then again every
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20ms during the trial. This corresponds to refreshing the physical stimulus at a rate of 50Hz. In accordance

with the experimental implementation (Teodorescu et al., 2016; Pirrone et al., 2018a) we introduced lower

and upper cut-off values for the stimulus magnitudes. If the sum mj + ξ(t), j = 1, 2, was below 0.1 we reset105

it to this value, and if this sum was larger than 1 we reset it to this upper limit, i.e. 0.1 ≤ mj + ξ(t) ≤ 1 in

all simulations.

Each model was simulated for Ncond = 4 different conditions given by the following four combinations of

stimulus magnitudes m1 and m2 (Teodorescu et al., 2016; Pirrone et al., 2018a): baseline: (m1 = 0.4, m2 =

0.3), additive: (m1 = 0.6, m2 = 0.5), multiplicative: (m1 = 0.6, m2 = 0.45) and equal : (m1 = 0.45, m2 =110

0.45). In the additive condition, the magnitudes corresponding to the baseline condition, m1 and m2,

are increased by an equal amount to maintain the difference between them, whereas in the multiplicative

condition both baseline condition magnitudes are increased by different amounts to maintain the ratio

between them. More precisely, using magnitudes m1 and m2 let us define the:

• magnitude difference as ∆ = m1 −m2,115

• magnitude ratio as ρ = m1/m2,

• overall magnitude as µ = m1 +m2.

Comparing baseline and additive conditions we see that the magnitude difference ∆ = 0.1 is maintained

and the magnitude ratio ρ decreases from 4/3 to 6/5 with increasing magnitudes. In contrast, a comparison

between baseline and multiplicative conditions shows that the magnitude difference ∆ increases from 0.1120

to 0.15 with increasing magnitudes whilst the magnitude ratio ρ = 4/3 remains the same. The magnitude

chosen for the equal alternatives case is the mean value obtained from the largest and lowest magnitudes

used for m1,2 in our study, i.e. (0.6 + 0.3)/2. Hence, the corresponding overall magnitude for the equal

condition (µ = 0.9) lies in between that of the baseline condition (µ = 0.7) and that of the additive condition

(µ = 1.1). We point out that the nonlinear transfer function in Eq. 4 causes the pDDM to be sensitive to125

absolute magnitudes even if the noise term in Eq. (2) with Φ = 0 is not, i.e. the drift term I1 − I2 is not the

same in baseline and additive conditions although the magnitude differences are equal (∆ = 0.1). This also

applies to mDDM, mSOU and mUOU. In case γ = 1 the pDDM becomes completely insensitive to absolute

magnitudes.

We used the same model-specific parameter set for each condition and model, i.e. for every condition130

only m1 and m2 were varied. Each of the four conditions was simulated for N = 2 × 104 trials using an

Euler method with step size ∆t = 0.002 (≡ 2ms). This gave a total number of trials of Nconds ·N = 8 · 104.
To allow the decision making process to be concluded, we introduced the decision threshold z as another

model parameter. As soon as the decision variables x(t) (in the diffusion-type models) or y1, 2(t) (in the

LCA) crossed threshold z, i.e. |x| ≥ z, or y1, 2 ≥ z, respectively, the decision process came to an end135
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and the response was recorded (free response paradigm). The procedure was repeated for five different,

randomly generated parameter sets for each model. The range from which model parameters were sampled

are summarised in table 1. If the decision variable did not meet the decision criterion within t ≤ Tcut, where

Tcut = 6 s is the cut-off time, we excluded the result. We achieved an exclusion rate far below 1% for most

of the data sets. Only occasionally the exclusion rate was slightly higher but never exceeded 2.5%. Additive140

noise characterised by σ was fixed and kept constant.

Table 1: Overview of the generation of model parameter values sampled from uniform distributions that were used to create
the simulated data. The additive noise characterised by σ was fixed.

model z B γ σ Φ σdrift SPV k β
pDDM ∼ U(0.1, 0.4) 0 ∼ U(0.3, 0.7) 0.1 0 ∼ U(0.04, 0.08) ∼ U(0.05, 0.1) — —
mDDM ∼ U(0.1, 0.4) 0 ∼ U(0.3, 0.7) 0.1 ∼ U(0.05, 0.2) ∼ U(0.04, 0.08) ∼ U(0.05, 0.1) — —
mSOU ∼ U(0.1, 0.4) ∼ −U(1, 4) ∼ U(0.3, 0.7) 0.1 ∼ U(0.05, 0.2) ∼ U(0.04, 0.08) ∼ U(0.05, 0.1) — —
mUOU ∼ U(0.1, 0.4) ∼ U(1, 4) ∼ U(0.3, 0.7) 0.1 ∼ U(0.05, 0.2) ∼ U(0.04, 0.08) ∼ U(0.05, 0.1) — —

LCA ∼ U(0.3, 0.6) — ∼ U(0.3, 0.7) 0.1/
√
2 — — ∼ U(0.05, 0.3) ∼ U(0.2, 2) ∼ U(0.2, 2)

2.3. Model fitting

We applied a quantile maximum likelihood estimation (QMLE) method (Heathcote et al., 2002; Teodor-

escu et al., 2016), to test if the four different diffusion models and the LCA can be made equivalent in the

sense that different models yield statistically similar behavioural data. For both responses in favour of option145

1 and option 2 we divided the simulated data into six bins each for decision times ranging in the interval

[0, Tcut]. This gave Nbins = 12 bins per condition. Bin widths were derived from the 0.1, 0.3, 0.5, 0.7, and

0.9 decision time quantiles for choosing option 1 and option 2, respectively. This procedure gave a total

number of Ncond ·Nbins = 48 bins included in each model fit. Every model was fitted simultaneously to all

conditions (magnitude combinations of m1 and m2).150

The QMLE method applied is based on the minimisation of the Bayesian Information Criterion (BIC)

given as (Teodorescu et al., 2016)

BIC = F +Kpar ln(Ntot) , F = −2

Ncond
∑

α=1

Nbins
∑

j=1

nα
j ln

(

pαj
)

, (5)

where pαj represents the probability of observing a decision time in a particular bin j under condition α

predicted by the model (
∑

j p
α
j = 1 for each condition α). The number of observations of decision times in

bin j for condition α that results from the simulation of empirical data is denoted nα
j , and Ntot =

∑

α

∑

j n
α
j

is the total number of observations, i.e. the total sample size. The expression for F in Eq. (5) describes

twice the negative maximum likelihood that data nα
j was produced by the model yielding pαj . Kpar is the155

total number of model parameters included in the fitting.
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To obtain good starting values we applied a simple genetic algorithm that uses the principles of mutation

and selection but not crossover. More precisely, starting from an initial parameter set 45 randomly modified

parameter sets were generated. Then the 15 parameter sets with the lowest value of the objective function

were kept. Each of these parameter sets had three offspring, again generated by random mutation. This160

procedure was repeated for 40 iterations. At each iteration the permitted parameter range used for the

mutation step was shrunk by multiplying it with a factor of 0.95 to facilitate convergence. The simulation

for each parameter set was done using 103 trials.

We applied the BIC defined in Eq. (5) to quantify the goodness of fit. To move systematically in

parameter space to find the minimal BIC-value, we made use of the Nelder-Mead SIMPLEX algorithm165

(Nelder & Mead, 1965) implemented in the Python library SciPy. We fitted each model to every other

model. This also included the fits of each model to data generated from the same model. This way we

checked whether our fitting method was able to reproduce the original parameter set. Sometimes models can

yield good fits with parameter sets different from the original one, e.g. see Miletić et al. (2017) for a recent

study relating to the LCA, which considers the case of abstract drift rates that are not connected to the170

stimulus values (or magnitudes). That is, it seems to be intrinsically difficult to recover model parameters

of the LCA model even in case the model is known (Miletić et al., 2017).

When models to produce and fit the data were identical, we therefore included the parameter set used

to generate the data in the initial parameter grid of the fitted model to confirm that our method is sensitive

enough to select this from a range of different parameter sets that yield very similar BIC scores. At the175

same time we also obtained a reference value of the BIC in case of (almost) perfect recovery of the original

parameters.

During the search for the initial parameter set we kept track of the three best parameter combinations

giving the three lowest BIC scores. Using those three parameter sets, after the 40 iterations we simulated

the model again for 2 · 104 trials per condition and re-calculated the BIC scores for each parameter set. The180

starting parameter set was then identified as the one giving the lowest BIC score with the increased number of

trials. This improved the sensitivity of our fitting method, as occasionally the order of BIC scores changed

after increasing the number of trials. This is a consequence of the noise inherent in the decision-making

process, and including the comparison of several potential parameter sets at the end of a grid search helped

to reduce the randomness in the fitting (see Eqs. (6) and (8) below).185

After we obtained the starting parameter values, we used them as input for the fitting routine. We then

repeated every model fit six times with the same set of starting values. From these computations we obtained

statistics on the goodness of fit. The results are summarised in tables 4-8 in the Appendix.

We used absolute tolerances for the BIC as quantified in table 3 in the Appendix. Every calculation of

the BIC within the SIMPLEX algorithm was based on 4 ·104 trials. The optimisation terminated successfully190
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when two successive calculations of the BIC value were below the absolute tolerance and the absolute variation

in the estimated parameters was ≤ 0.005. Then we performed a final simulation with twice the number of

trials, i.e. 8 · 104 trials for all conditions in total.

When choosing the tolerance value of the BIC that determined the criterion for a successful fit we took

into account that there is a limitation on the accuracy of the BIC which is due to the stochastic nature of

the accumulator models in Eqs. (1) and (3). We estimated this inherent uncertainty of the BIC, denoted

δBIC, using

δBIC =

Ncond
∑

β=1

Nbins
∑

k=1

(
∣

∣

∣

∣

∣

∂ BIC

∂ nβ
k

∣

∣

∣

∣

∣

δnβ
k +

∣

∣

∣

∣

∣

∂ BIC

∂ pβk

∣

∣

∣

∣

∣

δpβk

)

. (6)

As can be seen from Eq. (6), δBIC has two sources of inherent variability – there is uncertainty stemming

from the generation of the data sets ∝ δnβ
k and uncertainty originated in the fitting method ∝ δpβk . There

are two implicit contributions to δpβk – one arising from the discrepancy between model and data and another

one due to randomness even if the the model can explain the data well. However, this means that not only

the BIC score increases with increasing discrepancy between model and data but also fluctuations in the

BIC (an insight we applied to the fitting routine, as discussed below). Using Eq. (5) we can calculate the

partial derivatives in Eq. (6) as

∂ BIC

∂ nβ
k

= −2

Ncond
∑

α=1

Nbins
∑

j=1

ln
(

pαj
)

δαβδjk = −2 ln
(

pβk

)

,

∂ BIC

∂ pβk
= −2

Ncond
∑

α=1

Nbins
∑

j=1

nα
j

pαj
δαβδjk = −2

nβ
k

pβk
,

(7)

where δαβ and δjk are Kronecker deltas. To obtain a rough estimate of δBIC we make the following approx-

imations. We assume that δnβ
k and δpβk are independent of condition and bin, i.e. we set δnβ

k = δn and

δpβk = δp, ∀β ∈ {1, .., Ncond}, ∀ k ∈ {1, .., Nbins}. Furthermore, we use the equal alternatives condition to

approximate all other conditions, that is nβ
k = nk and pβk = pk, ∀β ∈ {1, .., Ncond}. Assuming 104 trials

per condition, then, considering an idealised simulation of the equal alternatives condition, the first and last

bin of every distribution contain nk = 500 values each and every other bin contains nk = 1000 values (i.e.

4 · 500 + 8 · 1000 = 104). Regarding the probabilities, we have pk = 1/20 if k refers to the first or last bin

of a distribution and pk = 1/10 if k refers to any other bin (i.e. 4 · 1/20 + 8 · 1/10 = 1, as required). As

we approximate all other conditions with the result for the equal alternatives estimation, the sum over β in

Eq. (6) becomes the prefactor 4. Calculating the sum over k in Eq. (6) by using the approximations above
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and the expressions in Eq. (7) we find

δBIC ≃ 32
(

7.6 δn+ 3 · 104 δp
)

(8)

as an estimate for δBIC. To get an upper bound on accuracy we assume that δn = 0, i.e. the experimental

data represents the true data set which is, of course, an idealisation. If we further assume in the fitting that195

per condition only two decision times (this is an arbitrary choice reflecting small errors) fall into wrong bins,

i.e. 2 out of 104 divided by the number of bins this gives δp = 1/6 · 10−4. Inserting these values for δn and

δp in Eq. (8) we obtain δ
(low)
BIC ≃ 16. Hence, even for very small uncertainties, randomness in the system does

not allow for arbitrary accuracy levels in the fitting. Moreover, if we take into account a nonzero δn and

more realistic (bigger) values of δp then δBIC can be much larger. In table 2 we show uncertainties of δBIC200

for some combinations of δn and δp.

Table 2: Overview of δBIC-values for different combinations of δn and δp. Those may be compared with the lower bound as

estimated in the main text, i.e. δ
(low)
BIC ≃ 16.

δn 0 0 0 1 1 1 10 10 10
δp 10−4 10−3 10−2 10−4 10−3 10−2 10−4 10−3 10−2

δBIC 96 960 9600 340 1200 9840 2530 3390 12030

We also point out that due to the number of trials included to generate the data in our study, typical

BIC-reference values are in the order of magnitude of BICref ∼ 4 ·105, and therefore the relative uncertainty,

approximated by δBIC/BICref , is about 3 · 10−3 using δn = 1 and δp = 10−3, for example (see table 2). We

took this inherent bound on accuracy into account in the fitting method. Comparing our estimates for the205

δBIC values in table 2 with the absolute tolerances used in our study (cf. table 3 in the Appendix), we see

that fits, which successfully terminated, were achieved using reasonable tolerances.

Note that we did not include a non-decision time in our study, as the simulated models directly yield

the pure decision time without any pre-processing, such as stimulus encoding, or any post-processing, such

as executing a motor response. The non-decision time is usually taken into account as an additional free210

parameter allowed to vary in models fitted to experimental data. By not including this parameter we increase

the constraints on the different models and hence reduce the potential for model mimicry. The additive noise

characterised by σ was not varied during the model fitting.

3. Results

3.1. Overview of magnitude-sensitive models215

Here we show the condition-dependent behaviour of the different models used to generate behavioural

data. Fig. 1 depicts the mean decision times of choosing options 1 and 2, denoted 〈DT1〉 and 〈DT2〉, and the
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response proportion of choosing option 1, denoted Pr(opt1). Results are summarised for five different model

parameter sets for each model that were used to generate the data. We can see that mSOU, mUOU, mDDM

and LCA qualitatively exhibit similar behaviour. This means that 〈DT1〉 and 〈DT2〉 decrease when changing220

the condition from baseline to additive for these four models, in which case the magnitude difference ∆ = 0.1

remains constant, the magnitude ratio ρ decreases from 4/3 to 6/5, and the overall magnitude µ increases

from 0.7 to 1.1. Therefore, the reduction of the decision time is clearly caused by the increase of the overall

magnitude. At the same time Pr(opt1) goes down, as illustrated in Figs. 1C, F, I, and O. This is an effect

of keeping ∆ constant whilst increasing µ (i.e. a decrease of ρ), which makes the decision problem more225

difficult. Furthermore, a comparison of mean reaction times between the multiplicative and the baseline

condition demonstrates that 〈DT1〉 and 〈DT2〉 also decrease when µ increases whilst ρ is kept constant (i.e.

∆ increases). However, if we compare mean decision times of additive and multiplicative conditions, we see

that the multiplicative condition yields slightly larger mean decision times than the additive condition. We

attribute this result to the slightly larger overall magnitude in the additive condition (µ = 1.1) compared230

with that in the multiplicative condition (µ = 1.05), which demonstrates sensitivity to absolute values of the

input stimuli. In addition, we have a larger magnitude difference in the multiplicative condition (∆ = 0.15)

than in the additive condition (∆ = 0.1). Thus, the decision problem is easier under the multiplicative

condition compared with the additive one. For example, this can be seen when comparing the normalised

magnitude difference ∆/µ which gives 0.14 for the multiplicative and 0.09 for the additive condition. In235

accordance with the decision problem being easier in the multiplicative condition we find an increase of

Pr(opt1) in this condition compared with the additive one. We also see that the value of Pr(opt1) in the

multiplicative condition approaches that of the baseline condition again.

The qualitative model behaviours observed for mSOU, mUOU, mDDM and LCA are largely in agreement

with data obtained from magnitude-sensitive experiments (Teodorescu et al., 2016). That is, mean decision240

times decrease in both additive and multiplicative conditions compared with the baseline condition. However,

comparing mean decision times of additive and multiplicative conditions, Teodorescu et al. (2016) find that

the mean decision time of an average observer in the additive condition is slightly larger compared with

that of the multiplicative condition, which is the opposite of our observation where the additive condition

yields slightly shorter decision times, as shown in Fig. 2. In contrast, Pirrone et al. (2018a) did not obtain245

similar differences between baseline, additive and multiplicative conditions in their implementation of the

experiment. However, the deviating observations regarding mean decision times made by Teodorescu et al.

(2016) and Pirrone et al. (2018a) are probably due to not linearising the display screen with respect to

brightness in the study by Pirrone et al. (2018a). Additionally, the deviations may also indicate participant-

specific behaviours when comparing baseline, additive and multiplicative conditions which may not always250

follow a regular pattern. The patterns we observe in our simulations are most likely due to the specific set of
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Figure 1: Comparison of simulated data sets for four different conditions. Data were generated for mSOU (A-C), mUOU (D-F),
mDDM (G-I), pDDM (J-L) and LCA (M-O) in baseline, additive, multiplicative and equal alternatives conditions. Shown are
mean decision times for choosing option 1 (〈DT1〉), mean decision times for choosing option 2 (〈DT2〉), and response proportions
in favour of option 1 (Pr(opt1)). Qualitatively similar behaviour is observed for mSOU, mUOU, mDDM and LCA, whereas
the behaviour of the pDDM differs compared with the other models. Error bars denote 95% confidence intervals. All model
parameters for data generation are given in table 1.

parameters chosen in our study and suggest that observing faster decisions in the additive compared with the

multiplicative condition, or vice versa, depends on the joint effect of varying overall magnitude, magnitude
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difference and magnitude ratio in conjunction with decision-maker-specific characteristics expressed by the

other model parameters.255
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Figure 2: Comparison of mean decision times in additive and multiplicative conditions separately displayed for responses in
favour of option 1 (A) and option 2 (B). All model parameters for data generation are given in table 1.

Our simulation results show qualitatively the same behaviour of the mean decision time for all magnitude-

sensitive models with multiplicative noise (mSOU, mUOU, mDDM, LCA), when comparing additive and

multiplicative conditions (cf. Fig. 2). We also note that the behaviour of Pr(opt1) when comparing baseline,

additive and multiplicative conditions is similar to that observed by Teodorescu et al. (2016) and Pirrone

et al. (2018a).260

Looking at the behaviour obtained for the condition with equal magnitudes (ρ = 1, ∆ = 0) in Fig. 1,

we find that 〈DT1〉 and 〈DT2〉 are below the mean decision times corresponding to the baseline condition

and above those corresponding to additive and multiplicative conditions. This may again be interpreted a

consequence of the overall magnitude in the equal condition (µ = 0.9) being larger than that of the baseline

condition (µ = 0.7) but smaller than those of additive (µ = 1.1) and multiplicative (µ = 1.05) conditions.265

This further supports the finding that mean decision times are strongly dependent on absolute magnitude

values. Furthermore, the value of Pr(opt1) = 0.5 shows that without a difference in magnitudes (∆ = 0)

option 1 is chosen in half of the total number of trials, as expected.

The simulation results of the pDDM are depicted in Figs. 1J, K and L. This model is not able to reproduce

the same magnitude-sensitive patterns compared with the other models discussed above. In particular, in270

the additive condition the simulation of the pDDM yields an increase of 〈DT1〉 and 〈DT2〉, compared with

the baseline condition. Obtaining different mean decision times in baseline and additive conditions for the

pDDM is a result of the nonlinear transfer function in Eq. (4) with γ 6= 1. Moreover, we observe the lowest

mean decision times for the multiplicative condition and the highest mean decision times for the condition

with equal magnitudes of both stimuli. The behaviour of Pr(opt1) in Fig. 1L is also different compared with275
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mSOU (Fig. 1C), mUOU (Fig. 1F), mDDM (Fig. 1I) and LCA (Fig. 1O), and shows a significant increase

of Pr(opt1) in the multiplicative condition compared with both additive and baseline condition.

3.2. Graphical overview of results obtained from model fitting

Model fitting results are summarised in Fig. 3 which gives a graphical overview highlighting which models

were able to resemble each other. We particularly emphasise in Fig. 3 conditions between important model280

parameters that seem to indicate mimicry between different models, as suggested by our analysis. These

important model parameters are the multiplicative noise strengths (Φ) in mDDM, mSOU and mUOU; the

leak parameter (k) and the inhibition strength (β) in the LCA; and the growth (decay) parameter B > 0

(B < 0) in mUOU (mSOU). A more detailed description of our model fitting results can be found in

sections 3.3-3.7.285

3.3. Model fits to data generated by the pure drift-diffusion model

In this and in the subsequent sections we present a more detailed model comparison based on the analysis

of the decision time quantiles for correct and error choices. We are particularly interested in the question

of how well different models can explain data simulated using another model. In Fig. 4 we show how the

different model fits performed when the data set was generated by the pDDM. We emphasise again that, by290

model design, the pDDM is sensitive to magnitude differences but not to absolute magnitudes (apart from

the psychophysical transformation of input stimuli, see Eq. (4)). It is therefore not surprising that using the

pDDM as model to fit pDDM-data shows the best agreement (cf. BIC-values in table 4 in the Appendix).

As the multiplicative noise strength, Φ, was allowed to vary during the fitting process, we also see that the

mDDM with Φ ≃ 0, as obtained from the fitting (table 4 in the Appendix), gives an excellent agreement295

with the data. Using the mSOU model to fit the pDDM data we also found that the best agreement was

achieved with almost zero noise strength, i.e. Φ ≃ 0 (table 4). We note that the resemblance of the pDDM

and stable OU processes for small-to-medium values of the decay parameter in absence of multiplicative

noise is well-known Ratcliff & Smith (2004). Therefore, our results confirm previous findings.

As a new aspect, we found that the mUOU model in which Φ ≃ 0 gave reasonable fits to pDDM data, too.300

However, the LCA did not perform as well to fit the pDDM data. A close resemblance between these two

models requires specific assumptions on the model parameters, i.e. β = k and β + k sufficiently large in the

LCA (Bogacz et al., 2006). Therefore we imposed that β = k during the fitting of the LCA model to pDDM

data to improve the model fits. Reasons that the LCA was outperformed by multiplicative diffusion-type

models might be related to the drift variability which was not taken into account in the LCA and the type305

of experiment simulated in our study. That is, the stimulus was flickering and not constant over the course

of a decision and that the stimulus was transduced into an internal representation via a nonlinear transfer

function. Taken together this may have led to the differences observed.
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Figure 3: Directed graph summarising relations between different models that may lead to model mimicry. The following models
are compared: mDDM: multiplicative drift-diffusion model, pDDM: pure drift-diffusion model, mSOU: multiplicative stable
Ornstein-Uhlenbeck model, mUOU: multiplicative unstable Ornstein-Uhlenbeck model, and LCA: leaky-competing accumulator.
Important model parameters are: the multiplicative noise strengths (Φ) in mDDM, mSOU and mUOU; the leak parameter
(k) and the inhibition strength (β) in the LCA; the growth (decay) parameter B > 0 (B < 0) in mUOU (mSOU). Arrows
indicate which model could be fitted to data generated by another model. Bi-directional arrows indicate that model fits worked
well either way but in some cases fits were not reciprocal (unidirectional arrows) or fits were poor regardless (no connecting
arrows). To display the goodness of model fits we used dashed lines (indicating reasonable model fits) and solid lines (indicating
good-to-excellent model fits). BIC values are given in tables 4-8 for comparison. Fitted parameter values are available in the
Supplementary Material.

3.4. Model fits to data generated by the multiplicative drift-diffusion model

Fig. 5 shows that the mDDM-model provides the best model fit, however, both mSOU and mUOU310

are able to fit the mDDM-data well, too (see also table 5). More specifically, we find good agreement for

all quantiles and conditions between model fits (mDDM, mSOU, mUOU) and mDDM-data. In contrast,

the pDDM cannot explain the mDDM-data well, underpinning the different behavioural outcome between

presence and absence of multiplicative noise. Regarding the LCA-fits to mDDM-data, we expected a good

agreement between LCA and mDDM, as it has been observed previously that both models are able to explain315

the same set of magnitude-sensitive data (Teodorescu et al., 2016). The LCA-fits in Fig. 5 show that for data

sets 1-3 we observe a reasonable agreement between mDDM data and LCA model fit, whereas for mDDM
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Figure 4: Comparison of different model fits to pDDM data. Four different conditions were studied: baseline (gray), additive
(red), multiplicative (blue) and equal (yellow). For each condition, response proportions are plotted along the horizontal axis
and decision time quantiles (0.1, 0.3, 0.5, 0.7, 0.9) for both responses in favour of option 1 (greater than 0.5) and option 2 (smaller
than 0.5) are plotted vertically. BIC values are given in table 4. Fitted parameter values are available in the Supplementary
Material.
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data sets 4 and 5 visual inspection shows discrepancies between mDDM data and LCA model fits. Here

we observe something interesting: the exponent in the psychophysical transfer function, γ, gets quite large,

i.e. γ ≈ 7.3 (fit to data set 4) and γ ≈ 5.3 (fit to data set 5). A large superlinear γ value has the effect320

that the baseline condition can hardly be distinguished from the equal alternatives condition. This becomes

obvious in Figs. 5L and O, where the baseline condition yields response proportions close to 0.5 for both

responses. However, decision times are reproduced quite accurately. In particular, this leads to a good BIC

score of the LCA fit in Fig. 5O, as the decision time quantiles shown are between 0−200ms (table 3), which

is comparatively small (when compared to decision times in the other data sets). In another recent study,325

Ratcliff et al. (2018) observe differences between LCA and different variants of the mDDM which supports

our finding that mDDM and LCA may not be able to mimic each other in general. In addition, the authors

also find that the exponent in the psychophysical power-law transformation function yields values > 1 in

some of the brightness-discrimination tasks studied there (Ratcliff et al., 2018), though there values are not

as large.330

Although it is known from previous work that stable OU processes and pDDM processes can mimic

each other for small-to-moderate decay parameters (Ratcliff & Smith, 2004), which is also supported by

our findings in Section 3.3 above, the question if one of the models is able to resemble the other in case of

the inclusion of multiplicative noise has not been studied previously. Yet again we find evidence that the

same conclusion may also be true for mDDM and mSOU accumulator models. In addition, our results also335

show that the mUOU model can explain data produced by the mDDM quite well (see also corresponding

BIC-values in table 5 in the Appendix for quantitative comparison of goodness-of-fit).

3.5. Model fits to data generated by the multiplicative stable Ornstein-Uhlenbeck process

Fits to the data set obtained from simulating the mSOU process demonstrate that, besides the mSOU-

model itself, the mDDM and mUOU are also able to explain the data accurately (see Fig. 6 and compare BIC340

scores in table 6 in the Appendix). Overall, decision time quantiles and response proportions are reproduced

quite well. This finding further underlines the potential of mimicry in the group of diffusion models with

multiplicative noise studied in the present paper (mDDM, mSOU, mUOU). Comparing mSOU data and

LCA fit, we see that the LCA provides a good match in the equal alternatives conditions but also mimics the

additive and multiplicative conditions in the fits to data sets 3 and 4 quite well. However, fitted to other data345

sets the LCA cannot mimic the values for response proportions in the baseline, additive and multiplicative

conditions. In particular, when fitted to mSOU data set 5 the LCA fit yields an almost zero exponent in the

psychophysical transfer function (γ ≈ 0.002). This makes baseline, additive and multiplicative conditions

indistinguishable from the equal alternatives condition, see Fig. 6O. This apparently unrealistic γ value was

obtained when decision time quantiles were between 0−300ms. Although decision times are rarely less than350

300ms, this could suggest that data produced by mSOU yielding small decision times are harder to fit using
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Figure 5: Comparison of different model fits to mDDM data. Four different conditions were studied: baseline (gray), additive
(red), multiplicative (blue) and equal (yellow). Other plotting conventions are the same as in Fig. 4. BIC values are given in
table 5. Fitted parameter values are available in the Supplementary Material.
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the LCA than mSOU data giving larger decision times. In addition, the fit of the pDDM cannot account for

the mSOU-data, neither qualitatively nor quantitatively. This demonstrates once more the incompatibility

of the pDDM and magnitude-sensitive data.

3.6. Model fits to data generated by the multiplicative unstable Ornstein-Uhlenbeck process355

Fig. 7 shows how the different models performed when the data set was generated by the mUOU. Here we

found that, besides the mUOU itself, the mSOU model yielded the best fits to mUOU data, in general. One

exception is data set 1, where we observe that the LCA fit gives the lowest BIC value (cf. table 6). Comparing

the performance of mDDM and mSOU we see that the mDDM did not perform as well. Furthermore, our

results seem to indicate that the exponent γ in the mSOU model is smaller, or equal, to that of the mUOU.360

Regarding the multiplicative noise strength we find that good fits are obtained when ΦmUOU ≥ ΦmSOU .

3.7. Model fits to data generated by the leaky-competing accumulator model

If we generate data using the LCA, our results depicted in Fig. 8 show that, besides the LCA model

itself, all model fits are generally poor. However, within the group of diffusion-type models the mUOU

model provides the best fit to the simulated LCA data. In particular, the mUOU fit to the LCA data set 4365

yielded a good agreement between data and model. The mUOU model mainly achieves reasonable decision

time quantiles for all conditions but often does not yield the accurate response proportions. All other

diffusion-type models (pDDM, mDDM, mSOU) did not give good fits. Our results seem to indicate that the

LCA is the more flexible model, as we achieved better scores when fitting LCA model to data generated by

the diffusion type models included in this study than vice versa. At the same time, our results also seem to370

suggest that model fitting given the data obtained from the simulation of a brightness discrimination task

which was previously studied experimentally (Teodorescu et al., 2016; Pirrone et al., 2018a; Ratcliff et al.,

2018) is inherently difficult. We discuss this further in the following section.

4. Discussion

In a model-based analysis, primarily inspired by brightness discrimination tasks (Teodorescu et al., 2016;375

Pirrone et al., 2018a), we examined to what extent sequential sampling models are able to resemble each other

when noise in the evidence accumulation process increases with stimulus strength. Previously, Teodorescu

et al. (2016) have shown that both a version of the mDDM and the LCA are able to explain the magnitude-

sensitive data they obtained experimentally. However, our results show that mimicry between mDDM and

LCA is not always the case, which is also in agreement with the results reported by Ratcliff et al. (2018) who380

found that two magnitude-sensitive versions of the DDM (one which is similar to the mDDM studied in this

paper and another DDM-variant where across-trial variability in drift is proportional to the magnitude of

the external stimulus) could explain their data obtained from a similar brightness discrimination experiment
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Figure 6: Comparison of different model fits to mSOU data. Four different conditions were studied: baseline (gray), additive
(red), multiplicative (blue) and equal (yellow). Other plotting conventions are the same as in Fig. 4. BIC values are given in
table 6. Fitted parameter values are available in the Supplementary Material.
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Figure 7: Comparison of different model fits to mUOU data. Four different conditions were studied: baseline (gray), additive
(red), multiplicative (blue) and equal (yellow). Other plotting conventions are the same as in Fig. 4. BIC values are given in
table 7. Fitted parameter values are available in the Supplementary Material.
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Figure 8: Comparison of different model fits to LCA data. Four different conditions were studied: baseline (gray), additive
(red), multiplicative (blue) and equal (yellow). Other plotting conventions are the same as in Fig. 4. BIC values are given in
table 8. Fitted parameter values are available in the Supplementary Material.
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better than the LCA. Both magnitude-sensitive DDM variants performed equally well in the study by Ratcliff

et al. (2018) and therefore we expected both models to behave largely similarly, in general. Hence, we decided385

to use only one of both models in our study. We chose the mDDM-variant as it provided good fits in related

empirical studies Teodorescu et al. (2016); Ratcliff et al. (2018) and, furthermore, has also been shown to

enable the determination of the origin of noise in other decision making tasks Brunton et al. (2013), which

indicates that there are further use cases. We note, however, that it has also been argued that a DDM with

magnitude-dependent across-trial variability in drift rate might be preferred for theoretical reasons (Ratcliff390

et al., 2018).

All models under consideration have contributions stemming from changes of the overall magnitude. This

also includes the pDDM in case of γ 6= 1 in the psychophysical transfer function in Eq. (4). More precisely,

the magnitudes m1 and m2 which are not under control of a decision maker as well as the exponent γ in

Eq. (4), which is specific to a decision maker, regulate the effects of overall magnitudes. In the pDDM,395

mDDM, mSOU and mUOU the drift term ∝ I1 − I2 will change when altering m1, m2 or γ. Even when

m1 and m2 are increased or decreased by the same amount the internal representation of the evidence (i.e.

the drift term) will change quantitatively if γ 6= 1. This is a direct consequence of the nonlinearity in the

psychophysical transfer function (see Eq. (4)). Hence, Eq. (4) entangles effects of overall magnitudes and

magnitude differences in the diffusion-type models. However, in contrast to the pDDM, diffusion models with400

magnitude-dependent noise (mDDM, mSOU, mUOU) have an additional contribution that is characterised

by noise strength Φ and solely represents an effect of the overall magnitude. Therefore, increasing (decreasing)

m1, m2 or Φ will enhance (reduce) the effect of multiplicative noise. In the LCA, a change of magnitudes

m1, 2 and γ will affect absolute evidence integrated by the two decision units y1, 2. Lateral inhibition ∝ β

then mediates the relative evidence between y1 and y2 which becomes more effective for larger activity levels405

y1, 2, suggesting that magnitude-sensitivity is more likely to affect the late and not so much the early stages

of evidence accumulation in the LCA (Pirrone, 2018).

In our study, effects of overall magnitude may be contrasted with magnitude difference effects by de-

tecting model-specific changes when making the transitions from baseline-to-additive condition, baseline-to-

multiplicative condition, and baseline-to-equal alternatives condition. Comparing mDDM (cf. Figs. 1G-I)410

and pDDM (cf. Figs. 1J-L), for example, we see that the mDDM (with Φ > 0) produces mean decision

time and choice probability patterns that distinguishes this model from the pDDM. This underlines that the

multiplicative noise strength Φ is an important model parameter which may be used to regulate responses of

the decision-maker. Given the observations made by Teodorescu et al. (2016), Pirrone et al. (2018a) and the

results presented in our study we conjecture that the competition between effects of overall magnitude and415

magnitude difference is nontrivial and depends on the experimental design and subtle model assumptions.

The decisive parameters identified in our study are the externally controllable magnitudes of the physical
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stimulus (m1 and m2 in all models), the exponent γ in the psychophysical transfer function (in all models),

the decision threshold z (in all models), the multiplicative noise strength Φ in mDDM, mSOU and mUOU,

and the cross-inhibition strength β in the LCA.420

In the present paper we found that when the data were generated by the LCA model the mDDM did not

yield a good fit (Fig. 5 and table 5), whereas when the data were generated by the mDDM the LCA model

fit was much better (Fig. 8 and table 8), compared with the opposite case. This indicates that fitting mDDM

to LCA data and fitting LCA model to mDDM data does not seem to be reciprocal. The LCA model seems

more flexible to fit arbitrary parameter configurations in the mDDM, than vice versa. However, the best fit425

(although not perfect) of a diffusion-type model to LCA data was obtained for the mUOU model (Fig. 8

and table 8). Comparing these two models, we also found that the LCA model could fit several conditions

and occasionally the full data set reasonably well when the data was generated by the mUOU model (Fig. 7

and table 7).

Within the set of diffusion-type models studied here, we observed resemblance between mDDM, mSOU430

and mUOU (Fig. 5 and table 5). Although model mimicry between classical DDM and stable OU process in

case of small-to-moderate decay parameter is well-known Ratcliff & Smith (2004), observing the same type

of mimicry including magnitude-dependent noise has not been reported previously, yet here we demonstrated

that resemblance also occurs in the presence of multiplicative noise. Furthermore, model mimicry should

become more likely with increasing multiplicative noise strengths, because mDDM, mSOU and mUOU should435

become more and more similar when the input-dependent noise increases.

From a more general point of view, Jones & Dzhafarov (2014) report that the predictive content of

diffusion-type models (DDM and OU models without multiplicative noise) mainly depends on the assump-

tions made on the model parameters that are assumed to be sampled from distributions (e.g. drift rates are

sampled from normal distributions and starting points from uniform distributions), rather than on the struc-440

tural assumption of the model. Removing the distributional constraints, the authors come to the conclusion

that these models are able to match arbitrary patterns of reaction time probabilities and distributions (Jones

& Dzhafarov, 2014). However, this conclusion can also be considered as an argument which supports current

practice of using constrained distributional assumptions in diffusion models, as those types of models have

been applied successfully to fit response time data over decades (Heathcote et al., 2014). Additionally, the445

conclusions by Jones & Dzhafarov (2014) have also been criticised as a trivialisation of diffusion-type mod-

els, as it was argued that Jones & Dzhafarov (2014) included them in a non-representative general class of

models (Smith et al., 2014). This discussion shows that falsifiability of models, or vice versa model mimicry,

strongly depends on the constraints made on the model parameters. Considering the inclusion of magnitude-

dependent noise, we found that the different models under study were very sensitive to this parameter. Hence,450

the modification of the amount of multiplicative noise might be a way to improve falsifiability within the
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class of diffusion-type models (e.g. pDDM versus mDDM). However, if magnitude-dependent noise becomes

too large then different diffusion-type models with multiplicative noise might become indistinguishable.

Another route that has obtained interest recently is the combination of computational accumulator

models and neural data to enable data-driven refinement of model assumptions and to reduce model mimicry455

(Churchland et al., 2011; Churchland & Kiani, 2016; Turner et al., 2017; Purcell & Palmeri, 2017; O’Connell

et al., 2018; Turner et al., 2018; Busemeyer et al., 2019). Although beyond the scope of the present paper,

it would be interesting to see how models that are responsive to both magnitude differences and overall

magnitudes relate to neural signals, which may help identify a correspondence between magnitude-sensitivity

and neural dynamics1.460

The observation of magnitude-sensitive reaction times is consistent with evolutionary and ecological

arguments (Pais et al., 2013; Pirrone et al., 2014; Teodorescu et al., 2016; Bose et al., 2017); decision-

makers in naturalistic scenarios are typically rewarded by the value of the option they select, rather than

simply according to whether or not they selected the best option, thus their decision mechanisms should

have been shaped by natural selection to optimise the trade-off between decision time and expected decision465

reward. In house-hunting honeybees, for instance, mutual inhibition (similar to the β-term in the LCA)

facilitates the decision making process so that the swarm is able to break costly decision-deadlocks and

choose one of the available nest sites (Seeley et al., 2012; Pais et al., 2013; Reina et al., 2017). In particular,

an inverse relationship between the minimum strength of the cross-inhibition and the quality values of the

nest-sites necessary to break decision-deadlock in the two-alternative case with equal options has been found470

(Pais et al., 2013). Another nonlinear decision making circuit involving interneuronal units embedded in a

nutrition-based framework has also been shown to account for the kind of magnitude-sensitivity which is

in qualitative agreement with experimental observations in perceptual decision making (Bose et al., 2019b).

Notably, there is a close mathematical link between the study by Pais et al. (2013) and the present paper, as

the dynamics of the model by Pais et al. (2013) corresponds to a change from a stable OU to an unstable OU475

process when a decision maker moves from decision-deadlock to deadlock-breaking. Similar results have been

observed in models of competing neural accumulators describing simple forced choice experiments (Brown &

Holmes, 2001). The link between OU processes and value-based decision making has also been established

previously Busemeyer & Townsend (1992, 1993). However, magnitude-dependent noise in the OU model

has not been studied systematically before, although we point out that Brunton et al. (2013) included a480

similar decay/growth term in their model too. Here we included magnitude-dependent noise in the stable

and unstable OU processes and propose that this could be a useful addition to the conventional form of OU

processes in value-based decisions.

1One of the co-authors (A.P.) is currently conducting a neuroimaging investigation into magnitude sensitivity the results of
which will be published elsewhere.
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While starting out as a primarily descriptive model, the classical DDM (Ratcliff, 1978; Ratcliff et al.,

2016) has transformed into an optimality model through its link with statistically-optimal decision making485

(Bogacz et al., 2006); similarly mechanistic models such as the LCA can be made normative by considering

under what parameterisations they approximate the DDM (Bogacz et al., 2006; Feng et al., 2009; Holmes

& Cohen, 2014). As discussed above, for decisions in which the subject is rewarded by the value of the

option chosen, rather than whether or not it was the best, it has been argued that the simple DDM is

not normative (Pirrone et al., 2014). Recently, an optimality analysis of such value-based decisions was490

conducted by Tajima et al. (2016). The authors concluded that the optimal policy is implemented by

a DDM with boundaries that collapse over time; however in the two-dimensional choice-value space that

represents binary decisions, these boundaries are parallel and have slope one (Tajima et al., 2016). This

means that the optimal policy does not predict magnitude-sensitive reaction times of the kind observed in

Pirrone et al. (2018a,b); all equal-alternative choices are represented by points lying on the line with slope495

one that passes through the origin of the choice-value space, therefore as decision boundaries with slope one

collapse over time, the hitting time of these boundaries will not vary with the magnitude of the equal choice

values. Magnitude-sensitive reaction times therefore seem to be, for the model of Tajima et al. (2016), the

kind of falsifying observation discussed above (Pirrone et al., 2018b). However, this model can account for

such magnitude-sensitive reaction times by assuming non-linear utility functions, in which case the decision500

boundaries cease to have slope one (Tajima et al., 2016), and different equal-alternatives pairs can have

different reaction times.

To conclude, as decision making theory is considered to link neural events and behaviour, and to provide

a deeper understanding of cognitive functions (e.g. see Schall, 2004; Busemeyer & Diederich, 2010; Shadlen

& Kiani, 2013; Hanks & Summerfield, 2017), our qualitative and quantitative comparison of magnitude-505

sensitive models may help in modelling decision making processes to build a bridge between the presentation

of physical stimuli, evidence accumulation in neuronal units, and eventually behaviour caused by the decision

process. Although our model comparison study was based on one-dimensional and two-dimensional neuron-

like accumulators, it has previously been demonstrated that the activity of a large ensemble of redundant

neurons map onto a single model accumulator (Zandbelt et al., 2014). Further to this, low dimensional510

magnitude-responsive models have been shown to be in agreement with recent experimental observations

(Teodorescu et al., 2016; Pirrone et al., 2018a; Ratcliff et al., 2018). Low-dimensional accumulator models

with absolute and relative magnitude-sensitive components may thus further enhance our understanding of

neural design principles represented by biologically more realistic network models, such as the one intro-

duced by Wang (2002) where inhibition is provided by interneurons in a large network of neuronal units. In515

particular, appropriate experimental realisations could help in model selection as magnitude-dependent noise

may change model dynamics for different models in different ways, and it could increase our understanding
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of similarities and differences between perceptual and value-based decisions, such as the effect of overall

magnitude or value versus magnitude or value difference, and the origin of fluctuations affecting the deci-

sion process. In discriminating between competing hypotheses for magnitude-sensitive decision behaviour,520

whether input noise processing (Brunton et al., 2013; Teodorescu et al., 2016; Bose et al., 2019a), non-linear

utility functions (Bogacz et al., 2007; Tajima et al., 2016), non-linear decision dynamics (Pais et al., 2013;

Bose et al., 2019b; Roxin & Ledberg, 2008; Wang, 2002; Wong & Wang, 2006), or any other candidate

explanation (for example see Kacelnik et al., 2011), further empirical and theoretical work will be required.

Supplementary Material525

We made the simulation code as well as the data analysis code (with documentation) available via a public

GitHub repository: https://github.com/DiODeProject/magnitude-sensitive-sequential-sampling-models. In

this GitHub repository, we also provide an interactive Jupyter notebook that can be used to display fitting

parameters (including uncertainties) for each of the five different parameter sets for each of the models (i.e.

25 tables with five parameter sets each). All tables are also available as csv-files in the repository.530
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Appendix: Overview of BIC-tolerance values obtained from the fitting

Here, we summarise the BIC-values we used as tolerances values to achieve a successful termination of540

the model fit in table 3. For some model fits we had to vary this tolerance value to make sure that the fitting

routine was set up in accordance with the possible degree of agreement between model and data. This means

that the better the model fit the lower we could choose the BIC-tolerance value to improve our results. This

was done iteratively, as mentioned in table 3.

In tables 4-8 we give an overview of the final value of the objective function, BICfit, of each computation.545

The numerical values shown represent mean value and corresponding standard deviation (values in brackets)

of BIC-scores, BICfit, obtained from 6 model fit repetitions.

27



Table 3: Overview of BIC-tolerances used for fitting decision models to the simulated data. To find the model-specific tolerance
values we decreased the BIC-tolerance in the following sequence: 2000, 1000, 500, 100 and chose the most suitable tolerance
value which yielded a successful termination of the model fit.

model used for fitting
data generated by pDDM mDDM mSOU mUOU LCA

pDDM 100 500 500 500 500
mDDM 500 100 500 500 500
mSOU 500 500 100 500 500
mUOU 500 500 500 100 500
LCA 1000− 2000 1000− 2000 1000− 2000 1000− 2000 100

Table 4: Overview of BIC-scores for models fitted to data generated by pDDM (corresponds to Fig. 4).

fits to pDDM data – data set 1

fitted model pDDM mDDM mSOU mUOU LCA
361749 363153 361824 362395 366222

BICfit (18) (68) (18) (19) (216)
fits to pDDM data – data set 2

fitted model pDDM mDDM mSOU mUOU LCA
367225 367364 367593 367282 371411

BICfit (12) (24) (29) (15) (122)
fits to pDDM data – data set 3

fitted model pDDM mDDM mSOU mUOU LCA
367654 368514 367790 367816 370087

BICfit (12) (19) (16) (22) (41)
fits to pDDM data – data set 4

fitted model pDDM mDDM mSOU mUOU LCA
374542 375709 374614 374603 382261

BICfit (14) (43) (5) (11) (104)
fits to pDDM data – data set 5

fitted model pDDM mDDM mSOU mUOU LCA
377393 377555 377574 378358 380720

BICfit (11) (33) (18) (51) (57)
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Table 5: Overview of BIC-score for models fitted to data generated by mDDM (corresponds to Fig. 5).

fits to mDDM data – data set 1

fitted model pDDM mDDM mSOU mUOU LCA
391313 388505 388577 388577 389491

BICfit (116) (7) (15) (13) (43)
fits to mDDM data – data set 2

fitted model pDDM mDDM mSOU mUOU LCA
390717 389468 389499 389482 389786

BICfit (54) (7) (16) (9) (39)
fits to mDDM data – data set 3

fitted model pDDM mDDM mSOU mUOU LCA
379680 377569 377624 377647 378616

BICfit (87) (15) (11) (22) (61)
fits to mDDM data – data set 4

fitted model pDDM mDDM mSOU mUOU LCA
390243 388795 388972 388846 389703

BICfit (51) (9) (14) (9) (33)
fits to mDDM data – data set 5

fitted model pDDM mDDM mSOU mUOU LCA
391039 389655 389652 389671 390309

BICfit (55) (14) (11) (15) (32)

Table 6: Overview of BIC-score for models fitted to data generated by mSOU (corresponds to Fig. 6).

fits to mSOU data – data set 1

fitted model pDDM mDDM mSOU mUOU LCA
393432 389515 389498 389535 390975

BICfit (132) (9) (6) (27) (82)
fits to mSOU data – data set 2

fitted model pDDM mDDM mSOU mUOU LCA
394685 388785 388708 388787 391004

BICfit (168) (22) (6) (14) (59)
fits to mSOU data – data set 3

fitted model pDDM mDDM mSOU mUOU LCA
393735 389050 389002 389071 390235

BICfit (81) (14) (12) (14) (50)
fits to mSOU data – data set 4

fitted model pDDM mDDM mSOU mUOU LCA
391497 388716 388672 388737 389981

BICfit (88) (19) (14) (16) (63)
fits to mSOU data – data set 5

fitted model pDDM mDDM mSOU mUOU LCA
391445 389610 389557 389566 392268

BICfit (53) (9) (5) (7) (61)
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Table 7: Overview of BIC-score for models fitted to data generated by mUOU (corresponds to Fig. 7).

fits to mUOU data – data set 1

fitted model pDDM mDDM mSOU mUOU LCA
391621 391765 391678 389939 390058

BICfit (63) (53) (57) (7) (17)
fits to mUOU data – data set 2

fitted model pDDM mDDM mSOU mUOU LCA
391199 389828 389497 388654 390008

BICfit (75) (27) (52) (9) (65)
fits to mUOU data – data set 3

fitted model pDDM mDDM mSOU mUOU LCA
391688 389835 389915 389794 390949

BICfit (48) (13) (11) (5) (83)
fits to mUOU data – data set 4

fitted model pDDM mDDM mSOU mUOU LCA
392088 389278 389222 389058 390052

BICfit (106) (15) (11) (9) (65)
fits to mUOU data – data set 5

fitted model pDDM mDDM mSOU mUOU LCA
390811 389383 389115 389012 389770

BICfit (49) (23) (17) (11) (28)

Table 8: Overview of BIC-score for models fitted to data generated by LCA (corresponds to Fig. 8).

fits to LCA data – data set 1

fitted model pDDM mDDM mSOU mUOU LCA
495374 493745 491444 393443 377335

BICfit (656) (507) (372) (174) (13)
fits to LCA data – data set 2

fitted model pDDM mDDM mSOU mUOU LCA
433773 431619 432621 382440 372313

BICfit (279) (113) (266) (103) (16)
fits to LCA data – data set 3

fitted model pDDM mDDM mSOU mUOU LCA
431791 430826 430822 390186 381242

BICfit (297) (114) (388) (83) (9)
fits to LCA data – data set 4

fitted model pDDM mDDM mSOU mUOU LCA
395535 400044 395589 378072 376895

BICfit (179) (141) (173) (18) (10)
fits to LCA data – data set 5

fitted model pDDM mDDM mSOU mUOU LCA
474000 477170 471662 392022 385112

BICfit (566) (1013) (233) (90) (9)
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Miletić, S., Turner, B. M., Forstmann, B. U., & van Maanen, L. (2017). Parameter recov-

ery for the Leaky Competing Accumulator model. J. Math. Psychol., 76 , 25–50. URL:645

https://www.sciencedirect.com/science/article/pii/S0022249616301663https://linkinghub.

elsevier.com/retrieve/pii/S0022249616301663. doi:10.1016/j.jmp.2016.12.001.

Mulder, M., van Maanen, L., & Forstmann, B. (2014). Perceptual decision neurosciences A model-based

review. Neuroscience, 277 , 872–884. URL: https://www.sciencedirect.com/science/article/pii/

S0306452214006046https://linkinghub.elsevier.com/retrieve/pii/S0306452214006046. doi:10.650

1016/j.neuroscience.2014.07.031.

Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. Computer Journal , 7 ,

308–313.

O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., & Kelly, S. P. (2018). Bridging Neural and Computational

Viewpoints on Perceptual Decision-Making. Trends Neurosci., in press . URL: http://www.ncbi.nlm.655

nih.gov/pubmed/30007746. doi:10.1016/j.tins.2018.06.005.

Pais, D., Hogan, P. M., Schlegel, T., Franks, N. R., Leonard, N. E., & Marshall, J. A. R. (2013). A

Mechanism for Value-Sensitive Decision-Making. PLoS ONE , 8 , e73216. URL: http://dx.plos.org/10.

1371/journal.pone.0073216. doi:10.1371/journal.pone.0073216.

Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and ac-660

curacy of a perceptual decision. J. Vision, 5 , 1. URL: http://journalofvision.org/5/5/1/http:

//jov.arvojournals.org/article.aspx?doi=10.1167/5.5.1. doi:10.1167/5.5.1.

Pins, D., & Bonnet, C. (1996). On the relation between stimulus intensity and processing time: Piéron’s law
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