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Abstract

Natural scenes are inherently structured, with meaningful objects appearing in predict-

able locations. Human vision is tuned to this structure: When scene structure is pur-

posefully jumbled, perception is strongly impaired. Here, we tested how such

perceptual effects are reflected in neural sensitivity to scene structure. During separate

fMRI and EEG experiments, participants passively viewed scenes whose spatial struc-

ture (i.e., the position of scene parts) and categorical structure (i.e., the content of

scene parts) could be intact or jumbled. Using multivariate decoding, we show that spa-

tial (but not categorical) scene structure profoundly impacts on cortical processing:

Scene-selective responses in occipital and parahippocampal cortices (fMRI) and after

255 ms (EEG) accurately differentiated between spatially intact and jumbled scenes.

Importantly, this differentiation was more pronounced for upright than for inverted

scenes, indicating genuine sensitivity to spatial structure rather than sensitivity to low-

level attributes. Our findings suggest that visual scene analysis is tightly linked to the

spatial structure of our natural environments. This link between cortical processing and

scene structure may be crucial for rapidly parsing naturalistic visual inputs.
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1 | INTRODUCTION

Humans can efficiently extract information from natural scenes even

from just a single glance (Potter, 1975; Thorpe, Fize, & Marlot, 1996).

A major reason for this perceptual efficiency lies in the structure of

natural scenes: for instance, a scene's spatial structure tells us where

specific objects can be found and its categorical structure tells us

which objects are typically encountered within the scene (Kaiser,

Quek, Cichy, & Peelen, 2019; Oliva & Torralba, 2007; Võ, Boettcher, &

Draschkow, 2019; Wolfe, Võ, Evans, & Greene, 2011).

The beneficial impact of scene structure on perception becomes

apparent in jumbling paradigms, where the scene's structure is purpose-

fully disrupted by shuffling blocks of information across the scene. For

instance, jumbling makes it harder to categorize scenes (Biederman,

Rabinowitz, Glass, & Stacy, 1974), recognize objects within them

(Biederman, 1972; Biederman, Glass, & Stacy, 1973) or to detect subtle

visual changes (Varakin & Levin, 2008; Zimmermann, Schnier, & Lappe,

2010). These findings suggest that typical scene structure contributes

to efficiently perceiving a scene and its contents.

Such perceptual effects prompt the hypothesis that scene structure

also impacts perceptual stages of cortical scene processing. However,

while there is evidence that real-world structure impacts visual cortex

responses to everyday objects (Kaiser & Cichy, 2018; Kaiser & Peelen,

2018; Kim & Biederman, 2011; Roberts & Humphreys, 2010) and human

beings (Bernstein, Oron, Sadeh, & Yovel, 2014; Brandman & Yovel, 2016;

Chan, Kravitz, Truong, Arizpe, & Baker, 2010), it is unclear whether real-

world structure has a similar impact on scene-selective neural responses.

To answer this question, we conducted multivariate pattern analy-

sis (MVPA) and univariate analyses on fMRI and EEG responses to

intact and jumbled scenes, which allowed us to spatially and tempo-

rally resolve whether cortical scene processing is indeed sensitive to

scene structure. During the fMRI and EEG experiments, participants
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viewed scene images in which we manipulated two facets of natural

scene structure: We orthogonally jumbled the scene's spatial structure

(i.e., whether the scene's parts appear in their typical positions or not)

or its categorical structure (i.e., whether the scene's parts belong to

the same category or different categories).

Our results provide three key insights into how scene structure

affects scene representations: (a) Cortical scene processing is primarily

sensitive to the scene's spatial structure, more so than to the scene's

categorical structure. (b) Spatial structure impacts the perceptual analy-

sis of scenes, in occipital and parahippocampal cortices (Epstein, 2014)

and shortly after 200 ms (Harel, Groen, Kravitz, Deouell, & Baker,

2016). (c) Spatial structure impacts cortical responses more strongly for

upright than inverted scenes, indicating robust sensitivity to spatial

scene structure that goes beyond sensitivity to low-level features.

2 | MATERIALS AND METHODS

2.1 | Participants

In the fMRI experiment, 20 healthy adults participated in session

1 (mean age 25.5, SD = 4.0; 13 female) and 20 in session 2 (mean age

25.4, SD = 4.0; 12 female). Seventeen participants completed both

sessions, three participants only session 1 or session 2, respectively.

In the EEG experiment, 20 healthy adults (mean age 26.6, SD = 5.8;

9 female) participated in a single session. Samples sizes were deter-

mined based on typical samples sizes in related research; a sample of

N = 20 yields 80% power for detecting effects sizes greater than

d = 0.66.1 All participants had normal or corrected-to-normal vision.

Participants provided informed consent and received monetary reim-

bursement or course credits. All procedures were approved by the

ethical committee of Freie Universität Berlin and were in accordance

with the Declaration of Helsinki.

2.2 | Stimuli and design

Stimuli were 24 scenes from four different categories (church, house,

road, supermarket; Figure 1a), taken from an online resource (Konkle,

Brady, Alvarez, & Oliva, 2010); the complete scene image set can be

found in the Appendix S1. We split each image into quadrants and

systematically recombined the resulting parts in a 2 × 2 design, where

both the scenes' spatial structure and their categorical structure could

be either intact or jumbled (Figure 1b,c). This yielded four conditions:

F IGURE 1 Stimuli and Paradigm. We combined parts from 24 scene images from four categories (a) to create a stimulus set where the

scenes' structural (e.g., the spatial arrangements of the parts) and their categorical structure (e.g., the category of the parts) was orthogonally

manipulated; all scenes were presented both upright and inverted (b, c). In the fMRI experiment, scenes were presented in a block design, where

each block of 24 s exclusively contained scenes of a single condition (d). In the EEG experiment, all conditions were randomly intermixed (e).

During both experiments, participants responded to color changes of the central crosshair [Color figure can be viewed at wileyonlinelibrary.com]
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(a) In the “spatially intact & categorically intact” condition, parts from

four scenes of the same category were combined in their correct loca-

tions. (b) In the “spatially intact & categorically jumbled” condition,

parts from four scenes from different categories were combined in

their correct locations. (c) In the “spatially jumbled & categorically

intact” condition, parts from four scenes of the same category were

combined, and their locations were exchanged in a crisscrossed way.

(d) In the “spatially jumbled & categorically jumbled” condition, parts

from four scenes from different categories were combined, and their

locations were exchanged in a crisscrossed way. For each participant

separately, 24 unique stimuli were generated for each condition by

randomly drawing suitable fragments from different scenes.2 During

the experiment, all scenes were presented both upright and inverted.

2.3 | fMRI paradigm

The fMRI experiment (Figure 1d) comprised two sessions. In the first

session, upright scenes were shown, in the second session inverted

scenes were shown; the sessions were otherwise identical. Each ses-

sion consisted of five runs of 10 min. Each run consisted of 25 blocks

of 24 s. In 20 blocks, scene stimuli were shown with a frequency of

1 Hz (0.5 s stimulus, 0.5 s blank). Each block contained all 24 stimuli

of a single condition. In five additional fixation-only blocks, no scenes

were shown. Block order was randomized within every five consecu-

tive blocks, which contained each condition (four scene conditions

and fixation-only) exactly once.

Scene stimuli appeared in a black grid (4.5� visual angle), which

served to mask visual discontinuities between quadrants. Participants

were monitoring a central red crosshair, which twice per block

(at random times) darkened for 50 ms; participants had to press a but-

ton when they detected a change. Participants on average detected

80.0% (SE = 2.5)3 of the changes. Stimulus presentation was con-

trolled using the Psychtoolbox (Brainard, 1997).

In addition to the experimental runs, each participant completed a

functional localizer run of 13 min, during which they viewed images of

scenes, objects, and scrambled scenes. The scenes were new exem-

plars of the four scene categories used in the experimental runs;

objects were also selected from four categories (car, jacket, lamp, and

sandwich). Participants completed 32 blocks (24 scene/object/scram-

bled blocks and 8 fixation-only blocks), with parameters identical to

the experimental runs (24 s block duration, 1 Hz stimulation fre-

quency, color change task).

2.4 | EEG paradigm

In the EEG experiment (Figure 1e), all conditions were randomly inter-

mixed within a single session of 75 min (split into 16 runs). During

each trial, a scene appeared for 250 ms, followed by an inter-trial

interval randomly varying between 700 ms and 900 ms. In total, there

were 3,072 trials (384 per condition), and an additional 1,152 target

trials (see below).

As in the fMRI, stimuli appeared in a black grid (4.5� visual angle)

with a central red crosshair. In target trials, the crosshair darkened

during the scene presentation; participants had to press a button and

blink when detecting this change. Participants on average detected

78.1% (SE = 3.6) of the changes. Target trials were not included in

subsequent analyses.

2.5 | fMRI recording and preprocessing

MRI data was acquired using a 3 T Siemens Tim Trio Scanner

equipped with a 12-channel head coil. T2*-weighted gradient-echo

echo-planar images were collected as functional volumes (TR = 2 s,

TE = 30 ms, 70� flip angle, 3mm3 voxel size, 37 slices, 20% gap,

192 mm FOV, 64 × 64 matrix size, interleaved acquisition). Addition-

ally, a T1-weighted anatomical image (MPRAGE; 1mm3 voxel size)

was obtained. Preprocessing was performed using SPM12 (www.fil.

ion.ucl.ac.uk/spm/). Functional volumes were realigned, coregistered

to the anatomical image, and normalized into MNI-305 space. Images

from the localizer run were additionally smoothed using a 6 mm full-

width-half-maximum Gaussian kernel.

2.6 | EEG recording and preprocessing

EEG signals were recorded using an EASYCAP 64-electrode4 system

and a Brainvision actiCHamp amplifier. Electrodes were arranged in

accordance with the 10–10 system. EEG data was recorded at

1000 Hz sampling rate and filtered online between 0.03 Hz and

100 Hz. All electrodes were referenced online to the Fz electrode.

Offline preprocessing was performed using FieldTrip (Oostenveld,

Fries, Maris, & Schoffelen, 2011). EEG data were epoched from –

200 ms to 800 ms relative to stimulus onset and baseline-corrected

by subtracting the mean pre-stimulus signal. Channels and trials con-

taining excessive noise were removed based on visual inspection.

Blinks and eye movement artifacts were removed using independent

component analysis and visual inspection of the resulting compo-

nents. The epoched data were down-sampled to 200 Hz.

2.7 | fMRI region of interest definition

We restricted fMRI analyses to three regions of interest (ROIs): early

visual cortex (V1), scene-selective occipital place area (OPA), and

scene-selective parahippocampal place area (PPA) (Figure 2). We addi-

tionally localized scene-selective retrosplenial cortex (RSC), but did

not observe reliable above-baseline activations to our scene stimuli in

this region, all t(19) < 0.14, p > .45. The results for RSC can be found

in the Appendix S1.

V1 was defined based on a functional group atlas (Wang et al.,

2015), from which we selected all voxels that had a higher probability

of belonging to V1 than belonging to another region in the atlas

(905 voxels). Changing the number of voxels included did not qualita-

tively change the results in V1 (see Appendix S1).

Scene-selective ROIs were defined using the localizer data, which

were modeled in a general linear model (GLM) with nine predictors

(three regressors for the scene/object/scrambled blocks and six

movement regressors). Scene-selective ROI definition was

KAISER ET AL. 3



constrained by group-level activation masks for OPA and PPA (Julian

et al., 2012). Within these masks, we first identified the voxel

exhibiting the greatest t-value in a scene>object contrast, separately

for each hemisphere, and then defined the ROI as a 125-voxel sphere

around this voxel (similar results were obtained for different ROI sizes,

see Appendix S1). Left- and right-hemispheric ROIs were

concatenated for further analysis.5

2.8 | fMRI decoding

fMRI response patterns for each ROI were extracted directly from the

volumes recorded during each block. After shifting the activation time

course by three TRs (i.e., 6 s) to account for the hemodynamic delay,

we extracted voxel-wise activation values from the 12 TRs

corresponding to each block of 24 s. Activation values for these

12 TRs were then averaged, yielding a single response pattern across

voxels for each block. To account for activation differences between

runs, the mean activation across all blocks was subtracted from each

voxel's values, separately for each run. Decoding analyses were per-

formed using CoSMoMVPA (Oosterhof, Connolly, & Haxby, 2016),

and were carried out separately for each ROI and participant. We

used data from four runs to train linear discriminant analysis (LDA)

classifiers to discriminate multi-voxel response patterns (i.e., patterns

of voxel activations across all voxels of an ROI) for two conditions

(e.g., spatially intact versus spatially jumbled scenes). Classifiers were

tested using response patterns for the same two conditions from the

left out, fifth run. This classification routine was done repeatedly until

every run was left out once and decoding accuracy was averaged

across these repetitions.

2.9 | fMRI univariate analysis

To establish univariate activation differences, we modeled the fMRI

data in a GLM analysis. For this analysis, all functional volumes were

smoothed using a 6 mm full-width-half-maximum Gaussian kernel.

For each run, we constructed a GLM with 10 predictors (four regres-

sors reflecting the four scene conditions and six movement regres-

sors). For each of the four scene conditions, this analysis yielded five

beta maps (one for each run) for the upright scenes (from Session 1),

and five beta maps (one for each run) for the inverted scenes (from

Session 2). We first averaged beta weights for every condition across

runs. These beta weights were then averaged across all voxels of each

ROI, yielding one activation value for each condition, ROI, and partici-

pant. For each ROI (V1, OPA, PPA), and separately for the two stimu-

lus orientations (upright, inverted), we computed three effects: (a) The

main effect of spatial structure, reflecting the difference between the

two spatially intact and the two spatially jumbled scenes, (b) the main

effect of categorical structure, reflecting the difference between the

two categorically intact and the two categorically jumbled scenes, and

(c) the interaction effect of spatial and categorical structure. Subse-

quently, to uncover inversion effects, we compared these effects

across the upright scenes and inverted scenes.

2.10 | EEG decoding

EEG decoding was performed separately for each time point

(i.e., every 5 ms) from –200 ms to 800 ms relative to stimulus onset,

using CoSMoMVPA (Oosterhof et al., 2016). We used data from

all-but-one trials for two conditions to train LDA classifiers to discrim-

inate topographical response patterns (i.e., patterns across all elec-

trodes) for two conditions (e.g., spatially intact versus spatially

jumbled scenes). Classifiers were tested using response patterns for

the same two conditions from the left-out trials. This classification

routine was done repeatedly until each trial was left out once and

decoding accuracy was averaged across these repetitions. Classifica-

tion time series for individual participants were smoothed using a

running average of five time points (i.e., 25 ms).

2.11 | EEG univariate analysis

To establish univariate EEG response differences (i.e., ERP effects)

between conditions, we averaged evoked responses for all trials of

each condition. Based on a previous study on scene-selective ERPs

(Harel et al., 2016), we then averaged these responses across six

posterior-lateral EEG electrodes (P4, P8, O2, P7, P3, O1), yielding one

ERP response for each condition and participant. For these ERPs, we

computed the same effects as outlined above for the fMRI data: a

main effect of spatial structure, a main effect of categorical structure,

and interactions with scene inversion.6

F IGURE 2 Location of the fMRI regions of interest (ROIs). fMRI

data analysis was restricted to three ROIs: primary visual cortex (V1),

the occipital place area (OPA) and the parahippocampal place area

(PPA). The V1 ROI was based on a functional atlas (Wang, Mruczek,

Arcaro, & Kastner, 2015), and identical for all participants. The

scenes-selective regions were defined as spheres around each

participant's peak activation in a separate scene-localizer run,

constrained by functional group masks (Julian, Fedorenko, Webster, &

Kanwisher, 2012). The colormap represents the consistency of ROI

locations across participants (i.e., how many participants' ROIs

covered the respective voxels) [Color figure can be viewed at

wileyonlinelibrary.com]
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2.12 | Statistical testing

For the fMRI data, we used t-tests to compare decoding against chance

and between conditions. For the univariate data, we used ANOVAs to

tests for differences in activations. To Bonferroni-correct for compari-

sons across ROIs, all p-values were multiplied by 3. For the EEG data,

given the larger number of comparisons, we used a threshold-free clus-

ter enhancement procedure (Smith & Nichols, 2009) and multiple-

comparison correction based on a sign-permutation test (with null dis-

tributions created from 10,000 bootstrapping iterations), as

implemented in CoSMoMVPA (Oosterhof et al., 2016). The resulting

statistical maps were thresholded at z > 1.96 (i.e., pcorr < .05).

2.13 | Data availability

Data are publicly available on OSF (doi.org/10.17605/OSF.IO/

W9874). Materials and code are available from the corresponding

author upon request.

3 | RESULTS

For both the fMRI and EEG data, we performed two complimentary

decoding analyses. In the first analysis, we tested sensitivity for spatial

structure by decoding spatially intact from spatially jumbled scenes

(Figure 3a). In the second analysis, we tested sensitivity for categorical

structure by decoding categorically intact from categorically jumbled

scenes (Figure 3d). To investigate whether successful decoding indeed

reflected sensitivity to scene structure, we performed both analyses

separately for the upright and inverted scenes. Critically, inversion

effects (i.e., better decoding in the upright than in the inverted condi-

tion) indicate genuine sensitivity to natural scene structure that goes

beyond purely visual differences.

3.1 | Sensitivity to spatial scene structure

First, to uncover where and when cortical processing is sensitive to

spatial structure, we decoded between scenes whose spatial structure

was intact or jumbled (Figure 3a).

F IGURE 3 MVPA results. To reveal sensitivity to spatial scene structure, we decoded between scenes with spatially intact and spatially

jumbled parts (a). Already during early processing (in V1 and before 200 ms) spatially intact and jumbled scenes could be discriminated well, both

for the upright and inverted conditions. Critically, during later processing (in OPA/PPA and from 255 ms) inversion effects (i.e., better decoding

for upright than inverted scenes) revealed genuine sensitivity to spatial scene structure (b, c). To reveal sensitivity to categorical scene structure,

we decoded between scenes with categorically intact and categorically jumbled parts (d). In this analysis, no pronounced decoding and no

inversion effects were found, neither across space (e) nor time (f). Error margins reflect standard errors of the difference. Significance markers

denote inversion effects (pcorr < .05) [Color figure can be viewed at wileyonlinelibrary.com]
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For the fMRI data (Figure 3b), we found highly significant

decoding between spatially intact and spatially jumbled scenes. For

upright scenes, significant decoding emerged in V1, t(19) = 13.03,

pcorr < .001, OPA, t(19) = 7.61, pcorr < .001, and PPA, t(19) = 5.92,

pcorr = .002, and for inverted scenes in V1, t(19) = 9.92, pcorr < .001,

but not in OPA, t(19) = 2.08, pcorr = .16, and PPA, t(19) = 0.85,

pcorr > 1. Critically, we observed inversion effects (i.e., better decoding

for the upright scenes) in the OPA, t(16) = 4.41, pcorr = .001,7 and

PPA, t(16) = 3.67, pcorr = .006, but not in V1, t(16) = 1.32, pcorr = .62.

Therefore, decoding in V1 solely reflects visual differences, whereas

OPA and PPA exhibit genuine sensitivity to the spatial scene struc-

ture. This result was confirmed by further ROI analyses and a spatially

unconstrained searchlight analysis (see Appendix S1).

For the EEG data (Figure 3c), we also found strong decoding

between spatially intact and jumbled scenes. For upright scenes, this

decoding emerged between 55 ms and 465 ms, between 505 ms and

565 ms, and between 740 ms and 785 ms, peak z > 3.29, pcorr < .001,

and for inverted scenes between 65 ms and 245 ms, peak z > 3.29,

pcorr < .001. As in scene-selective cortex, we observed inversion

effects, indexing stronger sensitivity to spatial structure in upright

scenes, between 255 ms and 300 ms and between 340 ms and

395 ms, peak z = 2.78, pcorr = .005.

Together, these results show that in scene-selective OPA and

PPA, and after 255 ms, cortical activations are sensitive to the spatial

structure of natural scenes. Critically, this sensitivity becomes appar-

ent in inversion effects, and thus cannot be attributed to image-

specific differences between intact and jumbled scenes, as these are

identical for the upright and inverted scenes. Our findings rather indi-

cate a genuine sensitivity to spatial structure consistent with real-

world experience.

3.2 | Sensitivity to categorical scene structure

Second, to uncover where and when cortical processing is sensitive to

categorical structure, we decoded between scenes whose categorical

structure was intact or jumbled (Figure 3a).

For the fMRI (Figure 3e), the upright scenes' categorical structure

could be decoded only from V1, t(19) = 3.11, pcorr = .017, but not the

scene-selective ROIs, both t(19) < 2.15, pcorr > .13. Similarly, for the

inverted scenes, significant decoding was only observed in V1, t

(19) = 4.58, pcorr < 0.001, but not in the scene-selective ROIs, both t

(19) < 2.29, pcorr > .10. No inversion effects were observed, all t(16)

< 0.60, pcorr > 1.

For the EEG (Figure 3f), we found only weak decoding between

the categorically intact and jumbled scenes. In the upright condition,

decoding was significant between 165 ms and 175 ms and between

215 ms and 265 ms, peak z = 2.32, pcorr = .02, and in the inverted con-

dition at 120 ms, peak z = 1.97, pcorr = .049. No significant inversion

effects were observed, peak z = 1.64, pcorr = .10.8

Together, these results reveal no substantial sensitivity to the cat-

egorical structure of a scene, at least when none of the scenes are

fully coherent and when they are not relevant for behavior. Please

note that this absence of an effect does not in no way entail that

there is no representation of category during scene analysis. In our

analysis, we did not decode between different scene categories, but

between scenes whose categories were intact or shuffled (collapsed

across their categorical content); as a consequence, our analysis only

reveals an absence of sensitivity for categorical structure, but not an

absence of sensitivity for category per se.

This absence of sensitivity for categorical scene structure is in

marked contrast with sensitivity for spatial scene structure, which is

observed in the absence of behavioral relevance and is disrupted by

stimulus inversion.

3.3 | Enhanced responses to spatially structured

scenes

Our decoding analyses show that scene-selective cortex exhibits a

profound sensitivity to spatial scene structure. To further understand

this sensitivity, we conducted a univariate analysis in which we com-

pared the magnitude of responses evoked by intact and jumbled

scenes (Figure 4a,c). Critically, this analysis allowed us to disentangle

two opposing interpretations: On one side, sensitivity to scene struc-

ture could indeed reflect a visual tuning to real-world properties—in

this case, enhanced responses to intact scenes, compared to jumbled

scenes, are expected. On the other side, sensitivity to scene structure

could mainly reflect the coding of stimuli that are incoherent with

real-world experience, reflecting a type of “surprise” response— in this

case, enhanced responses to jumbled scenes, compared to intact

scenes, are expected. Analyzing response magnitudes across space

(fMRI) and time (EEG) allowed us to arbitrate these two

interpretations.

In the fMRI, we found significant main effects of spatial structure

in the upright condition in OPA, F(1,19) = 21.00, pcorr < .001, and PPA,

F(1,19) = 55.30, pcorr < .001, but not in V1, F(1,19) = 5.11, pcorr = .11

(Figure 4b). No main effects of categorical structure, all F(1,19) < 5.69,

pcorr > .08, and no interactions between spatial and categorical struc-

ture were found, all F(1,19) < 1.18, pcorr > .88. In the inverted condi-

tion, we observed no significant effects, all F(1,19) < 1.12, pcorr > .92

(Figure 4e). Critically, we inversion effects revealed greater effects of

spatial structure in the upright than in the inverted condition in OPA,

F(1,16) = 17.04, pcorr = .002, and PPA, F(1,16) = 21.82, pcorr < .001. In

accordance with the MVPA results, this finding indicates genuine sen-

sitivity to spatial scene structure in OPA and PPA. Additionally, the

univariate results highlight that scene-selective cortex preferentially

responds to the spatially intact scenes, rather than the spatially jum-

bled scenes.

In the EEG, we only found a significant main effect of spatial

structure for the upright scenes (Figure 4c,f), which emerged between

225 ms and 425 ms, peak z = 3.09, pcorr = .002. None of the other

main effects or interactions were significant. However, we observed

trending inversion effects (at a more liberal threshold of pcorr < .1),

which emerged between 260 ms and 270 ms, and at 305 ms, peak

z = 1.72, pcorr = .086. Although not significant, these trending effects

qualitatively resemble the findings obtained in the more sensitive

6 KAISER ET AL.



MVPA, which showed that from 255 ms responses become sensitive

to spatial scene structure.

Together, the univariate results highlight that responses to natural

scenes are stronger for scenes that are spatially structured. This sug-

gests a preferential processing of scenes that are composed in accor-

dance with real-world experience—rather than an enhanced response

to scenes that do not adhere to this experience.

4 | DISCUSSION

Our findings provide the first spatiotemporal characterization of corti-

cal sensitivity to natural scene structure. As the key result, we

observed sensitivity to spatial (but not categorical) scene structure,

which emerged in scene-selective cortex and from 255 ms of vision.

By showing that this effect is stronger for upright than for inverted

scenes, we provide strong evidence for genuine sensitivity to spatial

structure, rather than low-level properties.

Sensitivity to spatial structure may index mechanisms enabling

efficient scene understanding. Previous work on object processing

shows that in order to efficiently parse the many objects contained in

natural scenes, the visual system exploits regularities in the

environment, such as regularities in individual objects' positions

(Kaiser & Cichy, 2018; Kaiser, Moeskops, & Cichy, 2018), relationships

between objects (Kaiser & Peelen, 2018; Kaiser, Stein, & Peelen,

2014; Kim & Biederman, 2011; Roberts & Humphreys, 2010), and

relationships between objects and scenes (Brandman & Peelen, 2017;

Faivre, Dubois, Schwartz, & Mudrik, 2019). Further, a recent fMRI

study suggests that low-level representations of small and incomplete

scene fragments partly depend on the fragment's typical position

within the visual world (Mannion, 2015). Relatedly, we recently

showed that in scene-selective occipital cortex and after 200 ms of

vision, the representations of such scene fragments are sorted with

respect to their typical location in the world (Kaiser, Turini, & Cichy,

2019). Focusing on the interplay of multiple scene elements, the cur-

rent study shows that on higher levels of the scene processing hierar-

chy, the visual system uses spatial regularities to concurrently process

the multiple elements of complex scenes in an efficient way. This

result is in line with the emerging view that real-world structure facili-

tates processing in the visual system across diverse naturalistic con-

tents (Kaiser, Quek, Cichy, & Peelen, 2019).

What mechanism underlies the preferential processing of spatially

structured scenes? As one possibility, a scene's intact spatial structure

F IGURE 4 Univariate results. To reveal sensitivity to scene structure in univariate response magnitudes, we looked at average responses to

each of the four conditions, separately for the upright scenes (a) and the inverted scenes (d). For the upright scenes, we found main effects of

spatial structure in OPA and PPA (b) and between 225 ms and 425 ms (c), while no effects of spatial structure were found for the inverted scenes

(e, f). Supporting our MVPA results, inversion effects (i.e., greater effects of spatial structure in the upright, compared to the inverted scenes)

were found in OPA and PPA (at pcorr < .05) and from 260 ms (at a more liberal pcorr < .1), indicating increased responsiveness to spatially

structured scenes. No main effects of categorical structure and no interaction effects were found. Error margins reflect standard errors of the

mean. Significance markers denote main effects of spatial structure (pcorr < .05) [Color figure can be viewed at wileyonlinelibrary.com]
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may trigger integrative processing across the scene, akin to integrative

processing of multiple objects that are positioned in accordance with

spatial regularities (Baldassano, Beck, & Fei-Fei, 2017; Kaiser &

Peelen, 2018). Alternatively, spatially structured scenes may contain

typical global properties (Oliva & Torralba, 2006) that are absent in

spatially jumbled scenes, and the sensitivity to spatial structure may

partly reflect sensitivity to the formation of such global properties. At

this point, more studies are needed to understand which types of fea-

tures drive the sensitivity to spatial structure.

Our results also shine new light on the temporal processing cas-

cade during scene perception. Sensitivity to spatial structure emerged

after 255 ms of processing, which is only after scene-selective peaks

in ERPs (Harel et al., 2016; Sato et al., 1999)9 and after basic scene

attributes are computed (Cichy, Khosla, Pantazis, & Oliva, 2017).

Interestingly, after 250 ms brain responses not only become sensitive

to scene structure, but also to object-scene consistencies (Draschkow

et al., 2018; Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe,

2013). Together, these results suggest a dedicated processing stage

for the structural analysis of objects, scenes, and their relationships,

which is different from basic perceptual processing. However,

whether these different findings indeed reflect a common underlying

mechanism requires further investigation. For instance, future investi-

gations need to clarify which of these findings reflect enhanced

processing of consistent structure (as our finding does) and which pri-

marily reflect responses to inconsistencies.

Further, our results suggest more pronounced sensitivity to spatial

structure than to categorical structure. This is in line with studies

showing that scene-selective responses are mainly driven by spatial

layout, rather than scene content (Dillon, Persichetti, Spelke, & Dilks,

2018; Harel, Kravitz, & Baker, 2013; Henriksson, Mur, & Kriegeskorte,

2019; Kravitz, Peng, & Baker, 2011). However, our results need not to

be taken as evidence that categorical structure is not represented at

all during visual analysis.10 It is conceivable that visual processing is

less sensitive to categorical structure when, as in our study, all scenes

are jumbled to some extent and not behaviorally relevant.

On the contrary, robust sensitivity to spatial scene structure

emerged in the absence of behavioral relevance. This suggests that

spatial structure is analyzed automatically during perceptual

processing and is not strongly dependent on attentional engage-

ment with the scene. As in real-world situations, we cannot explic-

itly engage with all aspects of a scene concurrently, this automatic

analysis of spatial structure may be crucial for rapid scene

understanding.

ACKNOWLEDGMENTS

We thank Sina Schwarze for help in EEG data collection and manu-

script preparation. D.K. and R.M.C. are supported by Deutsche

Forschungsgemeinschaft (DFG) grants (KA4683/2-1, CI241/1-1,

CI241/3-1). R.M.C. is supported by an European Research Council

Starting Grant (ERC-2018-StG 803370). G.H. was supported by a

PhD fellowship of the Einstein Center for Neurosciences.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

D. K. and R. M. C. designed research, D. K. and G. H. acquired data,

D. K. and G. H. analyzed data, D. K., G. H., and R. M. C. interpreted

results, D. K. prepared figures, D. K. drafted manuscript, D. K., G. H.,

and R. M. C. edited and revised manuscript. All authors approved the

final version of the manuscript.

DATA AVAILABILITY STATEMENT

Data are publicly available on OSF (doi.org/10.17605/OSF.IO/

W9874). Materials and code are available from the corresponding

author upon request.

ORCID

Daniel Kaiser https://orcid.org/0000-0002-9007-3160

Radoslaw M. Cichy https://orcid.org/0000-0003-4190-6071

ENDNOTES

1 Related studies on object-object and object-scene consistencies typi-

cally yield large effect sizes which exceed this value, both for fMRI

responses, d = 0.72 (Brandman & Peelen, 2017), d = 0.67 (Kaiser &

Peelen, 2018), d = 2.14 (Kim & Biederman, 2011), d = 0.94 (Roberts &

Humphreys, 2010), and EEG responses, d = 0.71 (Draschkow, Heikel,

Võ, Fiebach, & Sassenhagen, 2018), d = 0.88 (Ganis & Kutas, 2003),

d = 0.67 (Mudrik, Lamy, & Deouell, 2010), d = 0.69 (Võ & Wolfe, 2013).

2 Note that all scenes were jumbled to some extent, as also in the cate-

gorically intact scenes four different exemplars were intermixed.

3 For two participants, due to technical problems, no button presses were

recorded.

4 For two participants, due to technical problems, only data from 32 elec-

trodes was recorded.

5 Analyzing the data from the two hemispheres separately did not yield

any significant differences between hemispheres (F < 2.04, p > .17, for

all interactions with hemisphere).

6 For using the same statistical tests as for the decoding results, interac-

tions in the univariate EEG analyses were computed by testing the dif-

ferences between conditions against each other (e.g., the difference

between intact and jumbled scenes in the upright condition versus the

difference between intact and jumbled scenes in the inverted

conditions).

7 Statistics for fMRI inversion effects are based on the 17 participants

who completed both sessions.

8 Note that the strongest tendency towards an inversion effect

(at 115 ms) was against the predicted direction.

9 In our study, ERP responses in posterior-lateral electrodes peaked at

235 ms.

10 In the Appendix S1, we show that the four scene categories can be suc-

cessfully decoded from the EEG signals.
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