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Abstract7

Bearings are the culprit of a large quantity of Wind Turbine (WT) gearbox failures8

and account for a high percentage of the total of global WT downtime. Damage within9

rolling element bearings have been shown to initiate beneath the surface which defies10

detection by conventional vibration monitoring as the geometry of the rolling surface is11

unaltered. However, once bearing damage reaches the surface, it generates spalling and12

quickly drives the deterioration of the entire gearbox through the introduction of debris13

into the oil system. There is a pressing need for performing damage detection before14

damage reaches the bearing surface. This paper presents a methodology for detecting15

sub-surface damage using Acoustic Emission (AE) measurements. AE measurements16

are well known for their sensitivity to incipient damage. However, the background17

noise and operational variations within a bearing necessitate the use of a principled18

statistical procedure for damage detection. This is addressed here through the use of19

probabilistic modelling, more specifically Gaussian mixture models. The methodol-20

ogy is validated using a full-scale rig of a WT bearing. The bearings are seeded with21

sub-surface and early-stage surface defects in order to provide a comparison of the22

detectability at each level of a fault progression.23
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1. Introduction26

Bearing failures are the leading source of downtime in Wind Turbine (WT) gear-27

boxes and the root cause for this is attributed to Rolling Contact Fatigue (RCF) [1–3].28

In the majority of loading conditions, fatigue damage begins its life at the surface29

of materials, where high stresses and imperfections due to manufacturing and surface30

wear coalesce and lead to crack initiation. The case in bearings is unlike typical fa-31

tigue damage. Hertzian contact mechanics dictates that, under the compressive load at32

the contact between a rolling element and a bearing, the location of maximum stress33

will lie a small distance under the surface at the point of contact between a roller and34

the bearing surface. This has some important consequences regarding the damage pro-35

gression of a bearing. A growing crack will spend most of its time under the surface,36

where it has minimal impact on the operation of the rest of the system. However, once37

a crack emerges on the surface, the progression of failure is accelerated through contact38

with the rolling elements and this will generate spalling. At the point of initiation of39

spalling, the progression of damage is quick as debris is introduced into the rest of the40

mechanical system, thus accelerating the overall failure of the gearbox.41

Currently, WTs are designed with an overall target lifetime of 20 years [4], a design42

requirement which extends to all of their subsystems. However, the average service life43

of wind turbine gearboxes often falls much below the 20 year target [5]. This is a prob-44

lem; even though gearboxes are not the most unreliable subsystem, they do cause the45

most downtime [5]. Minimising gearbox failures is thus a key element in increasing46

overall wind turbine productivity [2]. Because bearing surface damage releases debris47

into closed-loop oil systems, sampling the oil quality and checking for debris within48

the oil system is, to date, still used as a reliable technique for diagnosing the overall49

condition of WT gearboxes [6, 7]. It is also at this point that vibration-based monitor-50

ing systems are able to detect the presence of defects. The fact that bearing damage51

has reached the surface and introduced debris into the oil system motivates the need52

for detecting fatigue cracks in bearings before they reach this stage, so that preventive53

maintenance can be carried out and impact to the rest of the gearbox can be minimised.54

Detecting subsurface damage at the incipient stage has been identified as a critical as-55
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pect of wind turbine condition monitoring [3]. Rolling contact fatigue is exacerbated56

in planetary gearboxes, where the bearing raceway is loaded exclusively in the torque57

direction. This exerts a compressive load on the same point along the circumference58

of the raceway, as illustrated in Figure 1. In order to avoid the problems associated59

with the introduction of debris and accelerated failure, it is highly desirable to be able60

to detect the incipient failure of the bearing, at the point where a fatigue crack has just61

initiated. There are three critical aspects that will determine the outcome of a damage62

detection system [8]: 1) the physical sensing system, 2) the damage-sensitive features63

extracted from the data and 3) the damage identification strategy applied to those fea-64

tures. This paper addresses these problems. As for the physical sensing system, Acous-65

tic Emissions (AE) are proposed as a measurement strategy. The damage-sensitive fea-66

tures extracted from AE data play a fundamental role in the ability to identify damage.67

In this paper, the state of the art of AE features are reviewed and compared and new68

features are proposed using advanced signal processing tools. Lastly, a rigorous dam-69

age identification strategy is proposed that addresses the key challenge of discerning70

operational and environmental effects from the damage-sensitive features. This is car-71

ried from a probabilistic modelling point of view, using Gaussian mixture models in72

combination with dimensionality reduction tools.73

1.1. Subsurface cracks74

The interest in subsurface cracks has grown since the realisation that fatigue cracks75

in gearbox bearings tend to start around non-metallic inclusions [10], introduced during76

the manufacturing process. The presence of these inclusions, coupled with high stress77

concentrations under the surface, leads to the development of fatigue cracks, often re-78

ferred to as White Etching Cracks (WEC), White Structure Flaking (WSF) [11, 12], or79

simply “butterfly” cracks due to their butterfly shape (with the “wings” following a path80

from the inclusion, out towards the surface). These cracks tend to grow in the region81

around 1mm under the contact surface of typical WT bearings [13] and it has been82

proposed that their formation is driven both by chemical and mechanical processes.83

Chemically, it is the diffusion and release of hydrogen into bearing steel [14], through84

lubrication and water ingress that drives the formation of WECs. Mechanically, over-85
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a) b)

Figure 1: a) Diagram showing gearing setup for a planetary gearbox. Note the planet bearings are con-

stantly loaded in the torque direction, indicated by the red arrows. b) zoom-in to one of the planet bearings,

highlighting the loaded zone [9]

load events arising from wind gusts, breaking and torque reversals drive stress con-86

centrations around non-metallic inclusions to yield point and lead to the formation and87

growth of WECs. Since the realisation that inclusions in bearing steel directly lead to88

subsurface cracks, the quality control of the manufacturing processes has dramatically89

improved. However, inclusions will always be present even in today’s high standard90

of steels. In fact, it has been shown that it is typically the smallest inclusions that lead91

to the greatest stress concentrations and therefore the development of WECs [12]. An92

example of a WEC at the initial stage of propagation is shown in Figure 2, observed on93

a WT bearing section [12].94

1.2. Damage detection with Acoustic Emissions95

When considering the dynamic response of a system, it is a generally well-accepted96

principle that the physical size of damage is inversely proportional to the frequency at97

which its effects will be manifested in its dynamic response [15–17]. Furthermore,98

there is a well established relationship between the AE response of a metal and fatigue99

crack growth [18]. With this in mind, subsurface damage on bearings represents the100

smaller end of the scale, requiring relatively high frequency measurements, when com-101
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Figure 2: Example of a WEC propagating around a non-metallic inclusion [12]

a) b)

Figure 3: Illustration of damage in representative WT planetary gearbox bearings showing a) a line etch

similar, used in [9] which is of similar form to the surface damage introduced in this study (see Figure 6 for

the actual profiles) and b) damage arising from real operational conditions, focused on the point at which

spalling occurs [12].
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pared to traditional vibration-based monitoring, in order stand a reasonable chance of102

being detected. Following this reasoning, this paper investigates the detectability of103

subsurface cracks using Acoustic Emission (AE) measurements.104

Acoustic Emissions (AE), when used within a Structural Health Monitoring (SHM)105

or Non-Destructive Testing (NDT) context, are high frequency stress waves that prop-106

agate through a material. These waves can be generated by a number of different107

mechanisms including stress, plastic deformation, friction and corrosion. AE occurs as108

a result of the release of elastic energy by any one of these mechanisms, which is then109

propagated through the material as elastic waves. The concept of AE in engineering110

structures is analogous to the release and propagation of energy that takes place during111

earthquakes [19], as a result of fractures within fault planes. It is generally accepted112

that the movement of slip-planes characteristic of micro-cracks during the application113

of stress and yield [20, 21] leads to the generation of AE. Features extracted from AE114

measurements have been shown to be successful indicators of the early onset of cracks115

in various applications [18, 22, 23]. AE testing is a passive method, in the sense that116

one is listening to the acoustic response of the material when mechanical stress is ap-117

plied to it. Most materials will have a certain level of AE activity even in an undamaged118

state when stress is applied to them, the technical term for this is the Kaiser effect [24].119

However, when defects such as cracks or spalling are present in the material, the AE120

response when stress is applied will tend to be more frequent, of higher amplitude, and121

may have different spectral characteristics depending on the material properties of the122

medium where the waves propagate. Friction processes also tend to generate AE, as the123

impact between micro-asperities that occurs during contact of two materials releases124

elastic energy into the system [25]. There is no clear definition of the frequency range125

that constitutes an AE measurement. This will depend on the physics of the particular126

defect; a typical AE stress wave generated from the initiation of a crack in steel can127

range from 50kHz to 2MHz [21, 26].128

AE being now a popular measurement technique, its application to bearing mon-129

itoring hasn’t gone without attention, but the problem of detecting small subsurface130

cracks is currently far from solved. One of the barriers to investigating this problem131

is that subsurface damage is hard to find, validate and measure in an operational bear-132
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Figure 4: Example of a) an AE signal measured from an undamaged bearing in operation and b) a zoom-in

to one of the “hits” characteristic of AE measurements.

ing and much more so within a wind turbine, so all investigations resort to laboratory133

experiments under controlled environments. The major problem with this lies in the134

defect. Most investigations (including some by these authors) use artificially seeded135

defects at the surface to show that a given methodology is able to detect incipient dam-136

age [26–36]. An example of such defect is illustrated in Figure 3a. The problem with137

surface defects (from an investigative point of view) is that they represent the later138

stages of damage, quickly lead to spalling and are also relatively easy to detect as con-139

tact between rollers and surface damage releases large amounts of acoustic energy into140

the system. An example of a late damage state is shown in Figure 3b, at which point141

detection through AE or even vibration becomes trivial with the current state of re-142

search. A number of studies have attempted to tackle this issue and offer investigations143

on bearings run from undamaged conditions all the way to failure, usually under an144

environment that accelerates failure [37–39]. While these investigations significantly145

advanced the general field of AE-based monitoring, they have not been carried out146

with statistical rigour. More specifically, the detectability of incipient damage is only147

7



viewed qualitatively and no attempt is made at quantifying it.148

Detecting damage using data-driven methods can be cast as a novelty detection149

problem. First a statistical model of the system in its undamaged state is characterised150

and an alarm threshold is established. Further observations are judged based on a151

novelty index; a distance metric that quantifies how far the new observation lies from152

the baseline undamaged state. The decision of whether an observation belongs to a153

damaged or undamaged state is then given by whether the novelty index lies above or154

below the threshold. Under this approach the detectability is judged solely in terms of155

change from a baseline condition and can be quantified in terms of false positives and156

false negatives. It also provides ample opportunities for objectively judging different157

statistical and signal processing methods in terms of their false positive and negative158

rate performance. A central part of this paper involves performing this comparison159

using rigorous methods of novelty detection.160

A critical aspect of any damage detection system is its ability to separate the ef-161

fects of damage from those of normal gearbox operation. This is particularly true of162

AE measurements. The recorded AE signals will not only contain the high frequency163

stress waves produced by crack growth and plastic strain, they will also contain a sig-164

nificant amount of AE energy that is unrelated with any damage mechanism. A large165

part of this “benign” energy being released as AE in a gearbox will come from inter-166

nal stresses and friction. A key challenge is then to separate the AE activity related to167

normal operation from those that are not. In WT gearboxes, operational variability will168

naturally arise from varying wind speeds. In variable-speed WTs, changes in speed will169

result in a wide variety of AE activity, with or without the presence of defects. On a170

basic level, varying rotational speed will introduce variability into any features derived171

from a frequency domain or periodicity based analysis of the AE signals, such as those172

presented in [40, 41]. Varying speed will also introduce changes to the background173

noise resulting from friction throughout the gearbox and will also lead to changes in174

oil temperature. Oil viscosity is highly dependent on temperature and this completely175

changes the lubrication regime of the gearbox, which has a direct effect on the resulting176

background AE noise signature [42]. AE monitoring of fixed-speed WTs will also suf-177

fer from this type of variability. Varying wind speed introduces changes in the internal178
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loads of the gearbox, and the release of energy as AE in materials is directly related to179

applied loads. Furthermore, load variation also causes variation in AE energy through180

changing temperatures and the effect that this has on the lubrication regime. Higher181

temperatures generally lead to lower oil viscosities, which in turn drives an increase182

in friction through higher asperity contact between the surfaces of roller elements and183

bearing raceways.184

In general, studies investigating bearing monitoring, using either vibration or AE185

measurements, have not taken into account this operational and environmental vari-186

ability. Recently steps have been taken in [26] to collect AE measurements on a failing187

bearing at varying loads and rotational speeds, consequently, the notion that load and188

speed affect AE both directly, and indirectly, through variations in temperature was189

confirmed. However, again no attempt was made at quantifying the detectability in190

terms of comparing a statistical model of the undamaged bearing against the rest of the191

observations.192

A further complicating factor when performing bearing monitoring in practice is193

detecting incipient faults from practical measurement locations. Since the early days194

of bearing monitoring it was recognised that detecting even a large seeded fault was195

much easier if AE is measured in the inner raceway of the bearing compared to the196

outer raceway [27]. However, in practice it is clearly less invasive to place a sensor197

on the outside of the gearbox. Placing a sensor inside a gearbox would often require198

machining and this can lead to overall reduced gearbox reliability.199

In summary, the current challenges facing bearing monitoring are clear:200

• To detect incipient failure at the subsurface stage using a rigorous statistical201

methodology.202

• To perform such detection under the effects of operational and environmental203

variability.204

• To use practical and non-invasive measurement locations to carry out the moni-205

toring206

This paper presents a general methodology for detecting damage in rotational com-207
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ponents and validates this using a rig that is representative of the operational environ-208

ment of a WT epicyclic gearbox. More specifically, this environment involves realistic209

varying loads and speeds as well as the changing temperature and oil properties that210

these create. A focus is placed on detecting subsurface as well as small surface cracks.211

The approach to inducing subsurface damage used here is different from previous stud-212

ies; instead of taking an undamaged bearing and running it until failure, subsurface213

damage was carefully seeded in a bearing in order to be able to carry out a robust and214

conclusive comparison of damaged and undamaged states. Furthermore, three more215

surface faults were seeded in a different bearing in increasing sizes ranging from 5µm216

to 50µm width. The reasoning for using seeded defects here is that it is the most robust217

and conclusive way of validating a damage detection methodology because one knows218

the exact state of the bearing at every stage. However, a strong focus was placed on us-219

ing defects, both subsurface and surface-level, that are representative of the very early220

stages of fatigue damage in bearings. A description of the experimental rig and the221

defect-seeding procedures is given in Section 2. Particular attention is devoted to the222

damage-sensitive feature extraction process of AE signals. In broad terms, there are223

two major and different types of features extracted from AE signals 1) those based on224

the characteristics of discrete bursts of energy, often termed AE hits and 2) those based225

on analysis of the periodicity of the global AE signal. While in the literature, studies226

tend to focus on either one approach or the other, here it is of interest to investigate227

the performance of each type of damage-sensitive feature. A description of the signal228

processing methods used to derive the different damage-sensitive features is given in229

Section 3. The third element of the damage detection methodology is the statistical pat-230

tern recognition. The methodology used in this paper is to treat the problem as one of231

novelty detection, where the probability distribution of the damage-sensitive features232

is modelled for data belonging to an undamaged state. This allows for the computation233

of a novelty index on subsequent observations, and when this exceeds a given alarm234

threshold this can be indicative of damage. The particular procedure, based on Gaus-235

sian mixture modelling is described in detail in Section 5.3. The validation of the entire236

methodology, including the various damage sensitive features and the novelty detection237

is presented in Section 5, where results are presented for the data-set collected on the238
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experimental rig with the four different stages of damage.239

2. Experimental set-up240

The experimental rig used in this study was devised to investigate planetary gear-241

box bearings, due to their propensity to fail prematurely owing to the fact that the load242

transferred from the rotating outer raceway to the static inner raceway peaks at a fixed243

position along the circumference of the inner raceway. This loading condition is il-244

lustrated in Figure 1 and leads to short fatigue lifetimes around the loaded section of245

the bearing, leaving an “un-used” fatigue life outside of this region. This rig has been246

used in previous investigations into bearing monitoring using various techniques rang-247

ing from vibration [43] to AE [35, 36] and ultrasound monitoring [9]. However, this248

is the first study considering subsurface defects, as well as surface defects with widths249

under 100µm.250

The objective of the rig is to generate a compressive radial load on the inner race-251

way inside a planetary sun bearing sub-assembly. In order to achieve this, the rig com-252

prises of two bearings: an inner “test bearing”, which is housed inside an outer “main253

bearing”. The inner test bearing then houses a stationary shaft, which is connected via254

two steel lugs to a hydraulic ram, capable of delivering a total compressive load up to255

1600kN. In order to apply rotation, the inner raceway of the outer bearing is coupled to256

the outer raceway of the inner bearing. A tensioned pulley is then used to drive these257

two raceways together, with power delivered from an electric motor. A cross-sectional258

diagram of the assembly is shown in Figure 7a, while Figure 7b shows a photograph259

of the entire rig, highlighting the main components. Figure 8 shows a more schematic260

view of the main components and applied loads. The inner bearing is coloured in red261

and the outer bearing is coloured in blue. The rolling elements are shown in light grey.262

The main interest in this investigation is the inner raceway of the inner bearing. To-263

gether with the shaft, this inner raceway remains stationary, with the rolling elements264

revolving around it, a compressive load being applied at the bottom (via the hydraulic265

ram). Due to the constant compressive load, it is here where damage normally initiates266

in planetary sun bearings and so all seeded defects in this study are located so that their267
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position lies exactly at the bottom of the circumference of this inner raceway.268

The inner bearing used in this rig is an NU2244, which is typically used in WT269

gearboxes. Its inner raceway has a bore diameter of 220mm, and the outer raceway has270

an outer diameter of 400mm. Its maximum dynamic load rating is 1600kN, while its271

fatigue load limit is of 250kN. Further specifications of this bearing can be found in272

[44].273

2.1. Seeded Defects274

This section details the defects seeded into the inner raceway. For the purposes275

of this study, two types of defects were seeded in order to emulate increasing damage276

levels: subsurface and surface defects. Overall, a total of six bearing conditions were277

examined, summarised in Table 2.1. Note that two undamaged bearings were used in278

the experiment, in order to generate robust training and validation datasets for the data-279

driven damage detection models. Further discussion on the importance of having two280

undamaged bearings, for validation purposes is given in Section 5281

Label Condition Severity Bearing

UD1 Undamaged A

UD2 Undamaged B

D1 Subsurface Damage 800kN C

D2 Subsurface Damage 1000kN C

D3 Surface Damage 5µm D

D4 Surface Damage 20µm D

D5 Surface Damage 50µm D

Table 1: Summary of bearing conditions

2.1.1. Surface defects282

Surface defects represent a damage condition in a relatively advanced stage. The283

objective here was to generate defects as small as possible in order to emulate the early284

stages of surface damage. In previous work at the University of Sheffield [36], a spark285

erosion technique was used to etch the surface of a raceway to emulate a surface crack,286
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which generated surface defects of approximately 200µmwidth (similar to the damage287

shown in Figure 3a). In order to achieve a smaller defect, more representative of the288

early stages of a surface crack, a Cubic Boron Nitrite (CBN) grit was used to scratch289

the surface using a six-axis Computer Numerical Control (CNC) machine. This was290

performed at three different pressures, with each one at a different angular position291

on the raceway. The aim of using three different angular locations along the raceway292

was to be able to perform a test with three different defect sizes by simply positioning293

the different defects on the loaded zone of the bearing. The angular positions of the294

defects were such that only one defect was loaded at any given instant in time, these295

are shown in Figure 5. The target sizes for the seeded defects were 5µm, 20µm and296

50µm, although the actual profiles obtained are shown in Figure 6. These profiles297

were taken by first filling the scratches with silicon in order to extract a negative of298

the profile, and then measuring this with a three-dimensional optical profiler. Note that299

damage conditions D4 and D5 seem very similar to each other. In fact, most of the300

profile shown in Figure 6a and b is the pattern of material removed from the inside of301

etch. The profile of the inner parts of the etches were in fact too small to measure with302

the available profilers. Note that the curvature of background of each profile shown303

in Figure 6 is due to the bending of the silicon samples and not the curvature of the304

bearing.305

2.1.2. Subsurface defects306

A key element of this paper is the study of the detectability of defects in a bear-307

ing before they propagate to the surface. To achieve this, a subsurface defect was308

seeded to a second raceway by means of compressing its outer surface with a rolling309

element. The compression was applied using a hydraulic press capable of applying up310

to 2000kN. Subsurface yield was estimated to occur at 1000kN for this bearing, using311

Hertzian contact mechanics relationships. To ensure that subsurface yield occurred,312

while also preventing the damage propagating to the surface, the yield process was313

monitored using AE. Some of the observations on AE from this damage seeding are314

further discussed in [21].315

During the seeding of subsurface damage, a large increase in AE energy was ob-316
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Inner Raceway
Outer Raceway

Figure 5: Angular positions of defects along raceway. Note that this angular separation ensures that when

one roller passes over one of the defects, none of the rest of the rollers will pass over the other two defects at

the same time.

served in the 800kN to 1200kN range. Visible surface damage was only found when a317

bearing was loaded beyond 1700kN. Although several tests were carried out on numer-318

ous raceways, on the final raceway, faults were seeded using two compression levels,319

at 800kN and 1000kN. These were applied on the same circumferential indices as for320

the surface damage, so that only one damage site is located within the loaded zone of321

the raceway.322

To summarise, two damaged bearing raceways were used for testing. One raceway323

contained three surface etches with increasing sizes, to emulate increasing levels of324

damage. The second raceway contained two seeded subsurface cracks, with increasing325

levels of maximum compressive load.326

2.2. Test conditions327

The objective of this study is to perform damage detection of realistic defects in a328

realistic operational WT gearbox environment. In order to achieve this, a test schedule329

was designed to capture, for each of the raceway conditions (outlined in Table 2.1),330

the effects of varying load, speed and temperature. Preliminary tests were conducted,331
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a): D3

b): D4

c): D5

Figure 6: Average (negative) profiles of the three surface damage sites, taken using a 3D optical interferom-

eter profiler, according to Table 2.1. Note that the profiles of the smallest defects only capture te average

width, together with excess material on the sides.
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Figure 7: a) Diagram showing fixture, rig bearing and test bearing, outlining the location of AE measurement

channels. b) Photograph of rig in the lab.

Applied load

AE/vibration -
OC Top

AE/vibration -
OC Bottom

Figure 8: a) Diagram showing fixture, rig bearing and test bearing, outlining the location of AE measurement

channels. b) Photograph of rig in the lab.
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stepping the compressive load at 100kN steps from 0 to 1200kN. This pointed to three332

major regimes of AE activity, around the low load (0-400kN), medium load (400kN-333

800kN) and high loads (800kN-1200kN). For this reason three loads were selected for334

a test schedule: 200kN, 600kN and 1000kN. The temperature of the rig proved difficult335

to control precisely. The factors that affect the rig and oil temperatures are the operating336

load, bearing condition (a failed bearing introduces debris into the system and drives337

the temperature up through friction), ambient temperature, accrued usage time, whether338

a heat exchanger is present in the oil system and whether this is aided by a cooling339

device (such as a fan). In this rig the only means of controlling the temperature directly340

are via the heat exchanger, the operating load and sequencing of the applied loads. In341

general it is easier to warm up the rig, than to cool it down, as once it runs and a load342

is applied, it will quickly warm up and reach a stable temperature. Therefore, it was343

decided to split the tests into low and high temperatures. This split is reasonable, given344

that the main effect that temperature introduces (to the AE activity) is an increase in345

friction at higher temperatures from a reduction of viscosity [45, 46]. In order to keep346

the temperature down, the low temperature runs were performed early in the morning,347

testing low loads first and keeping cooling fan on.348

Table 2.2 shows the complete schedule of tests carried out. This is also a realistic349

scenario given that the temperature in a WT gearbox will vary in a similar fashion.350

When not operational, or at low wind conditions, modern gearboxes will keep circu-351

lating the oil through a heat exchanger, to keep it at a stable temperature (and thus the352

optimal viscosity).353

2.3. Instrumentation354

Four AE sensors and one accelerometer were used to measure the overall dynamic355

response of the bearing throughout the tests. The positions are illustrated in Figure 8.356

Three AE sensors were placed outside the bearing, mounted on the Outer Casing (OC)357

of the outer raceway. One AE sensor was placed inside the Inner Raceway (IR), by358

machining a small part of the stationary shaft in order to fit the sensor. Furthermore,359

the AE sensor located in the IR was sprung-loaded into position. The IR AE sensor360

was located along the circumference of the IR, at angular orientation of 60deg from361
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Speed (RPM) Load (kN) Temperature

100 200
Low

(Fan ON)
100 600

100 1000

100 1000
High

(Fan OFF)
100 200

100 600

Table 2: Bearing test schedule. Each row was performed sequentially, and this schedule was used for every

bearing condition.

the damaged zones (the bottom). In these tests, the IR sensor is the closest to the362

damage, which is the main AE source of interest. Because of the compressive load363

applied to the inner raceway, the bottom is in direct contact with the rollers, while the364

top develops a slight clearance. This defines the acoustic path of the AE stress waves365

to propagate from the source (the damage), down through the rollers, outer bearing366

and casing and around the circumference of the rig. Therefore, of the three sensors on367

the Outer Casing, the OC bottom location is closest to the AE source, followed by the368

OC-right and OC-top (as illustrated in Figure 8). Note that due to symmetry, it was369

deemed reasonable to not include a measurement position on the OC left side.370

The three OC-AE sensors used in this study were Mistras 3MICRO-30D, fitted with371

a differential cable for noise reduction. The IR sensor was a Mistras NANO-30, which372

is a non-differential sensor. The Micro30D has a marked resonance at approximately373

350kHz, while the Nano30 has a flatter response in the range of 200kHz-500kHz. This374

is relevant as the sensor frequency response shapes the acquired signals significantly.375

Compared with vibration sensors, the frequencies of interest are much broader, in the376

range of 50kHz - 2MHz. It is therefore much harder to achieve a flat frequency response377

across all frequencies of interest, and so one must accept the significant mechanical378

filtering that the sensor applies to the “true” underlying AE stress wave. It must also be379

noted that sensor-to-sensor variability is usually much more significant in AE sensors,380

compared with vibration instrumentation. One tri-axial accelerometer was mounted381
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next to the AE sensor at the OC-top location.382

All data acquisition was recorded with a National Instruments (NI) C-DAQ system.383

This comprised of several modules, with data recorded at the following sample rates:384

• NI-9223, four-channel analogue module sampling at 1MHz with 16-bit Ana-385

logue to Digital (ADC) conversion.386

• NI-9234, three-channel IEPE module sampling at 51.2kHz.387

• NI-9213, thermocouple, for temperature measurements (one sample per test).388

Several operational parameters were also acquired in order to assess the influence389

of each one on the AE response. These parameters were:390

• Test Bearing Speed (RPM).391

• Left-side and Right-side Load (kN).392

• Oil Temperature.393

• Casing Temperature.394

Data was acquired in “trials” of ten second duration. For each bearing condition395

in Table 2.1 and each operational condition in Table 2.2, ten different different trials396

were gathered. The resulting data-set thus comprises approximately 1260 time series397

records, each taking approximately 322MB of memory, totalling 491GB of data.398

3. Damage-sensitive features from AE measurements399

The goal of this section is to discuss the signal processing required to derive dam-400

age sensitive features from AE data. In broad terms, there are two approaches to this401

problem and both will be covered here. The fundamental idea behind AE monitoring402

is to detect the energy release characteristic of the interaction between stress and the403

plastic deformation around a crack in the form of high frequency stress waves. These404

short bursts of high frequency data, often referred to as “hits” have been illustrated405

in Figure 4. The first approach is to identify these hits and to characterise them. On406
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a non-rotating system with low levels of background noise, the simple presence of a407

hit could be indicative of damage. In this setting, simply characterising the rate of408

generation of AE hits, or “hit count”, would be a sufficient damage-sensitive quan-409

tity. However, in rotating systems a certain amount of background AE activity will be410

expected, as already discussed in Section 1.2. In this setting, it is more desirable to411

work with damage-sensitive features of individual AE hits. These could be as simple412

quantities such as the energy, duration and amplitude of hits, but could also be based413

on more complex models, such as Fourier or autoregressive coefficients. Detecting an414

AE hit and computing features from these short bursts of energy represents one of the415

two major different strategies for signal processing. This strategy will be discussed in416

more detail in Section 3.1. One key advantage of dynamic response data originating417

from rotating machinery is its tendency to be periodic, and this can be taken advantage418

of for efficiently deriving damage sensitive features. In terms of AE, one would expect419

a burst of AE energy to occur every time one roller passes over a damaged area. This420

information can be encoded efficiently with Fourier coefficients of rectified signal en-421

velopes. This type of periodicity-based analysis represents the second major approach422

to deriving damage-sensitive features, and is discussed in more detail in Section 3.4.423

3.1. Hit-based features424

One of the key points of AE data, from a signal processing point of view, is that425

the bursts captured by the AE acquisition system are very short in comparison to the426

large amount of time that needs to be spent monitoring. Because of the high sample427

rates required to capture these high frequency waves, this means that a lot of noise is428

recorded, in comparison to the amount of useful AE bursts. To put this in context,429

the bursts recorded from a yielding steel specimen may last in the order of 2000 µs.430

If one were to monitor at 1MHz for 1 second and expect 15 bursts (which is roughly431

how many bursts are expected in the rig in this paper at 100 RPM), this would mean432

that approximately 3% of the data points are informative and the rest is noise. Given433

the high sample rate, data storage and handling becomes an issue if one wishes to434

monitor for long periods of time. This has led the AE monitoring community to develop435

hit-identification strategies, where an AE hit is defined as a burst large enough for436
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it to be likely to be caused by material fracture. Non-rotating systems are naturally437

“quiet” in their undamaged states and it is normally straightforward to identify hits by438

setting a threshold on the overall AE signal; the value of the threshold would mostly439

be determined by the background noise level of the environment and the electrical440

noise. Rotating systems on the other hand are noisy; there are more sources of acoustic441

noise, and bursts that are not related to damage but generated by friction, roller impact,442

arising from minor misalignments and transient loads. These lead to significant and443

often varied levels of background noise. Having a constantly changing noise level444

introduced by periodic friction complicates the basic process of identifying an AE hit.445

Figure 4a illustrates an AE signal with varying background noise, where some AE hits446

are evident well above the background noise. The problem is that the lower energy hits447

that may lie close to, or even be buried under, the noise. In order to identify these AE448

hits, a special adaptive threshold methodology had to be devised.449

AE data streams comprise millions of points and the feature extraction process450

being described here is applied to hundreds of data files. Efficient computation of451

features is therefore required. In order to achieve efficient compression of AE sig-452

nals, while preserving the information contained within them, a multi-level Discrete453

Wavelet Transform (DWT) was applied to all AE signals in this study. Each level of a454

DWT first splits the signal, using a half-band quadrature mirror filter into its low and455

high frequency components and decimates the signal by half. Each level of decom-456

position comprises wavelet coefficients, each representing half of the frequency band457

of the level above with half the number of points. Multilevel DWT is a popular data458

compression tool in the general context of signal and image processing [47]. Its ap-459

plication to AE data makes sense given that the information in the signals is contained460

in a short bandwidth, dictated by the resonance of the sensor. In this study, the sen-461

sors used all had resonances in the range of 100-300kHz. For this reason, a two-level462

DWT was applied that split the signal into two frequency bands, of 0-250kHz and 250-463

500kHz. Only the lower frequency wavelet coefficients were used effectively reducing464

the number of data points by half, while keeping all the information of the sensor reso-465

nant frequencies. If one were to perform monitoring using a broad-band measurement466

technique, such as a Laser Doppler Vibrometry (LDV) or fibre brag-grating, this step467
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should be applied carefully so as not to throw away important information. However,468

piezoelectric transducers will always be resonant around a narrow band and so per-469

forming a DWT that retains only that band is bound to be an efficient pre-processing470

step.471

3.1.1. AE hit identification472

The objective of hit identification is to establish the existence of an AE hit and its473

location in time. As discussed above, simple threshold strategies, which work well in474

non-rotating machinery, fail to correctly identify all of the AE hits in a gearbox setting.475

The problem is that when non-stationary background noise is present in the system,476

the appropriate threshold that separates a high energy event from background noise477

will change with time. If a threshold were to be applied directly to AE data in this478

setting, it will either capture all high energy hits and leave out the lower energy ones,479

or be set low enough to capture low energy events but also be triggered constantly by480

background noise.481

In order to correctly identify AE hits, a thresholding strategy is required that iden-

tifies the presence of a hit, within a constantly changing noise floor. The methodology

developed here makes use of a hit identification function, which computes the differ-

ence between the local signal energy Et and a lagged version of itself at Et−a. The

difference is then normalised against the local noise level at t − a. The resulting hit

identification function H(t) captures rapid changes in energy against the local back-

ground noise. The local energy can be defined as a moving Root Mean Square (RMS)

statistic within a given short time period. The identification function is formally defined

as:

H(t) =
E(t)− E(t− a)

E(t− a)
(1)

where a represents the lag of the local energy difference. Its value is critical to the482

success of the identification function, it should represent the expected time over which483

an AE event will reach its maximum energy. In this study, the lag was tuned empirically484

and a value of a = 500µs was used. The presence of a hit is established when the485

identification function exceeds a prescribed threshold, TH . A value of TH = 2 was486

used in all hit identification procedures presented in this study. This can be interpreted487
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Figure 9: Illustration of effects of setting a threshold either too low or too high, showing a sample of raw AE

data with periodically varying noise level
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as a hit being defined when the value of the local energy quickly rises to two times its488

baseline level.489

In summary, the steps taken for detecting the presence of a hit, for every AE channel490

are:491

• Decimate signal with a wavelet decomposition492

• Take an envelopeE(t), of the wavelet coefficients, to capture the amplitude mod-493

ulation of the process. The envelope could consist of a Hilbert transform or a494

moving RMS to compute the local signal energy.495

• Compute the hit identification function given by equation (1).496

• Set a threshold over H(t) and record all instances where this threshold is ex-497

ceeded.498

These steps are illustrated in Figure 9, using a one-second AE recording of an un-499

damaged bearing, taken from the OC-top location (see Figure 8). Figure 9a shows the500

wavelet coefficients of the 0-250kHz band for this data. Figure 9b shows the local en-501

ergy function, E(t), while Figure 9c shows the hit identification function derived using502

Equation (1), including the threshold of 2, the exceedance of which defined an AE hit.503

The AE hits identified from exceedances of H(t) are shown with triangular markers.504

Note that using this adaptive thresholding methodology, it is possible to identify AE505

hits across the entire scale of energies. Figure 9a illustrates this by zooming-in into two506

regions where low-energy AE hits are present which would have clearly not been iden-507

tifiable with a simple threshold over the raw data, the wavelet coefficients or the local508

energy. This procedure is important as it enables the characterisation of individual hits509

even across the entire range of energy levels.510

Once the presence of a hit has been identified by the adaptive thresholding strategy,511

further steps are required to identify the precise start and end times of each AE hit.512

For a given hit, a rough start time is already given by the time of exceedance of the513

threshold over the hit identification function. The end time is defined as either a) the514

point at which the local energy decays back to within 10% of the local baseline level515
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(before the hit started) or b) the start time of another AE hit occurring before the energy516

decays back to the local baseline.517

Up to this point in the processing, only a rough start time for the hit has been518

identified, based on the local energy function. However, this will only be accurate to519

within the given time window used to evaluate E(t). Furthermore, stress waves in520

a material can propagate in various different modes. The fastest mode will tend to521

that of longitudinal waves, but this will also carry the least amount of energy. Shear,522

surface and possibly also Lamb waves (depending on the thickness of the material) may523

arrive after the first arrival of longitudinal waves, all carrying much more energy. This524

time delay carries information regarding the total distance a stress wave has travelled,525

so it is important to capture the precise time of the arrival of the longitudinal mode.526

Employing a threshold for onset identification, the longitudinal wave will invariably527

be missed and the arrival of the shear or surface modes is more likely to be captured528

instead. To overcome this, the methodology proposed by Kurz [48], based on Akaike’s529

Information Criterea (AIC), is used here in order to identify the precise moment of the530

onset of AE waves. This method computes a cumulative variance of a hit, forwards and531

backwards and creates an AIC function as the superposition of these two. The point532

at which this function reaches a minimum indicates the highest change of information533

(or variance) in the signal and thus the onset of the AE wave can be established by534

looking for a minimum of this function. An illustration of the AIC function indicating535

the minimum, where the onset is defined is shown in Figure 10.536

3.2. AE hit summary features537

Once a table of start and stop positions has been extracted from the AE data for538

every channel, it is relatively straightforward to go back to the signal and save only539

the waveforms at those time instances. This is the strategy that has been adopted; it540

significantly reduces the amount of data stored, and focuses all the post-processing on541

the data points corresponding to AE hits only, which as discussed before, comprise542

only a small percentage of the data points in the signal.543

There are numerous features that can be extracted once the waveform has been544

captured. Because an AE waveform is a transient event, there are some key features545
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that can characterise it in general, but simple, terms.546

Possibly the most informative feature is the energy contained in the waveform.547

Different sources of AE will release stress waves at widely different energy levels.548

The energy is easily computed as the sum of squares of the data points. The power549

normalises the energy by the duration of the signal. In the case of a transient waveform,550

such as that of an AE hit, energy, power and RMS will all be related to each other551

since the duration is a function of the total energy, because of the exponential decay in552

amplitude. This means that there is some correlation between these variables.553

The rise time is defined as the time difference between the waveform onset and554

its maximum amplitude. The information this carries is valuable because, due to the555

difference in speeds of different wave modes, some will arrive first and some later, thus556

giving a rough indication of how far the source is from the sensor. In practice, in a557

steel structure, waves will propagate as longitudinal, transversal, surface, and possibly558

Lamb waves. These waves will all travel at different speeds and will carry different559

proportions of the total energy of the wave-front. The Lamb wave modes may or may560

not be excited, as their existence requires that the wavelength of the AE be of the561

same order of magnitude to the thickness of the material it is travelling through. An562

investigation of Lamb waves is outside the scope of this paper, but their use should not563

be discarded and is marked as future work. In steel, longitudinal, shear and surface564

waves arrive in that order. The amount of energy they carry is also given in that order.565

Therefore the first arrival will always be from a longitudinal wave, and the maximum566

amplitude will tend to be recorded at the arrival of a surface wave. The usefulness of567

this is that the rise-time of an AE hit is a useful feature as it gives an indication of568

how far the wave has travelled. Waves that come from far away will have high rise-569

time (separation between longitudinal and surface waves) while the opposite is true for570

short rise times.571

Other features that are collected are the peak amplitude of the signal, the total du-572

ration and the decay time. The duration is defined, during the hit extraction process,573

as a decay after the peak amplitude to a level within a specified tolerance of the base-574

line noise, immediately before the hit. The duration will tend to be a function of the575

energy in the waveform, but also of the physical mechanism exciting the wave, and it576
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is therefore a useful feature. Once all of these features for each hit are computed, they577

are assembled so that inference with a Bayesian network can be performed with them.578

In summary, six summary statistics are taken from every AE hit:579

1. Maximum Amplitude580

2. Power581

3. Energy582

4. Rise-time583

5. Decay time584

6. Duration585

These features ae commonly used in the detection of damage from AE measure-586

ments [22, 36, 41]587

3.3. AE hit Auto Regressive coefficients588

Whilst the hit summary statistics may provide sufficient information for detection,589

their general drawback is that they provide a simplistic representation of the signal,590

they also require a significant amount of pre-processing (such as the identification of591

an accurate onset), which can be prone to error. An alternative is to represent the signal592

in terms of a model that automatically captures the main characteristics of the signal.593

In this paper, Auto Regressive (AR) models are used as a damage-sensitive feature that594

provides a more detailed representation of the individual AE hits. In this paper, AR595

model weights, w, are fit via linear regression to every single AE hit extracted using596

the procedure outlined above. As with the summary statistics, this AR model is fit597

to the single-level Discrete-Wavelet-Transformed signal, thus halving the number of598

points to compute and focusing on the frequency range of interest (250kHz to 500kHz599

in this case).600

3.4. Modulated signal envelope features601

If one signal processing paradigm were to be singled out as having enabled large-602

scale fault identification in rotation machinery, taking frequency decompositions of603

rectified signal envelopes would easily win. The idea is simple; every time a periodic604
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load is applied to a gearbox component (roller-bearing, gear-tooth contact for example)605

which contains a sizeable defect, this will generate a high frequency burst of energy,606

which can often be sensed at other points in the gearbox. These high-frequency burst607

will not necessarily be evident behind a frequency spectrum of the dynamic response,608

because the actual frequency content of these burst will be dictated by various reso-609

nant frequencies at which these bursts are transmitted. These resonant frequencies are610

characteristic of the gearbox assembly, not of the bursts and so will be generally ex-611

cited during normal gearbox operation. What is characteristic of these bursts is that612

they happen at periodic intervals and this period can single out the particular compo-613

nent that is generating them. The result of this is that the amplitude modulation of614

the dynamic response signal contains more information about damage processes than615

does the signal itself. One simple and well-established way of extracting this amplitude616

modulation is via the use the Hilbert-Huang transform. A simple frequency analysis,617

via a Discrete Fourier Transform (DFT), of the signal envelope has been shown to high-618

light well defects in many different types of rotating machinery [49]. Whilst this idea619

was originally applied to vibration signals which measure dynamic response in a much620

lower frequency range, this technique has been applied to AE measurements with a621

good degree of success [28, 33, 40].622

In this paper, the DFT coefficients of AE signal envelopes are used as a damage-623

sensitive feature. This provides a useful point of comparison, given that there so far,624

this type of feature have been widely used in the majority of papers investigating dam-625

age detection using vibration and AE in rotating systems [28, 33, 40, 41], and more626

specifically, detection of sub-surface damage.627

As discussed in the previous sub-sections, the AE signals are originally sampled628

at relatively high sample rates (1MHz in this case), in order to capture the high fre-629

quencies at which the stress waves characteristic of AE travel (250kHz-500kHz in this630

case). By contrast, the frequencies at which one would expect to find evidence of dam-631

age in the amplitude modulation of these signals is much lower, belonging in the range632

between zero and the low hundreds of Hertz. In the specific case of this bearing rig, the633

ball pass frequency between the rolling elements and the bearing is estimated at 15Hz,634

hence, there is a large disparity between the bandwidth of the original envelopes and635
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the frequency content of interest. A DFT at this original sample rate would yield very636

poor frequency resolution and would also be computationally expensive. In order to637

remedy this, in this paper, the Hilbert transform is applied to the one-level Discrete-638

Wavelet-Transformed signal. This halves the number of points used for computation639

of the envelope and also only takes the envelope over the frequency bandwidth of inter-640

est, thus eliminating the potential for noise to be introduced here. After this envelope641

is derived from the DWT, these wavelet coefficients are further low-pass filtered and642

down-sampled down to an effective sample rate of 100kHz, one-tenth of the origi-643

nal sample rate. At this point, a Short Time Fourier Transform (STFT) is applied to644

down-sampled envelopes, with a window length of 250000 points (2.5 seconds). This645

is enough to capture a potential of 45 cycles of damage-related AE bursts in every win-646

dow, with frequency resolution of 0.2 Hz. This frequency resolution is appropriate to647

capture the damage process at the expected ball pass frequency of 15Hz. Note that648

for further processing (the probabilistic modelling detailed in Section 4), this damage-649

sensitive feature was truncated to 2502 spectral lines, which yields an effective analysis650

bandwidth of 12.5kHz.651

4. Probabilistic Modelling652

The process of detecting damage from the observed AE damage-sensitive features653

is a problem of searching for outliers in statistical data. An outlier can be defined as654

an observation that is different enough from the rest of the observations that it is likely655

to have been generated by a different mechanism [50]. There are two fundamental656

elements of outlier analysis in data. The first is a statistical model of the reference657

(undamaged) condition data. This model is often assembled as a probability density.658

The second element is a statistical distance that measures how far any given observation659

is to the centre of the data mass, relative to the reference probability density. For the660

purposes of this paper, an “observation” shall be defined as a multivariate vector of661

damage-sensitive features, evaluated at one instance in time. In the context of AE662

data (as discussed in Section 3) this could comprise, for example, a vector of AE hit663

statistics, autoregressive model coefficients, or rectified signal envelope spectra.664
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In a large number of application domains [50], including SHM and condition mon-665

itoring [16, 51], it is common to assume that the underlying probability density of the666

reference data can be safely modelled as a Gaussian distribution. Under the Gaussian667

assumption, the Mahalanobis Squared Distance (MSD) is a good measure of the rela-668

tive closeness between observations and the reference set. The approach of modelling669

damage-sensitive features with single-Gaussian distributions and using an MSD as a670

novelty index is now in wide-spread use in the field of statistical outlier analysis [50]671

as well as in the field of Structural Health Monitoring (SHM) [16, 51, 52]. However, a672

major drawback of the single-Gaussian distribution approach is that it is unsuitable for673

modelling the probability density of data that has been generated by multiple regimes.674

In monitoring contexts, multiple regimes often arise from changing environments and675

operation. In the case of bearings, varying loads, speeds and temperatures will generate676

differing characteristic responses in the AE features. These will manifest themselves as677

multiple modes in the probability density of AE features. One way of modelling these678

complex probability densities is through the use of mixture distributions, discussed in679

the following section.680

4.1. Dimensionality reduction681

One characteristic of some of the damage-sensitive features being used in this study682

is that they are high-dimensional. The AR coefficients comprise vectors of 150 dimen-683

sions while AE envelope spectra contain 2500 dimensions. Generally speaking, most684

novelty detection schemes rely on computing distance metrics between feature spaces685

of new observations against feature spaces representing normal conditions. In this set-686

ting, it is a well recognised result and an effect of the “curse of dimensionality”, that687

the contributions of individual dimensions to a distance metric tend to get masked in688

high dimensional feature spaces [53]. This presents a problem - if damage will only689

introduce a change to a handful of dimensions within a high dimensional feature, this690

may not show up when computing a novelty index. Furthermore, high dimensional fea-691

tures also present a problem when computing covariance matrices of statistical models.692

It is a generally well-accepted rule that one needs at least twice as many observations693

as there are dimensions in a feature space in order to begin to accurately capture the694
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covariance structure of the data.695

In order to remedy these problems, the authors turn to the use of standard dimen-

sionality reduction techniques. Here Principal Component Analysis (PCA) is used as

a dimensionality reduction strategy. Its use is wide-spread within the field of statistical

learning [54, 55] as a data visualisation and pre-processing tool. PCA can be viewed

as a class of linear Gaussian models [56] and is represented by a linear transformation

from a d-dimensional data/feature space y into a lower-dimensional space x, called the

principal component scores,

y = Cx+ ε (2)

where C is a d×d PCA rotation matrix and ε is an additive Gaussian noise term. It is an696

orthogonal transform designed so that x contains a rotated version of y aligned in the697

directions of greatest variance. The resulting PCA scores, x, therefore contain most698

of the information (in terms of variance of the original data-set) within the first few699

dimensions. It is therefore common practice to use only a handful of the dimensions of700

x, this could be determined by observing how much variance is lost as one throws away701

dimensions. In this paper, however, the dimensionality of the PCA scores is fixed to702

five, so as to enable a comparison between different damage-sensitive features without703

introducing the effects of differing dimensionality of the feature space into the outlier704

analysis process.705

The PCA rotation matrix, C must be estimated. By definition, C is the eigen-706

decomposition of the covariance of the data/feature set y, so it can be estimated through707

an eigenvalue analysis. However, this may not scale well to very high dimensions. An708

alternative approach is an iterative Expectation Maximisation (EM) algorithm, which709

leads to the notion of probabilistic PCA [57, 58]. This paper uses the EM approach710

described in [57] to learn matrix C711

In the scenario being investigated, one does not have access to damaged condition712

data sets. The PCA rotation matrix, C is learned using the same data used for the713

novelty detector (described below, and so it is only representative of the undamaged714

class. Note that detection would be easier if C could be learned using both damaged715

and undamaged data sets, as the main differences in both of these sets would likely716
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represent the greatest variance, leading to two different columns in C describing each717

condition. This would lead to a significant separation of the two different conditions in718

the PCA scores, x. However, what is of interest here is the performance of a novelty719

detector on a projection of the undamaged class only. The discussions that follow will720

discuss the problem of novelty detection. This novelty detection is carried ot in the721

lower-dimensional domain of PCA scores, which is denoted throughout the paper as x.722

4.2. Gaussian Mixture Models723

A natural way of dealing with probability densities that arise from multi-regime724

processes is to partition the space of features into the different regimes and to fit a725

density model to each region of the feature space. Ideally, one would have a label of726

the regime type associated with each observation. However, in practice this is difficult727

to attain and there may be more naturally occurring clusters than one has labels for.728

It is therefore more desirable to work with algorithms that automatically partition the729

space into different regions. This task is generally referred to as clustering and there730

is a wide choice of algorithms available for carrying this out [55]. Here, the focus731

is on novelty detection, so whatever clustering scheme is used should also define a732

probability density over the feature space. The Gaussian Mixture Model (GMM) is733

used here because 1) it is a flexible density estimator for multi-modal data, 2) there are734

efficient algorithms for clustering, or data partitioning with GMMs and 3) it is possible735

and straight-forward to derive a novelty index in order to perform damage detection736

with this model. This subsection discusses these three important points.737

The concept of using a GMM for novelty detection within an SHM and condi-738

tion monitoring context has been investigated in some recent studies[59–61], including739

some by these authors[62]. The approach to using a GMM to achieve novelty detection740

taken here follows that of [62], where a novelty index is derived using the probability741

density of the GMM. The parameters of a GMM model with K components comprise742

of the set of K means, covariances and mixing proportions. For notational simplic-743

ity, these can be encoded in the vector θ = {(µ
1
, ...,µk), (S1, ...,Sk), (π1, ...,πk)}.744

Learning the appropriate parameters of a GMM involves choosing a parameter set, θ745

that maximises an objective function. Damage detection then involves evaluation of746
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the likelihood of new observations, given the reference parameter set θ.747

4.2.1. The GMM likelihood function748

The likelihood of the model plays a central role in the damage detection approach

of this paper: it is the objective function used for parameter estimation, it defines the

probability density and is also therefore a useful novelty index. The Gaussian mixture

is defined as a weighted sum of Gaussians, so its probability density can be written as,

p(y|θ) =
K
∑

k=1

πkN (y|µk,Sk) (3)

where, N (y|µk,Sk) represents the normal Gaussian density of the kth component,

with mean vector µk and covariance matrix Sk. The term πk defines the relative con-

tribution of component k to the total density, also known as responsibilities. Equation

(3) defines the likelihood of the model, given observed data y. This quantity plays

an important role in determining the model parameters as well as deriving appropriate

novelty indices. In practice, it is easier and more computationally stable to work with

the log-likelihood of the model. This is true both for parameter learning, as well as for

evaluation of novelty indices for damage detection. Written explicitly as a sum over all

observations, the log-likelihood for the GMM is,

lnL(θ) =
N
∑

n=1

K
∑

k=1

znk ln{πkp(yi|zk)} (4)

where znk denotes the posterior responsibility of component k for generating the ith749

observation. This is a convenient form for the log-likelihood function as it is given750

as a sum of logarithms This results from a formulation in terms of hidden variables751

(see [56, 58]). The model parameters are estimated using maximum-likelihood learn-752

ing, which involves maximising the log-likelihood of Equation (4). Unfortunately,753

evaluating this quantity involves knowledge of the partitioning of the data-set into the754

different clusters. This cluster-assignment is not known a-priori which makes this an755

optimisation task with missing data, or hidden variables. The formulation of the GMM756

log-likelihood function in terms of these hidden variables has already been discussed757

in Section 4.2.1. The Expectation Maximisation (EM) algorithm was derived to deal758
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with exactly this type of problem; it is a general framework for performing maximum-759

likelihood parameter optimisation of models with hidden data [63]. Furthermore, it has760

been shown that EM is a suitable learning algorithm for a wide class of linear Gaussian761

models with latent variables [56], to which GMMs belong to. EM is used in this paper762

as a learning strategy for all GMM models of damage-sensitive features.763

4.2.2. GMM model selection through cross-validation764

A common issue is that of choosing an appropriate model order; the number of765

components, K, of the GMM. Too many components will result in the GMM over-766

fitting the density estimate (assign very high density in regions of data where observa-767

tions exists, and no density elsewhere). On the other hand, using too few components768

would fail to correctly capture the complexities of the true underlying distribution. Ide-769

ally, the number of components should be determined directly from the training data.770

In this paper, the authors turn to the use of cross-validation in order to perform this task.771

Cross validation procedures divide the available training data into different training and772

testing subsets, so that the model error is evaluated on previously un-seen data and so773

the generalisation performance of the algorithm can be evaluated. For this paper, k-fold774

cross-validation is used, as this is a well-known robust and efficient way of performing775

cross-validation in a wide variety of statistical models [54]. K-fold cross-validation di-776

vides the available training data into K different partition, or folds. These are selected777

at random. Then, the GMM model is trained using EM, on K − 1 folds, thus leaving778

one fold out of the training set. The model error is then computed for the left-out fold,779

and the process until every fold is held-out at least once as a test set. The benefit of this780

is that the model error can be quantified entirely in terms of its performance on previ-781

ously unseen data, and so this gives a good insight into the generalisation performance782

of the model.783

As for the model error, two different quantities will be used in order to assess784

the quality of the model fit. The first is the Bayesian Information Criterion (BIC)785

[64], a quantity that is derived from the model likelihood, but penalises models of786

higher complexity (more components). The BIC considers the intrinsic function of the787

GMM as a density estimator. However, it does not consider its function as a classifier,788
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more specifically in the novelty detection case, a one-class classifier. Therefore, the789

second error metric considered in the cross-validation procedure in this paper is the790

misclassification rate. However, in order to treat the GMM model as a classifier, one791

must also consider that the overall model comprises both the density estimation and the792

novelty threshold together. How this is determined plays a central role in the success793

or otherwise of the damage detection scheme. The threshold estimation scheme used794

in this paper is discussed below. The error metric considered is the exceedance rate of795

the estimated threshold over the GMM density model observed on the held-out fold of796

the cross validation procedure.797

4.3. Detection thresholds798

An important aspect of any novelty detection scheme is the definition of the detec-799

tion threshold. The detection threshold defines the decision boundary between which800

observations are classed as normal or abnormal. In this case, because the negative801

log-likelihood of a Gaussian mixture is being used as a novelty index, the detection802

threshold will be given in terms of this quantity. There is no ultimate gold standard803

method for estimating an appropriate novelty threshold, and there is a wide variety of804

approaches to this problem in the literature [65]. In the problem at hand in this paper,805

the primary requirement is that the threshold minimise the number of false positive and806

false negatives. The other consideration of practical importance in this work is whether807

the training data, from the undamaged condition, contains outliers. Outliers in a train-808

ing set will manifest themselves as observations with high novelty indices. If these are809

taken into consideration for the threshold determination for example, through the use810

of maxima or percentiles of the training novelty indices, the resulting threshold will811

be biased by these outliers. This would in turn mean that observations from potential812

damaged classes may fall under the threshold. On the other hand, placing the thresh-813

old too close to the majority of training novelty indices will result in an over-sensitive814

classifier that produces a high number of false positives. In this work, a robust ap-815

proach to threshold estimation was used, following ideas from Monte Carlo sampling816

and Extreme Value Statistics (EVS), which have been used in the past as robust means817

of threshold estimation [51, 66, 67]. When deciding on an appropriate novelty thresh-818
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old, one is interested in the distribution of maximum values of the novelty indices. The819

distributions of the exponential family (to which the Gaussian belongs) are generally820

poor at predicting extreme values, due to the fact that the tails of the distribution decay821

exponentially to infinity. This is not a particularly good representation of the max-822

ima (and minima) of physical events. Extreme value theory offers an alternative for823

modelling the tails of statistical distributions. It dictates that the extremes will be gov-824

erned by either one of three distributions: Gumbel, Frechet or Weibull. The Gumbel825

distribution is of particular interest since it is the limiting distribution of the maxima826

of Gaussian random variables, so it would be a suitable distribution for modelling the827

tails of a Mahalanobis (un-squared) distance. However, when faced with more complex828

probability densities of the undamaged class data (as is the case in this application of829

bearing monitoring), other novelty indices might be used which may not conform to830

the Gaussian assumption. Such is the case of the negative log-likelihood of the GMM,831

being used here as a novelty index. In this case, the Generalised Extreme Value (GEV)832

distribution offers a solution to modelling the tails of arbitrary probability distributions833

[68]. Its use has previously been investigated in the context of SHM [69].834

Here, the novelty threshold is defined using a GEV distribution fitted to random

samples of negative log-likelihoods drawn from the estimated GMM density. The

threshold estimation procedure follows the Monte Carlo approach outlined in [51],

except that here, a GEV is used instead of an empirical cumulative distribution func-

tion when assessing confidence levels. The threshold estimation procedure is outlined

in Algorithm 1. The idea of it is to drawNs random samples from a GMM with param-

eter set θ representing the normal condition, and to evaluate their novelty index (the

negative log-likelihood). This process is repeated for Nt different trials, in which the

maxima of each trial is recorded and stored in a vector z. A GEV distribution is then

fitted to this vector of maxima, from which a threshold, T , can be estimated using the

GEV Cumulative Distribution Function (CDF),

GEVcdf (z) = exp

{

−

(

1 + ξ
z − µ

ψ

)

−1/ξ
}

, 1 + ξ
z − µ

ψ
> 0 (5)

where µ and ψ are location and scale parameters respectively and ξ is an additional835

parameter which determines the type of distribution the GEV fit belongs to (from the836
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family of Gumbel, Frechet or Weibull).837

Algorithm 1 Threshold Estimation

procedure MC-GEV THRESHOLD(θ, Ns, Nt, Conf )

for i = 1 : Nt do

y← draw Ns samples from GMM with parameter θ

L = − log p(y|θ)

zi ← max(L)

end for

Fit a GEV distribution to vector of maxima, z

T ← argmin||GEVcdf (z)− Conf ||
2

2

return T

end procedure

4.4. Procedure Summary838

To summarise, the procedure for using a Gaussian mixture for damage detection839

suggested here is as follows:840

1. Select a (damage sensitive) feature vector y to represent the data from a healthy841

condition. Any operational and environmental changes should be captured in842

y. In this paper, three features are considered from the AE data: hit summary843

statistics, hit AR coefficients and signal envelopes.844

2. Select a subset of y to use for training the model, ytrain. Select another subset845

to test the model predictions on: ytest.846

3. Project high dimensional features, y onto a suitably lower-dimensional domain847

x.848

4. Use cross-validation to decide on an appropriate number of clusters, K, for a849

GMM model, the training data set.850

5. Train a GMM, using the EM algorithm, on the entire xtrain set, using the number851

of clusters K determined from the cross-validation step.852
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6. Evaluate negative log-likelihood function on ytrain, point-by-point, using equa-853

tion (3), and set the detection threshold T using the procedure described in Al-854

gorithm 1.855

7. Evaluate− logL on any new observations, and check whether this falls above or856

below the detection threshold.857

8. If the model correctly captures the variability of the healthy condition, exceedances858

of T indicate damage, or other previously unseen (and possibly benign) changes.859

5. Experimental results860

This section details the results of applying the damage detection framework de-861

scribed in Section 4 to the AE damage sensitive features computed using the methods862

outlined in Section 3 to the wind turbine bearing experimental set-up, described in863

Section 2.864

Recall that damage detection is performed by fitting a Gaussian mixture model to865

the PCA projection of the damage-sensitive AE features. The results of interest are the866

quantification of detection performance of the identified GMM model on observations867

from bearings with increasing levels of damage. The damage levels are outlined in868

Table 2.1.869

All GMM models were trained using data from condition UD1, from the first un-870

damaged bearing, tested on the other half of the UD1 set and then validated on the data871

set from UD2. Each AE channel is being considered separately, therefore each will872

generate a different number of hits at different time indices. The envelope spectrum-873

based features also generate a much less dense quantity of features per trial. In order874

to keep a consistent indexing and to enable a quantification of false positives and neg-875

atives across the three different features and four different AE channels, the decision876

threshold was applied to the maximum novelty index of each 10 second recording. If877

this falls above the detection threshold, then the trial is classified as normal, otherwise878

it is classed as outlying. This makes it possible to quantify false positives and neg-879

atives, because the ground truth of the state of each trial is available. On the other880

hand, it would be impossible (at this stage) to establish the ground truth as to whether881
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an individual AE feature was generated by a damage or a benign mechanism, within882

the stream of hundreds of thousands of AE hits. Bearing this in mind, the random883

reshuffling to divide the UD1 data set into training and testing sets was carried out by884

reshuffling the trial indices, rather than individual feature indices. This ensures that the885

same training and testing data is used for all AE channels and features. The splitting886

of available undamaged condition data into training and testing helps to understand the887

generalisation performance of the GMM as a density estimator. However, validating888

the detection performance on a second undamaged bearing measures the robustness of889

the entire damage detector - including the choice of damage-sensitive features.890

Whilst the aim was to keep the environmental variations consistent across the dif-891

ferent bearing conditions in order to carry out a fair comparison, the reality was that892

the temperatures inevitably fluctuated slightly between the different conditions. Most893

critical is the oil temperature, as this relates directly to the viscosity and therefore the894

lubrication regime. All tests were carried out at a low and a high temperature regime,895

but the precise temperature of each regime varied slightly. In general, operating the896

gearbox at higher temperatures leads to increased levels of AE activity due to the higher897

level of asperity contact. Of the two data sets collected on undamaged bearings, UD1898

was collected at a slightly lower temperature than UD2. Training a novelty detector899

on the lower temperature data set and validating its predictions on a data set from a900

higher temperature provides a more robust validation than would be by testing against901

data from similar temperatures. For this reason, the data set from UD1 was used for902

training, and UD2 for validation. This presents a harder problem than would be by903

training on UD2 and validating on UD1.904

The temperature distributions for UD1 and UD2 are illustrated in Figure 11a, using905

a kernel density estimate (with a band-width of 4). This shows the density of trials at906

the different temperatures, split by training, testing and validation sets. Note that this907

shows the training and validation distributions after applying the random shuffling to908

select training and testing sets from UD1. Two things are clear. The first is that there909

are two clear regimes of temperature, shown by the two different modes of the density910

curves. The second is that, for the validation set, the temperature distribution is shifted911

towards higher temperatures. This means that UD1 contains a major regime around912
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the 25◦C range which is not completely captured in UD2. Conversely, UD2 contains a913

number of trials above 50◦C that are not present in either the training and testing sets914

of UD1. Figure 11b shows the temperature distributions of the damage condition data915

sets. Note that the data for the lower damage levels (D1, D2 and D3) were collected916

at slightly higher temperatures than the training and testing sets, but overall lower than917

the validation set. The modes of the D1 and D2 - the two subsurface damage sets lie918

at 50◦C, which is still within the reach of the density of the training set. The data for919

the highest level of damage (D5) was collected at relatively low temperatures, with the920

mode for the lower temperature regime having a significant level of density in the range921

between 20◦C and 25◦C.922

5.1. Damage sensitive features923

Three damage-sensitive features were computed from the raw AE data in order924

to carry out a comparison of damage detection performance, as described in Section 3.925

Two of these were based on individual AE hits: summary statistics and Auto Regressive926

(AR) model coefficients. One of the features was designed to capture the periodic927

nature of the amplitude modulation of the AE signals, so the frequency spectra of AE928

envelopes was used. The hit summary statistics have a relatively low dimensionality929

of d = 5. The model order for the AR coefficients was chosen to be 150, so in this930

case d = 150. The envelope spectra originally had a much higher dimensionality of931

d = 2500, although this was truncated to 150 as it was found that the higher dimensions932

(belonging to higher frequencies) only contributed in terms of added noise and did not933

add a significant amount of information.934

Recall that all features were computed from a discrete-wavelet-transformed domain935

not directly from the raw data. Only the high frequency component of the single level936

DWT is used, in order to leave out the low frequency bands where the AE sensors are937

not resonant. The features are, therefore, only representative of the 250kHz-500kHz938

frequency band. These features are illustrated in Figure 12 (for the OC top sensor),939

which shows the median and inter-quantile ranges of the three features (along each col-940

umn), grouped by different levels of damage. The shaded area represents the percentile941

regions of ±25% around the median, while the dashed lines represent the extrema; the942
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Figure 11: Kernel density of temperature ranges for a) the training, testing and validation trials and b) the

damage condition trials.
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1% and 99% percentiles. The AE features observed in this gearbox are characterised943

by a large number “extreme” events, which completely mask non-robust measures of944

location and scatter (a regular mean and standard deviation). The visualisation in terms945

of inter-quantile ranges of Figure 12 allows a qualitative appreciation of the shape,946

scatter and extremes of these features. Note that the scale has been adjusted so that the947

upper 99th percentile of the undamaged feature vectors is visible on the plots. This948

makes it harder to examine the details of the features, but enables an appreciation for949

the large difference between the average process and the extreme AE events. The de-950

velopment from non-damaged to damaged is visually clear across all features in Figure951

12. A common factor between all three features is an increase in variance of the feature952

vector as damage progresses, and this is most evident towards state D5.953

These robust measures of location and spread of the features make it possible to954

visualise how in this case, damage does not manifest itself as a sharp change to the955

average feature vector. Instead, the baseline characteristic AE activity remains largely956

the same, with the addition of extra AE activity that is characteristic to the damage pro-957

cess. This is true for both hit-based features, but not so for the envelope spectra, which958

is capturing information across relatively large time-scales. It is evident from Figure959

12c that the envelope spectra completely shifts its median as damage is introduced and960

progresses, along with an increase in variability. While this may be a desirable property961

for this damage-sensitive feature, it should also be noted that its variability in the un-962

damaged condition is much larger, and this will result in greater variance in any density963

model fitted to it. This adversely affects detectability, especially at the lower damage964

levels. Of the three features compared in Figure 12, AE hit statistics, which have the965

lowest dimension (6), also have the lowest variability in the undamaged state.966

In order to reduce the dimensionality, PCA was applied to all three damage sen-967

sitive features, using only the training data (from the undamaged condition) to derive968

the PCA rotation matrix C (see Equation (2)). The dimension of the PCA scores was969

chosen to be m = 5 as this captures most of the variance contained in the original full-970

dimensional features. Figure 14 provides an illustration of the first 5 PCA scores for971

each damage-sensitive feature. Because of the large quantity of individual feature vec-972

tors, which greatly vary in scale, a visualisation of the PCA scores of individual feature973
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vectors is not effective. Instead, Figure 14 shows the standard deviation of each PCA974

score for individual trials (10-second recordings). In order to see how environmental975

and operational changes have an effect on the PCA scores, the bottom row of Figure 14976

shows the applied load to the bearing and casing temperature for each trial. Focusing977

on the two undamaged conditions, it is clear that temperature drives the variance of978

the first principal component on all three features. In particular, note that the higher979

temperature range of UD2 has the greatest variance of all UD1 and UD2 trials. The980

PCA scores of AE hit statistics and envelope spectra show a clear increase in overall981

variance as damage is introduced, which increases as damage progresses. This effect982

is marked by large increases in the first score (this represents the direction of greatest983

variance). The situation is different for the hit-based AR coefficients, where the effect984

of damage is more markedly seen from the second score onwards. The reason for this985

is that an AR model is insensitive to scale, so a simple change in the overall energy986

of the waveform will not yield a different coefficient set. A change in the shape of the987

waveform, on the other hand will lead to a change in the coefficient set. The fact that988

damage is more evident from the third score onwards indicates that the AE waveforms989

generated by a damage mechanism “look” largely the same in this case, but have subtle990

differences. This is consistent with the visualisation of the median and inter-quantile991

ranges of AR coefficient vectors provided in Figure 12b. Damage does not completely992

change the shape of the AR coefficient set, it subtly changes and generates more vari-993

ability in some of the dimensions.994

Another way to provide a qualitative view of how the damage process affects the995

three different damage sensitive features is to visualise how the probability density of996

these features changes with different classes of damage. Figure 13 provides a visu-997

alisation of a two-dimensional kernel density estimate evaluated on all three damage998

sensitive features for conditions UD1, D1,D2,D3,D4 and D51. The kernel density was999

evaluated on the first and second PCA components of each feature for the OC Top sen-1000

sor location. Note that this is helpful even for the lower-dimensional features such as1001

AE hit summary statistics, as it allows for visualisations of a decomposition of the data1002

1UD2 was omitted since it is visually similar to UD1
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in the two directions of greatest variance. The contours of Figure 13 indicate regions of1003

equal probability density, and only four contours have been drawn, so as to divide the1004

probability density into four quantile regions. Two major regimes are clear across all1005

three features for the undamaged state. These represent the high and low temperature1006

regimes. The first damage level is not strongly visually evident, but the progression of1007

damage is clear across all three features, albeit in different ways. As damage appears,1008

there is a clear change in the shape of the density. In D2, the second mode that was ev-1009

ident in UD1 is now masked by a much higher density closer to the core density. This1010

is the case for all three features. While this is indicative of a change, this will be harder1011

to detect given the relative closeness of the change to the majority of the data mass.1012

As surface damage appears, all three features develop regions with high density away1013

from the core of the data mass. Given this difference in the shape of the probability1014

density of the features as damage progresses, these observations are bound to generate1015

high negative log-likelihoods with respect to a model trained on UD1.1016

5.2. Cross validation analysis of GMM1017

In order to gain an insight into the output variance and generalisation performance1018

of the novelty detectors, cross validation was used as described in Section 4.2.2. Two1019

metrics were considered: the exceedance of the detection threshold as an error metric1020

and the Bayesian Information Criterion. It is important that this is carried out using1021

only the data available for training, as this is the scenario one is faced with when1022

performing a realistic monitoring task. A 10-fold cross validation procedure was used,1023

considering cluster sizes in the range of K = 1, ..., 15. Using any further than 10 folds1024

on this data set tends to result in ill-conditioned covariance matrices for some of the1025

GMM components. The 10-fold cross validation results using misclassification rate are1026

shown in Figure 15, for all three damage sensitive features. The curves in Figure 151027

show the median of the cross-validated output as a solid line, while the greyed-out area1028

encloses the regions between the 5th and 95th percentiles.1029

In general, the variance of the misclassification rate decreases as the number of1030

components of the GMM is increased. The AR model coefficients yield the best per-1031

formance in terms of variance. The envelope spectra yield the best performance in1032
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Feature Dimension Feature Dimension Feature Dimension

a) AE Hit Statistics b) AE Hit AR Coefficients c) AE Envelope Spectra

UD1

UD2

D1

D2

D3

D4

D5

Figure 12: Median and inter-quantile ranges of the three features: a) AE hit statistics, b) AE AR coefficients

and c) AE envelope spectra, grouped by different levels of damage. The shaded area represents the percentile

regions of ±25% around the median, while the dashed lines represent the extrema; the 1% and 99% per-

centiles. Note that the vertical axes are not labelled as they correspond to normalised features, but they show

the same scale for each feature type.
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UD1 D1 D2 D3 D4 D5

a)

b)

c)

Figure 13: Two-dimensional empirical density estimates of the first and second PCA scores for the three

damage sensitive features used:a) hit-based features, b) AR coefficients and c) envelope spectra. These are

shown for increasing levels of damage as outlined in Table 2.1
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Figure 14: Standard deviation of the first five PCA scores computed per 10-second test for all bearing

states. The three damage-sensitive features are shown: a) AE hit statistics, b) AE AR coefficients and c) AE

envelope spectra. d) shows the variation in load and temperature throughout these tests.
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terms of median misclassification rate, reaching 100% correct classification but with1033

very high variance due to a few stray folds.1034

Figure 16 shows the cross validation results, using the BIC as an error metric. Note1035

that in this figure, the vertical axes, representing the BIC are not shown as each sub-1036

figure has a different scale. However, it is the trend and the variance that are important.1037

In general, as the number of clusters increase, the BIC increases, indicating a better fit,1038

but so does the variance. A high BIC with high variance is indicative of model over-fit.1039

The selection of the appropriate model order has to balance high BIC scores, low BIC1040

variance as well as low misclassification rate and low variance around this.1041

Several observations can be made from examination of Figures 15 and 16. The1042

first is that while the average BIC increases with increasing cluster numbers (as would1043

be expected), the misclassification rate does not have such drastic improvements and1044

tends to converge quickly. The second observation is that all four AE sensor locations1045

behave in a similar fashion for each of the damage-sensitive features considered. This1046

is more evident in the misclassification rate. Furthermore, each of the three different1047

features has a markedly different optimal number of clusters. The misclassification1048

rate provides greater insight than the BIC on this point. For each feature and AE1049

sensor location, the model order for the GMM was selected as the first to generate1050

a misclassification where 95% of the folds (the upper bounds in Figure 15) have a1051

misclassification under 0.01%. These are marked with vertical lines in Figure 15. It1052

is interesting to note that the AE envelope spectra generate consistently low median1053

misclassification rates, but with high 95th percentiles. This behaviour is due to one or1054

two outlying observations, the source of which is likely to be contaminating ambient1055

noise, which sometimes overpowers the envelope spectrum if this is at much higher1056

amplitudes than regular AE activity. It is also worth considering that hit-based features1057

generate in the range of 500 to 1000 observations per trial. Hence outliers tend to1058

hide well above the 95th percentile. On the other hand, the envelope spectra generate1059

only 8 observations per 10-second trial, which means that a small number of outlying1060

observations make is seem like the spread of this error metric is large. Furthermore,1061

this also means that there is less resolution on the misclassification rate. Considering1062

this, the criteria for setting the GMM model order on AE envelope spectra features was1063
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that the median reached a 0% misclassification rate.1064

5.3. Damage detection results1065

This section presents the results of the damage detection process. The objective is1066

to quantify the performance of each detector. A detector, in this context is a GMM1067

of a damage-sensitive feature at a sensor node. Each detector has a different model1068

order, established during the cross-validation procedure described above, and has its1069

own threshold, established using the GEV procedure of algorithm 1.1070

After making a decision on the GMM model orders for each sensor location and1071

damage-sensitive feature, a GMM was trained using the entire training data-set. The1072

novelty of subsequent observations is assessed by evaluating the Negative Log-Likelihood1073

(NLL) of each feature vector against the reference GMM. This is described by Equa-1074

tion (4). Even though the NLL already represents a logarithmic scale of the original1075

Euclidean distance between the GMM centres relative to their variance, the resulting1076

NLLs evaluated over the entire range of bearing conditions still results in orders-of-1077

magnitude difference in scale. For the purposes of visualisation, logNLL is used here,1078

noting that this is just a practical transformation for visualising results. Figure 17 shows1079

a kernel density of the logNLL, for all four sensor nodes and three damage-sensitive1080

features. Each sub-plot in Figure 17 represents a sensor-feature combination, and den-1081

sities are shown for each bearing condition. Note that all sub-figures in Figure 17 have1082

been zoomed-in on the vertical axes, to focus on the low-density regions, where dam-1083

age is most evident. The thresholds identified using the GEV approach are shown as1084

vertical dashed lines (note the same log-transformation has been applied to the thresh-1085

old). In this setting, changes to the baseline AE sound-scape should be evident as1086

regions of higher density of the (log) NLL above the threshold.1087

As it has already been illustrated in the previous sections, the effect of damage1088

is different across all three damage-sensitive features being considered. In the case1089

of hit-based features, when damage is present, the original density of the features is1090

preserved and additional bursts of energy related to the damage process are generated.1091

This is evident from Figure 17. In the case of the envelope spectra-based features,1092

there is a marked shift in overall mass of the density of the NLL toward the right. The1093
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Figure 15: 10-fold cross-validated output of GMM misclassification rate with increasing number of clusters,

showing results for the three damage sensitive features at the four sensor locations.
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Figure 16: 10-fold cross-validated output of GMM Bayesian Information Criterion (BIC) with increasing

number of clusters, showing results for the three damage sensitive features at the four sensor locations.
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importance of an appropriate threshold is highlighted in here. Note that there clearly an1094

appreciable shift in probability mass early on in the development of damage. However,1095

the detection threshold represents denotes the point beyond which probability mass1096

of the training features will be negligibly small. If the training features have high1097

variance, this will lead to larger threshold, hence lower detectability, even when this1098

may be visible by a visual comparison of the densities of the novelty indices. This is1099

the case for the AE envelope spectra, where even though there is a considerable shift1100

in probability mass of the NLL, the original high variance of the features places the1101

threshold at a relatively high position. This highlights the difference and difficulty of1102

detecting damage using no prior information of the damage process, as opposed to a1103

retrospective analysis with knowledge of damaged states.1104

It is impossible to accurately quantify the detection performance based on individ-1105

ual hit results, simply because one does not have access to the ground truth of whether1106

a specific AE burst of energy was generated due to damage or due to a “benign” process1107

within the gearbox. In this case, the available ground truth is the bearing condition of1108

each 10-second trial. For this reason, summarising features of the NLL of each individ-1109

ual trial are used to quantify false positive and negative rates. Two such summarising1110

features are presented here. Noting that it is the extremes of the NLL that flag novelty,1111

Figure 18 shows the maxima of the (log) NLL for the OC top sensor location, for each1112

individual trial and for the three features. The vertical divisions in Figure 18 mark the1113

different bearing conditions, while the horizontal dashed lines indicate the detection1114

threshold. As before, the bottom row shows the average applied compressive load and1115

casing temperature.1116

For the three features considered, the maxima (log) NLL clearly capture the be-1117

haviour of the undamaged process, as the majority of the trials of UD1 and UD21118

fall under the detection threshold. This is a robust validation of the overall detec-1119

tion methodology, given there are minimal false positives in the validation set (UD2).1120

In this case, the only false positives come from the AR coefficient features, and at the1121

highest temperature observed in UD2. All three detectors fail to identify the presence1122

of the lowest level of subsurface damage (D1). The second level of subsurface dam-1123

age, D2, is detectable by the three features, albeit only at high loads. It is reasonable1124
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to conclude that it is the applied load that drives the detection, since tests with high1125

temperature but low load have low detection rates. Moving upwards in the damage1126

scale, all three surface damage conditions, D3,D4 and D5 are detectable with the three1127

features. However, note that they all have different degrees of success at this. In gen-1128

eral, AE hit statistics and envelope spectra do not detect well under low loads. The AR1129

coefficients on the other hand begin to detect the damage at the lower loads, although1130

only for the most severe of the surface damage conditions.1131

Considering only the maxima (log) NLL of each trial is still prone to an increased1132

rate of false positives seeing it is likely that even in an undamaged state, rare AE events1133

will be generated that will drive one of the feature vectors to have a high novelty in-1134

dex. This has the potential to judge an entire observation set based on one erratic event1135

while ignoring the information contained in the thousands of other feature vectors con-1136

tained in that time window. A more robust way of quantifying detection performance1137

would be through the exceedance rate of feature vectors above the detection threshold.1138

This, in effect, quantifies the probability mass of the NLL that falls above the detection1139

threshold, as was illustrated using Figure 17. A positive trial is defined as one where the1140

exceedance rate above the detection threshold falls above the exceedance rate observed1141

on the training set. Using this definition, the detection rate for all sensor locations and1142

feature vectors is given in Figure 19. A positive detection rate on UD1 and UD2 im-1143

plies a false positive, while the same implies a true positive on the damaged conditions.1144

Overall, it is possible to conclude that all three feature vectors are capable of detect-1145

ing from the second level of subsurface damage (D2) onwards, with varying degrees1146

of success depending on the sensor location. The AE envelope spectra is overall the1147

worst performing, missing D2 altogether on the OC right location, and with overall low1148

true positive rates. This is attributed to the high variability of the feature vectors, as1149

seen in Figure 12. The AR coefficients, while having overall the highest true positive1150

rate across all locations, also have the highest false positive rate on the validation set1151

(condition UD2), which is undesirable.1152
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Figure 17: Kernel density of log negative-log-likelihood of GMM model, evaluated on the three different

AE features and on the four sensor nodes, for different damage states. The scales have been normalised and

adjusted to highlight the tail of the distributions. The vertical dashed lines represent the detection threshold.
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6. Conclusions1153

This paper has investigated the problem of detection of sub-surface damage in Wind1154

Turbine bearings, applying probabilistic modelling to features extracted from Acoustic1155

Emission measurements. Detecting sub-surface damage on an operational bearing is1156

not a trivial problem. It is however, an important problem to tackle. Currently, the1157

majority of gearbox failures can be attributed to bearing failures and this, in turn, ac-1158

counts for most of the down-time of WTs globally. Damage in bearings starts under the1159

surface, as a result of Hertzian contact mechanics. While a lot of effort has been placed1160

in investigating and developing monitoring strategies for surface damage, sub-surface1161

damage is harder to detect and has received much less attention. This paper focused1162

on this problem. An emphasis has been placed in using measurements that can be used1163

in practice, so AE measurements have been taken from practical sensing locations, at1164

the outer casing of a bearing. An experimental rig was devised in order to replicate the1165

operational environment of a planetary bearing inside an epicyclic gearbox, as these1166

suffer the most from early failure before the end of their prescribed fatigue life.1167

Even though it is sub-surface damage that was of primary interest in this study,1168

early-stage surface defects were also investigated. A total of five levels of damage were1169

used, two sub-surface and three early-stage surface defects. This allows to investigate1170

the detectability of damage throughout its progression. It also helps to build confidence1171

in the detection scheme by observing that detection rates are higher for larger or more1172

severe defects.1173

Measurements were taken at four different locations; one sensing location at the1174

inner raceway bearing, close to the location of seeded faults and three around the cir-1175

cumference of the outer casing of the bearing rig. AE data were collected from each1176

sensor and processed separately in order to evaluate the detectability of the different1177

levels of defects at each location. Detection of damage was carried out by first extract-1178

ing three different damage-sensitive features from the raw AE data, and then fitting a1179

probabilistic model to perform novelty detection. The features chosen in this investi-1180

gation were hit summary statistics, Auto Regressive (AR) coefficients of the individual1181

AE hit time histories, and the envelope spectra of the raw AE signals. These features1182
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all capture a different type of information contained in the AE data. The hit-based1183

summary statistics contain information about the average energy, duration and the dis-1184

tance each individual stress wave has travelled. The hit AR coefficients on the other1185

hand provide a greater level of detail as to the spectral characteristics of the waveforms.1186

Finally, the envelope spectra capture the amplitude modulation of the signal, so any pe-1187

riodic bursts of energy, which is a characteristic manifestation of damage in dynamic1188

response data, should be evident in this feature.1189

The progression of early bearing failure has been illustrated qualitatively, using a1190

Principal Component Analysis (PCA) projection of the three damage sensitive features1191

used here. This is shown in Figure 13. In the case of the three different damage-1192

sensitive features investigated, it is clear that the larger surface-level defects are evi-1193

dent through a clear change in the probability distribution of the features. This is easy1194

to spot qualitatively. On the other hand, the change in all damage-sensitive features1195

arising from sub-surface damage is not necessarily clear from visual examination. Fur-1196

thermore, in the presence of high levels of noise common in rotating machinery, it1197

is difficult to establish whether a specific burst of AE energy has been generated by a1198

damage process or belongs to the background noise. This motivates the need for a prin-1199

cipled statistical approach to the detection problem. The problem is therefore treated1200

as one of inference under a probabilistic model. In this particular case, because the1201

data were gathered under a range of operational conditions, a Gaussian Mixture Model1202

was used for this task. A GMM was fitted to the damage-sensitive features from an1203

undamaged bearing and the Negative Log Likelihood (NLL) of the model was used as1204

a novelty index.1205

They key result of this investigation is that it is clearly possible to identify sub-1206

surface damage from a practical measurement location, at the casing of a planetary1207

gearbox bearing. Using the probabilistic framework presented in this paper, it is pos-1208

sible to perform such detection under changing environmental and operational condi-1209

tions. One of the key aspects of AE activity within a bearing environment is that it is1210

highly dependent on applied load and temperature, as this affects the lubrication prop-1211

erties. The methods developed here have proved to be robust against these challenges.1212

This paper validates the approach under an experimental rig where the environment can1213
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be carefully controlled; This is important as temperature, load and lubrication affect the1214

background AE response and hence the detectability of defects. A clear next step in1215

this research would be to validate the detectability and the probabilistic approach on1216

an operational wind turbine, where although there may be less control over the opera-1217

tional parameters, background noise from gearboxes and other source would be more1218

realistic.1219
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