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The presence of volcanism is often anecdotally used to define a “living planet”. Since dome-building volcanism on
Earth occurs primarily at plate boundaries, the identification of such domes could inform on exoplanetary
development. Lava domes form when extruded magma is too viscous to flow from a vent, and their morphology
on Earth varies from flat, pancake lobes to steep, blocky domes. Identification of lava domes on other terrestrial
planets in our Solar System indicates that they likely also exist on rocky exoplanets. Here we show, using particle-
based modelling, that the diversity of lava dome morphology in our Solar System is dwarfed by the diversity
expected for exoplanets. Specifically, the height-to-diameter ratio of a dome decreases as a function of increasing
gravity (i.e., planetary mass and radius). For example, lava domes on high-gravity super-Earths will be extremely
wide and flat and a volcanic origin may not be immediately apparent. Creating a toolbox to help identify exo-
planetary volcanism will allow us to make initial estimations as to the development and habitability of these alien
worlds as images become available.
1. Introduction

The formation of lava domes on Earth requires viscous magma and, as
a result, dome-building volcanoes are primarily found at plate bound-
aries (Cottrell, 2015) where high-silica, high-viscosity magmas form. The
morphology of these domes varies depending on factors such as material
properties (e.g., viscosity, primarily affected by composition and tem-
perature) and eruptive conditions (e.g., ascent velocity) (Blake, 1990;
Fink and Griffiths, 1998; Watts et al., 2002). Although the formative
processes (including the existence of plate tectonics) are sometimes un-
clear, volcanic domes are considered to exist on other planetary bodies in
our Solar System (Platz et al., 2014), such as Venus (Aubele and Slyuta,
1990; Bulmer and Guest, 2008; Pavri et al., 1992), Mars (Rampey et al.,
2007; Bro�z et al., 2015), and the Moon (Chevrel et al., 1999; Glotch et al.,
2011; Guest and Murray, 2007). The identification of dome-forming
volcanism on rocky planets and moons in our Solar System suggests
that we should also expect similar volcanic processes on rocky exopla-
nets. Although the focus of this contribution is rocky exoplanets, we also
highlight that dome-like features may also form as a result of cry-
ovolcanism on icy planets and moons (e.g., Ruesch et al., 2016).
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At the time of writing, the NASA Exoplanet Archive currently lists
over 4000 confirmed planets outside our Solar System. The ongoing hunt
for other habitable planets means that the planetary evolution (e.g.,
geological formation and atmospheric development) of exoplanets is of
great scientific interest. Of the planets in the NASA Exoplanet Archive,
direct imagery has only been obtained for a handful of exoplanets.
Presently, the direct imaging of exoplanets typically involves imaging
star systems and measuring the separation, in arcsec or astronomical
units (AU), between the planets and their central star (e.g., Traub and
Oppenheimer, 2010; Pepe et al., 2014). Although unavailable at present,
technological advances and potential future space-based direct imaging
missions, such as the Habitable Exoplanet Observatory (HabEx), could
provide high-resolution images of exoplanets in the future.

The intriguing question therefore is whether we can interpret future
high-resolution images to confidently identify volcanic processes on
exoplanets. Since lava domes on Earth are associated with plate tectonics,
their identification could inform on the developmental stage (e.g., the
presence of plate tectonics; Bercovici and Ricard, 2014) and potential
habitability (e.g., subduction-related volcanism has been linked to at-
mospheric development; Mikhail and Sverjensky, 2014) of an exoplanet.
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However, lava dome morphology is unknown for exoplanets. To better
inform those tasked with interpreting geological processes from exopla-
net imagery, we present here a toolbox that provides the likely expression
of dome-building volcanism on variably sized rocky exoplanets, from
dwarf planets to super-Earths. Our toolbox shows how exoplanetary lava
domes can differ in morphology to their equivalent Terran counterparts,
but indicate processes as we understand them on Earth.
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2. Methods

We constructed our toolbox using a discrete element method model,
which has been shown to successfully simulate lava dome emplacement
(Husain et al., 2014, 2018; 2019; Walter et al., 2019) and subsequent
gravitational settlement (Harnett et al., 2018) on Earth. We use Particle
Flow Code 5.0 from the Itasca Consulting Group Inc., which employs the
discrete element method (Cundall and Strack, 1979). The particle model
Fig. 1. Exoplanet volcano toolbox. Modelled
domes (cross sections) after emplacement and
settlement, shown for gravity of 1, 5, 10, 15, and
20m/s2 (the vertical scale is the same as the
horizontal scale). Red particles within the dome
show material behaving as a fluid, and grey par-
ticles show material behaving as a solid (see
Harnett et al., 2018 for more details). Also shown
are illustrative diagrams for the plan view of each
dome. Exemplar planets are shown on the left for
different gravity values in the range 1–20m/s2.
Images of TRAPPIST-1d, Kepler 62f, Kapteyn B
are based on artist’s impressions from the NASA
Exoplanet Archive. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the Web version of this
article.)
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is initialised with a magma-filled conduit, and all particles are given an
upwards velocity. We used the same timestep, velocity, and number of
cycles as in Harnett et al. (2018), who successfully modelled realistic lava
dome morphologies as seen on Earth (which we consider, in the absence
of data for exoplanets, as the most appropriate values for our modelling).
We note that the model produces domes of equivalent volume. Following
the method outlined by Harnett et al. (2018), the modelled material
behaves as a viscous magma within the core of the dome and as a solid
within the outer shell of the dome. This is to model dome growth as
observed on Earth, where a dome is comprised of a fluid magma core that
solidifies as its exterior to form a brittle shell (e.g., Iverson, 1990). This
transition is controlled by a solidus pressure of 0.4MPa, as experimen-
tally determined by Couch et al. (2003) for the initial composition at
Soufri�ere Hills volcano (Montserrat), and used in lava domemodelling by
previous authors (Hale et al., 2009a, 2009b; Harnett et al., 2018; Husain
et al., 2014). The effective model viscosity was taken as 105 Pa s, a vis-
cosity shown to reproduce realistic lava dome morphologies as seen on
Earth (see Harnett et al., 2018).

All parameters in the model are kept constant as on Earth and we
isolate only the effect of acceleration due to gravity (hereafter referred to
as gravity) on volcanic dome morphology. Although parameters such as
magma viscosity likely differ from exoplanet to exoplanet, our toolbox
can be used to give a first order indication of the expression, and there-
fore presence, of dome-forming volcanism on other worlds. Importantly,
the gravity of an exoplanet can be determined for any planet for which
the mass and radius are known, both of which are measurable metrics for
exoplanets. Our toolbox contains height-to-diameter ratios and images
(cross section and plan view) of modelled domes following emplacement,
and also following a period of gravitational settlement, to suggest how
domes can be recognised long after activity has ceased at a particular
volcano. Since there are no planes or zones of weakness in our modelled
domes, the gravitational settling process is homogeneous.

3. Results

Our modelling shows that the height-to-diameter ratio of the volcanic
Fig. 2. Height/diameter ratio of a lava dome as a function of acceleration due to
gravity for domes post-emplacement (triangles) and post-settlement (squares).
Each symbol represents a unique model run. We note that macroscopic dome
morphologies of model runs with the same input parameters are essentially
identical and that any variability is captured by the symbol size. Height/diam-
eter ratios for Earth and Venus are taken from Fink et al. (1993). Data for Earth
is for Mt. St. Helens (USA) and Soufri�ere Hills volcano (Montserrat). Data for
Venus includes “Class 1” and “Class 2” domes. We note that the height/diameter
ratio ranges provided for Earth and Venus likely underestimate the true range.
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domes decreases with increasing gravity (Figs. 1 and 2). Domes emplaced
on dwarf planets (very low gravity) will be very narrow with steep sides
and domes emplaced on super-Earths (very high gravity) will be very
wide and flat (Figs. 1 and 2). This is due to the greater proportion of fluid
core material that is maintained in the dome as gravity is increased,
which results in dome growth governed by lateral spreading rather than
by vertical extension (e.g., Walter et al., 2019). The height-to-diameter
ratio decreases following gravitational settling (Figs. 1 and 2).
Although the height-to-diameter ratio is greatly decreased following
settling for the dome emplaced under g¼ 1m/s2, because steep and
brittle structures are inherently unstable, we highlight that there is still a
large difference between the morphology of settled domes as a function
of increasing gravity (Figs. 1 and 2).

4. Discussion

These results form the first astrophysical toolbox for understanding
what volcanic domes could look like on variably sized exoplanets, and
therefore show how volcanism could be recognised from first-glimpse
images of the surface of exoplanets. Our toolbox will allow astrophysi-
cists to have an idea of the morphology of a dome on any exoplanet for
which mass and radius are known, and therefore understand whether the
planet is currently, or was, volcanically active. Alternatively, our toolbox
could be used to provide supporting evidence in scenarios for which
volcanism on a particular exoplanet is hypothesised using other data.
Because the persistence of a lava dome (i.e., before it is destroyed or
completely eroded) is likely much longer than its emplacement period,
we suggest that post-settlement morphology should be considered ahead
of the post-emplacement morphology. Indeed, the majority of the dome
height/diameter ratio range for Earth (data from Fink et al., 1993) is
between the modelled post-emplacement and post-settlement values
(Fig. 2). We additionally highlight that, although erosion rates on exo-
planets will likely be unknown, flat domes on large exoplanets will likely
be less eroded than tall domes on small exoplanets (because tall struc-
tures are more susceptible to weathering). To provide an end-member
example, we ran an additional simulation to assess the morphology of
a lava dome on a high-mass super-Earth with a gravity of 65m/s2. The
settled dome when g¼ 65m/s2 has a very low height/diameter ratio of
0.03 (Fig. 3). The large difference in dome morphology between
Earth-like and super-Earth planets, illustrated in Fig. 3, highlights the
ease at which such landforms on planets with a different gravity to that
on Earth could be misidentified.

Although in this study we isolate the effect of gravity, other factors,
such as magma viscosity (determined by composition, temperature, at-
mospheric pressure, and surface temperature) are likely to play a role in
determining exoplanetary dome morphology (Fink and Griffiths, 1998;
Watts et al., 2002). Magma viscosity on Earth has been found to vary up
to eight orders of magnitude at one volcano (Melnik and Sparks, 2002).
The extent to which viscosity could vary on exoplanets is currently un-
constrained, but we expect that, like on Earth, a higher viscosity would
create a dome that is narrower and taller, effectively pushing the
height-to-diameter ratio towards those observed at lower gravities.
Indeed, the dome height/diameter ratio range for Earth (data from Fink
et al., 1993) exceeds the height/diameter ratio predicted for a planet
with an Earth-like gravity (Fig. 2). If magma viscosity is very low, the
extrusion of lava is more likely to result in the formation of flows rather
than domes. Previous studies also suggest that, in addition to the internal
yield strength of the magma, the solidification of the outer layer also
increases the effective viscosity of the dome (Fink and Griffiths, 1998;
Griffiths and Fink, 1997). The solidification process is therefore crucial to
dome morphology. In the model used here this relates to the solidus
pressure that controls the transition between fluid and solid, where
higher solidus pressures have been shown to increase the rock/fluid
fraction (Harnett et al., 2018). Solidification depends primarily on
composition (Couch et al., 2003; Melnik and Sparks, 2005), and will also
be influenced by surface temperature. Solidification is therefore



Fig. 3. Cross-sections of modelled domes (post-emplacement and post-settlement) for an Earth-like planet with g¼ 10m/s2, and a Super-Earth-like planet with
g¼ 65m/s2.
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currently unconstrained for exoplanets, but could be incorporated into
future models to indicate detailed morphology on specific exoplanets.
The associated rock strength of the solid outer shell of the dome or talus,
maintained constant in the simulations presented here, will also influ-
ence dome morphology, particularly during settlement. This is because a
dome constructed using weaker, perhaps hydrothermally altered (e.g.,
L�opez and Williams, 1993; Finn et al., 2001), rock is more likely to
experience mass wasting.

Surface temperature and atmospheric pressure will also affect the
expression of volcanic landforms on exoplanets. The high surface tem-
perature of Venus (467 �C), for example, will contribute to maintaining
more of the volcanic material in its fluid state (i.e., preventing solidifi-
cation). Maintaining more material in its fluid state will have a similar
effect to increasing gravity (creating wider and flatter domes), and could
explain, amongst other factors, why the domes on Venus have very low
height-to-diameter ratios (<0.05; Aubele and Slyuta, 1990). Indeed, we
note that the majority of the height/diameter ratio range for Venus (data
from Fink et al., 1993) plots below that predicted for a planet with a
Venus-like gravity (Fig. 2). Differences in atmospheric pressure will, for
example, influence the efficiency of volatile exsolution that, in turn, will
impact factors such as magma viscosity (e.g., Wilson and Head, 1983;
Head and Wilson, 1986). Although future models that incorporate vari-
ations in, for example, magma viscosity, rock strength, and atmospheric
pressure and temperature can be performed as and when data are
available, our toolbox provides an important first look as to the
morphology of lava domes on other worlds using presently constrained
parameters (planetary mass and radius).

Although the scientific advances required for the acquisition of high-
resolution exoplanet imagery are still to be achieved, it is crucial that we
equip ourselves with the tools to interpret the appearance of exoplanets
when imagery becomes available. The importance of identifying volcanic
landforms on exoplanets therefore cannot be understated. Geoscientists
often anecdotally define a “living planet” as one with active volcanism.
Since dome-forming volcanoes on Earth are primarily found at plate
boundaries, an abundance of lava domes on a given exoplanet, or a
curvilinear band of lava domes, could provide evidence for the existence
of plate tectonics, informing on the stage of development of a particular
exoplanet (Bercovici and Ricard, 2014). Since lava domes are also
observed on the surface of Venus, a planet without global-scale plate
boundaries, we consider the observation of curvilinear bands of lava
domes (as seen on Earth; e.g., Cottrell, 2015) will emerge as the key
indicator of plate tectonics on exoplanets using the approach described
herein. Volcanism also speaks to the process of volatile degassing and
mature atmosphere evolution, and subduction-related volcanism has
been linked to the development of the nitrogen-enriched atmosphere
required to create a habitable planet (Mikhail and Sverjensky, 2014). The
search for habitable planets beyond our Solar System may therefore rest
on understanding the expression of volcanism on these alien worlds.
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