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ABSTRACT This paper addresses the problem of recognition of dynamic shapes by representing the

structure in a shape as a graph and learning the graph spectral domain features. Our proposedmethod includes

pre-processing for converting the dynamic shapes into a fully connected graph, followed by analysis of the

eigenvectors of the normalized Laplacian of the graph adjacency matrix for forming the feature vectors. The

method proposes to use the eigenvector corresponding to the lowest eigenvalue for formulating the feature

vectors as it captures the details of the structure of the graph. The use of the proposed graph spectral domain

representation has been demonstrated in an in-air hand-drawn number and symbol recognition applications.

It has achieved average accuracy rates of 99.56% and 99.44%, for numbers and symbols, respectively,

outperforming the existing methods for all datasets used. It also has the added benefits of fast real-time

operation and invariance to rotation and flipping, making the recognition system robust to different writing

and drawing variations.

INDEX TERMS Graph signal processing, graph spectral theory, fully connected graphs, dynamic shape

recognition, shape representation, graph spectral feature learning.

I. INTRODUCTION

Graph Signal Processing (GSP) [1]–[3] has attracted great

attention in processing, analysis, coding and understanding

of data sampled on a non-uniform grid, often referred to

as irregular data or graph data. The classical discrete sig-

nal processing is not directly applicable on such irregularly

sampled data. GSP provides a robust mechanism to represent

irregular data in terms of their connectivity to each other

when represented as a graph, G = {V, E}, where V is the

set of N vertices and data d : V → R, is associated to the

vertices of the graph. The connectivity among these vertices

characterizes the global structure of the graph and it does

not change after rotation, flipping or mirroring of the graph

structure. Therefore this paper aims to explore modelling the

connectivity of nodes in a graph structure to learn the dynamic

shapes formed by the underlying graph.

Many modern computer vision applications utilise direct

observation and analysis of dynamic shapes formed by

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren .

movement of human hands or the body. The smooth flow

and flexibility of the human hand configuration allows

generation of very complex and arbitrary shapes drawn

in the air. Automated analysis and understanding of these

complex shapes benefit real-world applications like video

games, human activity recognition, robotics, sign language

recognition, and gesture-based human-computer interaction.

Recently, in-air hand-drawn number recognition has gained

strong interest [4]–[20] due to applications-related impor-

tance and the interesting challenges in the problem. These

methods are either based on image representation of num-

bers and shapes [4]–[13] followed by shape matching or the

path representation of hand movement [14]–[20] followed by

shape matching. Some methods are based on deep learning

for shape matching [9]–[13].

However, the current methods suffer from sensitivity to

changes in the angle of drawing leading to serious recogni-

tion errors of the in-air drawn numbers and symbols. Since

these methods use a pixel-based approach, the recognition

speeds are found to be too slow for real-time applications.

We are motivated by recent advances in psychophysical and
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FIGURE 1. Left–right flipped screen shots of in-air drawing of numbers.

neuro-physiological studies, which have proposed a hypothe-

sis for a structural representation of shapes in terms of object

structures, parts and their positional relationships [21]–[23].

Another study on human vision suggests that the visual cortex

perceives and understands shapes by representing the shape

boundary as a connected set of nodes [24]. These advances

coupled with emerging graph signal processing concepts has

led us to propose a novel graph spectral domain represen-

tation for shapes as a solution to overcome these issues in

dynamic shape recognition in this paper.

This paper proposes novel graph spectral domain fea-

tures for accurate and fast recognition of dynamic shapes.

Since graph spectral representation, as shown in Section III,

is driven by the connectivity, the learned features in the graph

spectral domain are rotation and scale invariant. Therefore,

the proposed method is not sensitive to angles of drawing

of the shape. In converting the hand movement paths of the

in-air drawn shapes into fully connected graphs, we aim to

minimise the number of nodes while keeping the properties

of the structure intact. This leads to lowering the complexity

without affecting the recognition accuracy rates. The use of

the graph matching on vertex domain has been explored for

shape matching purposes in the literature [25]–[27]. How-

ever, they are not robust to variations in angles of orientation

of the shapes and numbers. In our present work, we explore

representing the shapes and numbers in the graph spectral

domain as opposed to the node domain for feature extraction

for recognition. In our proposed work, different shapes are

represented based on the connectivity description through

the graph spectral domain. A fixed number of features is

extracted followed by machine learning for recognition of

shapes. The main contributions of the proposed work are:
• Proposal of a new set of graph spectral domain features

for dynamic shape recognition.

• Proposal of a new rotation and flip-invariant feature set

with real-time operation.

The proposed method is experimented using Kinect sensor

for data capturing and real time recognition (as in FIGURE 1

and FIGURE 2) as shown in Section IV.

The rest of the paper is organized as follows: Section II

explores the most related work in the field of in-air drawn

shape and hand gesture recognition. Section III presents

the proposed graph spectral feature learning method for

dynamic shape recognition. Section IV shows the results

FIGURE 2. Ten classes of in-air drawn other shapes (symbols) with their
graph construction.

and discussions in terms of the performance of the proposed

graph spectral features for an in-air hand drawn number and

other shape (symbol) recognition applications followed by

the concluding remarks in Section V.

II. RELATED WORK

The present paper proposes the graph spectral domain fea-

tures for recognition of shapes, such as, in-air drawn num-

bers and symbols. In general, shape representation work in

the literature can be categorized into five different groups:

deep-learning methods, model-based methods, view-based

methods, feature-based methods, and graph matching meth-

ods. In this section, we briefly present the recent work

related to graph-based matching, graph-based static hand

gesture recognition and related in-air handwritten number

recognition work.

A. GRAPH MATCHING

Previous methods on graph matching are primarily based on

either bipartite matching [26]–[28] or approximate match-

ing [29]–[36]. They explore either the vertex domain

properties or the properties of the graph adjacency matrix.

In bipartite graph matching, a set of edges are chosen in

such a way that no two edges share the same end point

vertex to maximize the matching ratio between two sets of

points without increasing the degree of the nodes. Differ-

ent matching conditions, such as, the shortest edge [26],

the convex path inside text images [27] and the largest eigen-

value [28] have been used in bipartite matching. In approxi-

mate matching, the maximum probability of correspondence

mapping between two patterns through the weight matrix is

explored based on various properties of the graph adjacency

matrix, such as, polynomial characterization [29], center

of clusters [30], eigenvalues [31], spectral relaxation [32],

higher order constraints [33] and Kronecker product [34].

Graph matching in terms of Principal Component Analy-

sis (PCA) has also been explored for shape matching [37].
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The main limitations of graph matching approaches are the

high computational complexity and restrictions on some

graph sizes [31], [35]. The former limitation makes them

unsuitable for real-time applications.

TheGSP offers new opportunities for processing, compres-

sion and analysis of spatially non-uniformly sampled data,

represented as a graph, by characterizing the global structure

on its eigenvalues and eigenvectors of the graph Laplacian

matrix [1]. The graph eigenvectors (e.g., basis vectors as in

a content adaptive transform) provide an efficient represen-

tation of the connectivity and the structure of the graph. The

most highlighted basis vector is the eigenvector correspond-

ing to the second smallest eigenvalue, which is known as

the Fiedler value [38] or the algebraic connectivity [39]. The

sign of Fiedler vector has been explored in analysis tasks,

such as, determining the stability of system [40], saliency

estimation [41] and image partitioning [42].

B. GRAPH-BASED STATIC HAND

GESTURE (POSE) RECOGNITION

Some of the previous work on graph-based hand gesture

recognition has been restricted to static hand pose recogni-

tion rather than dynamic hand movements [43]–[48]. They

are also mainly based on graph theory rather than spectral

domain features. A few of the methods include edge-based

hand features [43]–[46], tree-based representation [47] and

a combination of hand appearance and graph features and

graph eigenvalues [48].

C. IN-AIR HANDWRITTEN NUMBER RECOGNITION

Recent work on in-air handwritten number recognition

can be classified into two groups: image-based represen-

tation [4]–[13] and node-based representation [14]–[20].

In image-based representation, the numbers are saved as an

image with two types of pixels: number path pixels and

background pixels, as in static number recognition appli-

cations. Thus, a large amount of data is required to repre-

sent the numbers, which is identified as a limitation of this

approach. In one approach, number images are normalized

into a binary table where 1 and 0 referring to the hand writing

path and the background, respectively [6]. In order to elimi-

nate the effect of too many zeros in the table, order code with

shape code have been used [4]. Later, further improvements

have been achieved by normalizing the hand-path by picking

out a specific number of points [5]. Deep learning-based

techniques employ one dimensional convolutional neural net-

works to learn the features from image-based representa-

tions [9]–[13]. It must be also noted that some methods were

concerned with recognizing words written on a touch pad

using finger strokes [9]–[11], as opposed to in-air drawing

as in robotic applications.

In node representation, the path of the hand movement

is saved as a set of coordinates, which are captured by

different ways, such as, tracking the hand node in Kinect

skeleton representation [14]–[18], tracking the position and

the orientation of the user’s hand using a Wii remote [19]

and using supervised learning to detect hand path [20]. These

number recognition methodologies are sensitive to any slight

change in the angle of drawing and that causes a serious

mismatching of the samples. More recent works [17], [18]

in this category consist of high computational complexity

pre-processing steps and extracting a set of features based

on distance and angles followed by classification. They are

sensitive to rotational changes of the shapes and not suitable

for real time operation. In order to maintain the invariance to

rotation and scaling changes, Fourier descriptors have been

used for some shape representation [49], [50]. Also, these

low-level features are extracted from pixels, requiring a large

amount of data to achieve the optimal level of accuracy. This

has hindered their ability to operate in real-time.

In our present work, we propose novel graph spectral

domain feature extraction and learning for accurate and fast

shape recognition and demonstrate its use on in-air hand-

drawn number and other shape recognition that can be useful

for hand movements in human-machine (robotic) commu-

nication applications. GSP enables reducing the number of

nodes for processing while maintaining the specification of

the shape, as the features are extracted on spectral domain

as opposed to the vertex domain. This leads to real-time

operation of the recognition system. The Graph Laplacian

matrix, which forms the Graph Fourier Transform’s basis

vectors, can characterize the global structure of the shape

leading to high recognition accuracy rates. Our proposed

work is the first approach that explores graph spectral feature

learning for dynamic shape recognition and in-air hand path

movement recognition. Early results of our work were pre-

sented as conference publication in [51]. The current paper

extends this early work by proposing more efficient hand

crafted graph spectral features, reporting comprehensive eval-

uation of performance, extending the evaluation into arbitrary

shapes using commonly used datasets and a newly generated

dataset. It must be noted that the proposed methodology can

be applied on recognition of static numbers or image-based

representation by performing preprocessing to convert the

image-based representation into node (graph) based represen-

tation. As our primary motivation is to explore graph spectral

representation for shape recognition, we have used in-air

drawn numbers and symbols for evaluating the proposed

methodology in this paper

III. THE PROPOSED GRAPH SPECTRAL

DOMAIN SHAPE LEARNING

The proposed system (FIGURE 3) can be divided into three

steps: pre-processing; graph spectral feature extraction; and

classification. The main originality in the work presented in

this paper is in graph spectral feature extraction and clas-

sification steps. Details of pre-processing are included in

this section for completeness. However, it should be noted

that the graph spectral feature extraction and classification

methodology can be applied on any dynamic shape that can

be represented as a set of nodes or a movement path.

VOLUME 7, 2019 159663
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FIGURE 3. Flowchart of the proposed method.

FIGURE 4. Data pre-processing steps: (Left) data acquired from the
original hand path; (Middle) dense nodes removal; (Right) node
down-sampling.

A. PRE-PROCESSING

The input data, represented as a set of node samples, may

be densely sampled as can be seen in the left sub-figure in

FIGURE 4. For each point, the (x, y) coordinates on the

vertical plane and the depth z are recorded to form the 3D

measurement space in (x, y, z). In order to remove these

unwanted samples, starting from the first sample, for each

sample, all the samples captured within a distance less than

a chosen fixed threshold (τ ) are removed. This process elim-

inates the extra nodes that are created when the user stops

moving their hand at any point during drawing or at the

end of drawing. The resulting in-air drawn path, P, is a

smooth curve with T number of nodes as can be seen in the

middle sub figure of FIGURE 4. To reduce the complexity of

the subsequent graph spectral decompositions, we choose N

number of nodes, whereN < T , to form a new down-sampled

path, P̂, as follows (as in the right sub figure of FIGURE 4):

P̂(k) = P

({

Tk

N

})

, (1)

FIGURE 5. The hand moving path pre-processing stages: starts with the
acquired nodes (in yellow); down-sampled nodes fitted into the bounding
cuboid (in yellow and red); centered around (0,0,0) (in blue and green);
mapped to m × m on the x-y plane (in green).

where k = 0, 1, . . . ,N − 1 is the new node index and {}
is the rounding to the nearest integer. This is followed by

normalizing the down-sampled path. Normalizing is achieved

by considering the minimum and maximum bounds for x,y,z,

coordinates to create a bounding cuboid for the shape fol-

lowed by centering the shape around (0,0,0) by shifting all

coordinates by shifting coordinates accordingly as shown in

FIGURE 5. Then, x, and y coordinates are re-scaled to fit into

m × m bounding box on the x-y plane. Finally, the node k

represented with its coordinates (xk , yk , zk ).

B. PROPOSED GRAPH SPECTRAL FEATURES

We can now represent the nodes in the hand path, P̂, as an

undirected graph, G = {V, E,A}, where V is the set of N

vertices (defined by the nodes in P̂), E is the set of edges

and A is the adjacency matrix with edge weights. We con-

sider G as a fully connected graph, which means each vertex

has (N − 1) connected edges. We have found this type of

connectivity is suitable for representing shapes that have an

outline without much local variation along its outline. This is

the case for in-air drawn numbers and symbols. In our recent

work [52], [53], we have shown that for more complex shapes

with local variations along their outlines, graph connections

have to be adaptively formed by considering some criteria

leading to a complex pre-processing step. We define the

weight,Ai,j corresponding to an edge, ei,j connecting vertices

159664 VOLUME 7, 2019
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FIGURE 6. Graph construction above the hand path (red lines) with its
vertices (green points), fully connected node edges, E , (yellow lines) and
the node values (black lines), where (a): Top view of the graph,
(b): r values (Side view), (c): r values (45◦ view), (d): θ values (Side view),
(e): θ values (45◦ view).

i and j is as follows:

Ai,j = |ei,j|
1
N

∑N−1
i=0

∑N−1
j=0 |e(i,j)|

, (2)

which is the Euclidean distance e(i,j) between the vertices, i

and j, normalized with the average edge length for a node.

We define the signal r : V → R, where ith component

represents the Euclidean distance from the centre (0,0,0) to

the vertex i in V as follows:

ri =
√

x2i + y2i + z2i , (3)

An example of a G and its signal f is shown in FIGURE 6.

We also define the signal θ : V → R, where ith component

represents the angle of the vertex i in V with respect to the

centre (0,0,0) as follows:

θi = tan−1

( |yi|
|xi|

)

. (4)

The absolute value of xi and yi keeps the range of the angle

between (0◦ − 90◦). For example, the points (3,4), (-3,4),

(3,-4) and (-3,-4) have the same angle value, which is equal

to 53.13◦. An example of a G and its signal θ is shown in

FIGURE 6.

The combinatorial graph Laplacian matrix,L, is defined as

L = D − A, (5)

where D is the diagonal matrix of vertex degrees, whose

diagonal components are computed as follows:

D(i,i) =
N−1
∑

j=0

A(i,j), i = 0, 1, . . . ,N − 1. (6)

As the shapes form non-regular graphs, we consider the

symmetric normalized Laplacian matrix, (L), computed as

follows:

L = D− 1
2LD− 1

2 . (7)

Although, L has been widely used in image processing

related applications [2], [54], the symmetric normalized

Laplacian,L, is thought to be more appropriate for represent-

ing non-regular graphs in the literature [3], [41]. Therefore,

in this work our primary focus is on the symmetric normalized

Laplacian.

Since, the Laplacian matrices,L andL, are symmetric pos-

itive semidefinite matrices, from spectral projection theorem,

there exists a real unitary matrix, U, that digonalizes L, such

that UtLU = 3 = diag{λℓ} is a non-negative diagonal

matrix [3], leading to an eigenvalue decomposition of L

matrix as follows:

L = Ut3U =
N−1
∑

ℓ=0

λℓuℓu
t
ℓ, (8)

where uℓ, the column vectors ofU, are the set of orthonormal

eigenvectors of L with corresponding eigenvalues, 0 = λ0 <

λ1 ≤ λ2 . . . ≤ λN−1 = λmax [1]. These eigenvectors

provide the best set of basis functions by considering the

connectivity of vertices of the graph as opposed to the signal

values measured on graph nodes as generally used in PCA for

computing the best basis.

These eigenvectors have been used in analysing graph

spectra both algebraic and analytic wise [55], [56]. It has

been shown in [55], that given a graph with no isolated

vertices and Lu = λu, i.e., u is an eigenvector of L, then the

corresponding harmonic eigenvector, y, associated with the

eigenvalue λ is D− 1
2 u. Thus, given the harmonic eigenvector

for λ = 0 defined as 1√
N
1, where 1 is the constant 1 vector and

N is the number of nodes, the first eigenvector, u0, is defined

as

u0 = D
1
2

1√
N
1. (9)

The remaining eigenvectors are orthogonal to u0, since L is

symmetric. As can be seen fromEq. (6) and Eq. (9), the eigen-

vector u0 of L, corresponding to the lowest eigenvalue,

λ0 = 0 captures important details of the global structure of

the graph through the node degree. Because the graphs used

in this paper are fully connected, the node degree represents

the geometric location of the nodes in relation to the other

nodes by measuring how close or far to the rest of the nodes.

Therefore, in our proposed method, we explore the use of u0
as part of features for shape recognition.We propose a feature

vector comprising of the following 3 components :

1) The first part of the feature vector addresses translation

invariance of the shape analysis of u0 by computing

the second moment components about the mean as

follows:

F1 = M1.u0, (10)

VOLUME 7, 2019 159665
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wheremodulationmatrix,M1, is a diagonalmatrixwith

diagonal elements computed as follows:

M1(α,α)
= (α + 1 − (N + 1)/2)2 + 1, (11)

where α = 0, 1, . . . ,N − 1.

2) The second part of the feature vector modulates u0 with

the distance to each node with respect to the origin,

(0,0,0), as follows:

F2 = M2.u0, (12)

where the modulation matrix,M2, is a diagonal matrix

with diagonal elements formed by the magnitude sig-

nal, r, computed by Eq. (3).

3) The final part of the feature vector modulates u0 with

the angle to each node with respect to the origin as

follows:

F3 = M3.u0, (13)

where the modulation matrix,M3, is a diagonal matrix

with diagonal elements formed by the angle signal, θ ,

computed by Eq. (4).

Overall, the feature vector is formed by concatenating the

three vectors, F1, F2 and F3, resulting in a feature vector

with a total length of 3N . The components of the feature

vectors for numbers 0 to 9 are shown in FIGURE 7. Similarly,

FIGURE 8 shows the feature vector components for the sym-

bols included in our data set, which is shown in FIGURE 2.

C. CLASSIFICATION

For the multi-class classification problem and the length of

the feature vectors proposed, Discriminant Analysis classifier

is expected to work well. Several classifiers were tested as

detailed in Section IV-B. The Quadratic Discriminant Anal-

ysis (QDA) function, and the Linear Discriminant Analy-

sis (LDA) function are similar in terms of the function and

classification rules except the way covariance matrix is com-

puted separately for each class (i.e., varying, not identical).

As a result, QDA tends to fit the data better than LDA.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

graph spectral feature learning doe dynamic shape represen-

tation in the context of in-air hand-drawn number and other

shape recognition. The experimental set up includes creation

of a new dataset for both numbers and other shapes using

in-air hand drawing by several users captured by a Kinect

sensor as detailed in Section IV-A. The evaluation process

includes evaluating the effect of different classifiers for the

proposed features in order to find the optimal classifier,

the effect of number of nodes, N , for graph formulation,

the impact of the threshold value τ and the choice of eigen-

vectors (from both normalized and combinatorial Laplacian

matrices) for feature vector formation. The performances in

terms of average recognition rates, confusion matrices and

execution times are reported.

A. EXPERIMENTAL SET UP AND THE DATASETS

Currently available datasets mostly consist of numbers

recorded as images leading to image-based representation.

The challenge in such cases is to identify the hand movement

path, i.e., the dynamic features of the shape and its starting

and ending points. We evaluate the proposed system using

three different existing datasets, which provide a sequence

of the hand writing (i.e., hand path movement sequence is

provided as a vector): The dataset presented in [5] consists

of 1000 training samples and 2300 testing samples, while the

dataset presented in [20] consists of 100 samples per number

(0-9) captured using a PrimeSense 3D camera. The dataset

in [18] includes 100 samples per number (0-9) captured using

SoftKinetic DepthSense DS325.

In order to evaluate our proposed method using a larger

dataset, we have created a new in-air hand-drawn numbers

and symbols dataset, details of which can be found in [57].

In creating the dataset, we have also developed a system that

can acquire live hand path data streams of the in-air hand-

drawn dynamic shapes using the Kinect sensor v1.0 (640 ×
480 pixels). It acquires depth data based on skeleton tracking

(As shown in FIGURE 9). Users have to stand in front of

Kinect around 1 to 3 metres away [58]. The right hand is used

to draw the shapes in-air. Then, users can raise their left hand

higher than the shoulder to end the movement as shown in

FIGURE 1. By doing so, users will have unlimited time to

draw digits in-air. The depth values acquired using the Kinect

skeleton tracking is not accurate when the hand movement is

fast. Therefore, several methods have been proposed in the

literature to get more accurate depth information, such as,

3D analysis [59], combining of colour and depth informa-

tion [60] and considering the closest object to the camera in

the scene [61]. In creating this dataset, hand contour search-

ing is performed based on the assumption that the hand is

the closest object to the camera in the scene. The search takes

place in a block of 20×20 pixels. In this case, the block centre

represents the right hand position. The left hand tracking is

based on the Kinect skeleton tracking because this technique

is fast and no depth information is used for the left hand

operation.

The samples in our dataset provide the direct observa-

tion of sequence of hand movements (i.e., starting and end-

ing points coordinates). The data set can be divided into

two parts: numbers FIGURE 1 and symbols FIGURE 2.

The number sub-dataset includes 500 instances per each

number 0 to 9, resulting in a total of 5000 samples of

in-air hand-drawn numbers. Similarly, the symbol sub-dataset

also includes 500 samples per each of 10 different sym-

bols drawn in 3D space, resulting in a total of 5000 sam-

ples. Our numbers and symbols datasets provide X, Y,

Z coordinates of the users writing hand movement. The

dataset provides raw sampled hand path with original sam-

pling rates and without any normalizing nor smoothing,

resulting in various numbers of data points within a given

hand path. Our approach for pre-processing was outlined in

Section III-A.
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FIGURE 7. The proposed feature vectors for the numbers 0 to 9 (shown in each row): Column 1: Shows the eigenvector u0;
Column 2 - Column 4 show the frature vector parts F1, F2 and F3, respectively.
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FIGURE 8. The proposed feature vectors for the symbols (shown in each row): Column 1: Shows the eigenvector u0; Column 2 - Column
4 show the feature vector parts F1, F2 and F3, respectively.
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FIGURE 9. The data acquisition flow.

TABLE 1. Average recognition rates (%) for different classifiers.

B. EVALUATION OF DIFFERENT CLASSIFIERS

In order to test the entire dataset instead of random par-

titioning, a 5-fold cross-validation procedure is imple-

mented to find the optimal classifier. TABLE 1 shows the

mean accuracy for each classifier. Quadratic Support Vector

Machine (QSVM) records relatively lower degree of accuracy

than the other classifiers, whereas the Quadratic Discriminant

Analysis (QDA) shows the highest level of recognition rate

with more than 99%, while both classification tree (CT) with

30 learners using the bag-ensemble method, and Nearest

Neighbour (KNN) with K=1, provide nearly 99% level of

accuracy. Thus, QDA is used for the rest of the experiments.

C. EVALUATION OF DIFFERENT NUMBER OF GRAPH

NODES (N) AND THE THRESHOLD VALUES (τ )

In this experiment, the pre-processing steps were repeated for

various values of N . We start the test using N = 3, which is

the minimum number of nodes to form the graphs. As can be

seen in FIGURE 10, it is clear that too few number of nodes

(i.e.,N ≤ 10 nodes) is not suitable for accurately representing

the samples. The level of accuracy is then relatively stable

using 12 ≤ N ≤ 24 nodes. Note that 24 nodes is the

minimum length among all samples in our dataset.

Similarity, the pre-processing steps were also repeated for

various values of τ . As can be seen in FIGURE 11, it is

evident that the optimal range lies in 1 to 8 unit distance. Then

the accuracy falls dramatically using τ ≥ 12.

FIGURE 10. Recognition rates for different values of N at τ = 1 using our
dataset.

FIGURE 11. Recognition rates for different values of τ at N = 17.

D. EVALUATION OF DIFFERENT EIGENVECTOR OF L AND

L AS THE FEATURE VECTOR

In this experiment, we evaluate the individual eigenvec-

tors from L and L, as the feature vector and show the

average recognition rates in FIGURE 12. The eigenvector

indexes correspond to the order when they are arranged

according to the increasing eigenvalues. It can be seen

that the u0 of L provides the highest recognition rate of

99.56%, as it captures details of the structure of the graph.

The second best result is from the uN−1 of L, which

corresponds to the maximum eigenvalue (λmax). For most

eigenvectors, those from L appear to outperforming those

from L.
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FIGURE 12. Accuracy rate of individual eigenvectors normalized L and
combinatorial L graph Laplacian matrix.

FIGURE 13. Confusion matrix for individual numbers using our dataset
(overall average recognition rate is 99.56%).

E. PERFORMANCE OF THE PROPOSED METHOD

From the above experiments, we use (N = 20, m = 15,

τ = 2) for numbers and (N = 20, m = 15, τ = 3) for

symbols to construct the graph. This is followed by using u0
of L, for generating the feature vector components F1, F2

and F3 and the QDA classifier to evaluate the performance

of the proposed method using our dataset. The corresponding

confusion matrices for numbers and symbols are shown in

FIGURE 13 and FIGURE 14, respectively. The proposed

method has achieved average recognition rates of 99.56% and

99.44% for numbers and symbols, respectively.

In order to compare the proposed method with the state

of the art methods in the literature, we first evaluate our

method for the existing datasets in [5], [18] and [20]. For the

FIGURE 14. Confusion matrix for individual symbols shown in FIGURE 2
using our dataset (overall average recognition rate is 99.44%).

three datasets, the parameters, (N = 9, m = 35, τ = 3),

(N = 12, m = 1, τ = 0.03) and (N = 24, m = 10,

τ = 2) were used respectively for forming graphs. The

average recognition accuracy rates are shown in TABLE 2.

The proposed method has achieved average accuracy val-

ues of 97.39% 99.1% and 99.2% for datasets in [5], [18]

and [20], respectively. The proposed method has outper-

formed the corresponding existing methods reported in those

works [5], [18] and [20], which reported accuracy rates

of 96.82% 99% and 98.63%, respectively. The work in [18]

does not report accuracy rates for individual number recogni-

tion. Hence a comparison column is not shown in TABLE 2.

Only the overall average accuracy for the method [18] is

reported. Similarly, the proposed method has outperformed

all methods [4]–[6] reported for the dataset [5]. Overall,

the proposed method has achieved the best results compared

to the existing methods in TABLE 2.

All experiments were implemented using Matlab R2015b

on a PC with Intel processor, CPU@3.6GHz and RAM

16GB. The time requirement of operating number and sym-

bol recognition in a Kinect-based real-time system is about

4.127 ms per sample, which is suitable for a real-time in-

air hand-drawn number and symbol recognition system.1 The

breakdown of the average times for each step of the algo-

rithm is shown in TABLE 3. It also shows the computational

complexity for each step. The total computational complexity

is O(T 2 + 5N 2). Since T >> N , the total complexity can

be expressed as O(T 2). If the pre-processing step is ignored

and only the proposed graph spectral feature extraction is

considered the overall complexity becomes O(N 2).

Since the graph adjacency matrix was defined based on the

connectivity, it is insensitive to the rotation and flip changing.

1A recorded video of the real-time working recognition system available
at https://youtu.be/cjY7UKTI-i4
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TABLE 2. Average recognition accuracy rate (%) for sign numbers.

FIGURE 15. Hand drawing in different rotating angles (top row) with corresponding features (bottom row).

TABLE 3. Average time requirement to perform different steps in the
proposed system.

In other words, it does not matter what the angle or direction

of writing is as long as it follows the rules of starting and

ending point. For example, all the cases shown in FIGURE 15

are detected as number four. Due to this reason, our proposed

method is invariant to the rotation or flipping or orientation

angle variation of the in-air drawn samples.

V. CONCLUSION

In this paper, we have presented novel graph spectral fea-

tures for dynamic shape recognition and demonstrated its

use on an in-air hand-drawn number and symbol recognition

applications. The proposed method includes pre-processing

for converting the input data, such as, hand path movement,

into a fully connected graph followed by analysis of the

eigenvectors of the normalized Laplacian of the graph adja-

cency matrix for forming the representative features.We have
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utilised the eigenvector, u0, as it captures the details of the

structure of the graph as the main representative feature. The

proposed method has resulted in the highest performance

with accuracies of 99.56% and 99.44%, for numbers and

symbols, respectively, outperforming the existing methods

for three different datasets. The proposed method also has

added benefits of fast operation and invariance to rotation and

flipping.
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