
This is a repository copy of Patch Antenna Microcavities THz Quantum Cascade Lasers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/153845/

Version: Accepted Version

Proceedings Paper:
Pérez-Urquizo, J, Madéo, J, Todorov, Y et al. (5 more authors) (2019) Patch Antenna 
Microcavities THz Quantum Cascade Lasers. In: 2019 44th International Conference on 
Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 44th International Conference on
Infrared, Millimeter, and Terahertz Waves, 01-06 Sep 2019, Paris, France. IEEE . ISBN 
9781538682852 

https://doi.org/10.1109/IRMMW-THz.2019.8873823

© 2019, IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Abstract—We study the emission of THz quantum cascade 

lasers (QCLs) designed in arrays of Patch Antenna Microcavities 

(PAM). The array geometry is an effective strategy to control the 

losses and to achieve phase locking, allowing for beam shaping 

and high photon outcoupling efficiency. We demonstrate a 40-fold 

enhanced emission compared to standard ridge waveguides and a 

gaussian beam divergence as low as 2° x 2°.   

I. INTRODUCTION

N effective strategy for achieving highly efficient 

optoelectronic devices in the optical regime is by 

confining light into subwavelength volumes, for example 

in optical microcavities [1]. A promising approach for 

translating this concept to the THz regime is by using double 

metal (DM) microcavity structures. The high reflectivity of 

metals at these frequencies allow the confinement of light far 

beyond the diffraction limit, resulting in an enhanced 

light-matter interaction leading to a wide variety of advanced 

optoelectronics functionalities. For example, hybrid DM 

antenna- coupled microcavities have been proposed to achieve 

high performance Mid-IR and THz detectors [2,3], to 

demonstrate the ultra-strong light-matter coupling regime [4] 

and enhanced THz electroluminescence [5]. However, the use 

of DM microcavities for emitters has been challenging due to 

the low photon out-coupling efficiency and extreme divergence 

of the far-field radiation inherent to the strong confinement in 

the DM microcavity. Recently we have studied numerically the 

possibility to use arrays of patch antenna microcavities (PAMs) 

to overcome those limitations [6]. Here we present a study on 

the emission properties of arrays of PAMs based on quantum 

cascade (QC) active regions. We demonstrate enhanced 

emission compared to standard THz DM ridge waveguide 

QCLs owing to the engineered losses provided by the array 

geometry, and quasi collimation of the THz beam produced by 

far-field constructive interferences. 

II. RESULTS

We studied emission from arrays of DM PAMs containing 

GaAs/AlGaAs QC active regions based on a hybrid 

bound-to-continuum – LO phonon extraction design [7]. We 

compared the performance of these structures with a reference 

sample processed in a conventional DM ridge waveguide. 

Optical and electrical characterization of the fabricated devices 

(Fig. 1) demonstrate enhanced performance of the PAM array 

over the ridge waveguides, namely a 40-fold enhancement of 

the emission efficiency, lower lasing threshold current and 

improved slope efficiency. Also, quasi collimation of the THz 

beam was observed. A far-field pattern with gaussian profile 

and beam divergence as low as 2° x 2° was measured. The 

significant enhancement of the emission properties is attributed 

to an improved extraction efficiency from PAMs. The 

high-quality beam profile originates from constructive 

interferences authorized by the phase-locking, providing a 

powerful means to shape the beam, similar to what has been 

widely used in the case of RF antennas [8]. 

In conclusion, we report the use of arrays of PAMs as a 

powerful strategy to improve the emission of THz QCLs in DM 

configuration. Arrays of PAMs allow a precise tuning of the 

losses, leading to high extraction efficiencies and shaping of the 

beam. We believe that our design can become an important 

platform to exploit the benefits of microcavities to achieve 

efficient and compact THz sources as well as to study novel 

regimes such as THz optical nonlinearities and amplification, 

which would be beneficial for many imaging and spectroscopy 

applications.   

Fig. 1. L-I-V characteristics of a DM ridge waveguide compared with the PAM 

array. Inset: (Up) measured far-field pattern of the PAM array. A beam 

divergence with FWHM = 2° x 2° was measured. (Down) SEM picture 
showing a close-up view of a fabricated array device. 
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