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a b s t r a c t 

This paper considers a hub location problem where several carriers operate on a shared network to sat- 

isfy a given demand represented by a set of commodities. Possible cooperative strategies are studied 

where carriers can share resources or swap their respective commodities to produce tangible cost sav- 

ings while fully satisfying the existing demand. Three different collaborative policies are introduced and 

discussed, and mixed integer programming formulations are provided for each of them. Theoretical anal- 

yses are developed in order to assess the potential savings of each model with respect to traditional non- 

collaborative approaches. An empirical performance comparison on state-of-art sets of instances offers a 

complementary viewpoint. The influence of several diverse problem parameters on the performance is 

analyzed to identify those operational settings enabling the highest possible savings for the considered 

collaborative hub location models. The number of carriers and the number of open hubs have shown to 

play a key role; depending on the collaborative strategy, savings of up to 50% can be obtained as the 

number of carriers increases or the number of open hubs decreases. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Hub location models address joint location and routing de- 

cisions in network systems. Location decisions focus on the se- 

lection of nodes to place hubs whereas the routing is to find 

paths for serving the existing demand between pairs of nodes, 

via the selected hubs. One essential characteristic of these net- 

works is that direct connections between origin/destination pairs 

are substituted by fewer indirect, but privileged connections us- 

ing the hubs. Typical applications include parcel delivery, air trans- 

portation, and telecommunications. Hub location is nowadays one 

of the most studied areas within locational analysis, because of 

its wide range of practical applications, and due to the high 

economic impact of the decisions encompassed in these prob- 

lems. The seminal work ( Campbell, 1992; 1994; O’Kelly, 1986; 

1987a ) has led to a very rich research field. Topics of current 

interest include, among others, the use of more general cost 

structures ( Alibeyg, Contreras, & Fernández, 2016; 2018; Puerto, 

Ramos, Rodríguez-Chía, & Sánchez-Gil, 2016; Taherkhani & Alumur, 

2019 ), competitive settings ( Lüer-Villagra & Marianov, 2013; Sasaki, 

∗ Corresponding author. 

E-mail addresses: e.fernandez@upc.edu , elena.fernandez@uca.es (E. Fernández), 

a.sgalambro@sheffield.ac.uk (A. Sgalambro). 

Campbell, Ernst, & Krishnamoorthy, 2009 ), solution procedures 

( Contreras, Cordeau, & Laporte, 2011a; 2011b; Contreras, Díaz, & 

Fernández, 2011c; Martins de Sá, Contreras, & Cordeau, 2015 ), and 

the use of special topologies for the inter-hub network ( Contreras 

& Fernández, 2012; Contreras, Fernández, & Marín, 2010; Contreras, 

Tanash, & Vidyarthi, 2017 ). The reader is addressed to Campbell 

and O’Kelly (2012) ; Contreras (2015) for overviews of recent chal- 

lenging developments in the area. 

It often arises in practice that multiple carriers operating within 

the same underlying network compete for capturing customers 

when the same type of service is offered. This motivated the study 

of hub location models where carriers aim at maximizing the de- 

mand captured within a given coverage radius ( Campbell & O’Kelly, 

2012; Lowe & Sim, 2012 ), aim at maximizing the net profit ( Alibeyg 

et al., 2016; 2018 ), or compete with other carriers to maximize 

their market share ( Eiselt & Marianov, 2009; Marianov, Serra, & 

ReVelle, 1999 ). In Adler and Smilowitz (2007) global alliances and 

mergers in the airline industry under competition are developed 

within a game theoretical framework for a stylized hub-and-spoke 

model. Carriers may however be motivated to adopt a collaborative 

perspective for the design of a hub location system, as an alterna- 

tive to the competitive one. This is the focus of this paper as we 

explain below. 

https://doi.org/10.1016/j.ejor.2019.11.038 
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The benefits of collaboration in logistic systems have received 

increasing attention especially in the last two decades. Different 

business conditions as well as external regulations may push 

carriers to consider collaborative strategies, in view of the huge 

savings and environmental improvements that may occur. There- 

fore, different collaboration modes at different levels of logistic 

systems have been proposed and studied in the literature (see, e.g., 

Crainic & Laporte, 1997; Okdinawati, Simatupang, & Sunitiyoso, 

2015 ). The literature on this topic is certainly very large and an 

extensive review of the state of the art is outside the scope of 

this paper. We thus refer the interested reader to Verdonck, Caris, 

Ramaekers, and Janssens (2013) and Simatupang and Sridharan 

(2008) for discussions on the related literature. 

The collaboration that takes place between agents that operate 

at the same level of the supply chain is known as horizontal co- 

operation ( Cruijssen, Cools, & Dullaert, 2007; Pomponi, Fratocchi, 

Tafuri, & Palumbo, 2013 ). This type of collaboration is particularly 

suitable when different carriers establish alliances for improving 

the performance of logistic systems, especially service to common 

customers. Several optimization models for horizontal carrier col- 

laboration have been studied in the last years in fields related to 

transportation and logistics (see, for instance, Defryn, Sörensen, & 

Dullaert, 2019; Fernández, Fontana, & Speranza, 2016; Fernández, 

Roca-Riu, & Speranza, 2018; Quintero-Araujo, Gruler, Juan, & Faulin, 

2019 ). In the area of hub location we are not aware of any previ- 

ous work dealing with collaboration, except for Hernández, Unnikr- 

ishnan, and Awale (2012) that considers a hybrid centralized hub 

location system shared by all the carriers. The proposed model is 

centralized as it merges the collaborative activities of all carriers 

within a unified hub-and-spoke system, but is hybrid in the sense 

that direct shipment of commodities is allowed, and decided by 

each carrier on a one-to-one basis. The objective mixes costs of 

both the centralized system and direct shipments of all carriers. In 

this paper we follow a different approach, analyzing and compar- 

ing several collaborative policies, encompassing uncentralized sys- 

tems as well. Direct shipments are excluded, allowing to better fo- 

cus on the collaborative aspects of the studied systems. 

Despite the little work developed on the topic, examples of this 

type of collaborative approaches abound in classical hub location 

application fields, like air and ground transportation networks. In- 

deed, business opportunities may encourage partners of airline al- 

liances to search for hub transportation networks that better suit 

their joint interests. Moreover, cooperation may also be partly due 

to regulations restricting the ability of carriers to operate flights to 

locations in a foreign country beyond the primary airport that the 

carrier uses to facilitate international connections. Thus, coopera- 

tion between partners based in different countries allows carriers 

greater access to potential passengers in locations where they are 

not allowed to operate their own flights. Mail and parcel delivery 

are also classical application areas for hub location, where carrier 

collaboration may improve systems performance. The highly nega- 

tive effect of heavy traffic in urban areas related to numerous si- 

multaneous trips with low load factors has motivated local author- 

ities to encourage carrier collaboration in order to reduce not only 

operational costs, but also traffic and space occupancy. 

In this work we assume that multiple carriers operate on a 

shared network and make optimal decisions on the location of 

their respective hubs and the routing of their demands through 

the network. We propose three alternative collaborative policies, 

each of them linked to a different optimization model, which are 

contrasted against the non-collaborative setting. The first model re- 

flects the maximum possible collaboration in the sense that carri- 

ers operate jointly, sharing their resources and serving the overall 

demand as if they had merged into a single carrier. Instead, in the 

other two models each carrier operates exclusively on a backbone 

network induced by its own hubs. While in the second model each 

commodity is served by the carrier that offers the most efficient 

routing, in the third model all the commodities with the same 

origin are routed by the same carrier. The characteristics of each 

model are illustrated with a small numerical example, which is 

also used to highlight their differences. We show theoretically that 

all three collaborative models may produce arbitrarily large sav- 

ings with respect to the non-collaborative situation. Furthermore, 

mixed integer linear programming formulations are proposed in 

each case. Extensive computational experiments have been carried 

out in order to analyze the empirical performance of each of the 

models, using a set of benchmark instances adapted from the liter- 

ature. We give results on the computational effort required to op- 

timally solve each formulation with a commercial solver, and com- 

pare the performance of the different policies, under several pa- 

rameters settings. Useful managerial insight is gathered from the 

obtained numerical results. 

Our theoretical results apply to general networks, not neces- 

sarily complete, allowing for set-up costs for the elements that 

are activated. However, for the sake of clarity in the presentation, 

the formulations we propose for each of the collaboration poli- 

cies are first developed over fundamental p -hub location models 

( Marín, Cánovas, & Landete, 2006; O’Kelly, 1987a ), under the as- 

sumption that the input graph is complete, and ignoring all set-up 

costs. In that case there exist optimal solutions in which the rout- 

ing paths for the commodities consist of three edges at the most. 

This simplifies the presentation, and allows to concentrate on the 

role of the collaboration policies. Still, the difficulty of such for- 

mulations should not be understimated, since instances with up 

to twenty nodes involve over 40 0,0 0 0 variables already for two 

carriers, and more than 6.5 million variables when the number of 

carriers raises to ten. For the above reasons, nearly all our com- 

putational experiments have been carried out with the formula- 

tions over the fundamental models, whose numerical results al- 

ready highlight their empirical difficulty, particularly as the num- 

ber of carriers increases. When the model involves set-up costs on 

the network design decisions the maximum number of edges used 

in optimal routing paths cannot be set in advance so the result- 

ing formulations are notably more involved. Then, possible alter- 

natives are, for instance, to impose the modeling assumption that 

routing paths contain at most one inter-hub connection, or to al- 

low arbitrary long inter-hub paths. The first alternative preserves 

in essence the structure of the formulations at the expense of los- 

ing some generality, even if new binary decision variables and ad- 

ditional constraints are still needed. The second alternative gains 

generality at the expense of producing more involved formulations 

requiring further decision variables and constraints. In this work 

we opt for the first alternative, and develop some extensions of 

the basic formulations that include set-up costs for the activated 

elements while still restricting routing paths to contain at most 

one inter-hub connection. We have carried out a set of additional 

computational experiments in order to gain further insight on the 

tradeoff between the alternative collaboration policies with these 

extended formulations. 

The main contributions of this paper are the following: 

(i) We introduce hub location models dealing with carrier col- 

laboration, based on three alternative potential policies for 

the collaboration agreement. To the best of our knowledge 

this is the first time that collaboration among carriers, en- 

compassing uncentralized systems, is studied in the context 

of hub location. 

(ii) We develop a theoretical worst-case analysis to quantify the 

potential savings that each collaboration policy may produce 

relative to the non-collaborative setting. This analysis applies 

to general networks, not necessarily complete, allowing for 

set-up costs for the elements that are activated. 
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(iii) For each collaboration policy, mixed-integer mathematical 

programming formulations are computationally tested in 

terms of: their difficulty for being optimally solved with 

a commercial solver, their sensitivity to several diverse 

problem parameters, their relation to the other formulations, 

and the structure of the solution networks they produce. 

The remainder of the paper is organized as follows. In 

Section 2 we briefly introduce the notation, before presenting in 

detail the three different carrier collaboration models. Sections 3 , 4 

and 5 are respectively devoted to the model with full collaboration, 

the model where commodities can be transferred to other carriers 

and the model where all commodities with the same origin are 

routed by the same carrier. All three policies are compared theo- 

retically by analyzing in each case the potential savings obtained 

with respect to a non-collaborative behavior, and mixed integer 

programming formulations are presented. Section 6 is dedicated to 

the computational experience we have carried out: the computa- 

tional environment and sets of benchmark instances we have used 

are described, and the obtained numerical results summarized and 

analyzed, deriving some managerial insights. The paper ends with 

some conclusions and a discussion on promising avenues for future 

research. 

2. Notation and modeling assumptions 

Consider a set of carriers T that operate on the same network 

G = (V, A ) , where V = { 1 , 2 , . . . , n } . For each carrier t ∈ T , c t 
i j 

≥ 0 is 

the unit transportation cost through arc ( i , j ) ∈ A , not necessarily 

symmetric. We assume that this cost function satisfies the trian- 

gle inequality. We further assume that c t 
ii 

= 0 , for all i ∈ V , t ∈ T . For 

t ∈ T , let p t ≤n be a parameter indicating the number of hubs that 

carrier t must locate (open), H t ⊆V the set of potential locations 

for the hubs of t , f t 
k 
the set-up cost for opening a hub at node 

k ∈ H t , and h t 
k,k ′ the set-up cost for carrier t activating the inter- 

hub arc ( k , k ′ ) ∈ A . Each carrier t ∈ T has a service demand given 

by a set of commodities, indexed in a set R t . Let D t = { (o r , d r , w r ) : 

r ∈ R t } denote the set of commodities of carrier t , where the triplet 

(o r , d r , w r ) indicates that an amount of flow w r > 0 must be routed 

from origin o r ∈ V to destination d r ∈ V . The origin/destination pair 

associated with a given commodity will also be referred to as its 

OD pair. We denote by W t 
i 

= 
∑ 

r∈ R t : o r = i w r the overall flow of car- 

rier t with origin at i ∈ V . Finally, we denote by R = 
⋃ 

t∈ T R 
t the in- 

dex set of the joint set of commodities D = 
⋃ 

t∈ T D t . 

As usual in hub location models, the flows between OD pairs 

( o r , d r ), r ∈ R , must be routed via feasible paths of the form 

(o r , k 1 , . . . k i r , d r ) where k i s , s = 1 . . . , i r , are open hubs. Through- 

out we assume multiple allocation of commodities to open hubs. 

That is, it is possible that two commodities with the same origin 

are routed using a different first hub. Let 0 < α ≤1 denote the dis- 

count factor that is applied to the transportation costs of the flows 

routed through inter-hub arcs, which we assume independent of 

the carrier. The routing cost of commodity r ∈ R t , t ∈ T via path 

P = (o r , k 1 , . . . k i r , d r ) is thus C 
r 
P = w r (c t o r k 1 

+ α
∑ i r −1 

s =1 c 
t 
k s k s +1 

+ c t 
k i r d r 

) . 

We will denote by non-collaborative p -hub location problem ( p - 

NCHLP) the problem arising when all carriers operate indepen- 

dently, and thus without any type of collaboration. In the p -NCHLP 

each carrier t ∈ T must make the following decisions: ( i ) Select a 

subset of hubs S t ⊂H t , with | S t | = p t ; and, ( ii ) route all commodi- 

ties in D t via selected hubs. The objective is to minimize the sum 

of the set-up costs of the hubs activated by each carrier, plus the 

set-up costs of the inter-hub connections used by each carrier, 

plus the overall routing costs over all the commodities. Indeed, the 

above problem can be decomposed in | T | independent p t -hub loca- 

tion subproblems, one for each carrier. 

Fig. 1. Illustrative example for two carriers with p 1 = p 2 = 2 . D 1 = { (5 , 4 , M) , 

(5 , 2 , ε) , (1 , 4 , ε) , (1 , 8 , ε) } , D 2 = { (1 , 8 , M) , (1 , 6 , ε) , (5 , 4 , ε) , (5 , 8 , ε) } . 

3. The unrestricted collaboration hub location problem 

The p - unrestricted collaboration hub location problem ( p -UCHLP) 

assumes full collaboration among carriers. That is, we assume that 

all carriers make a (unique) joint decision referring to both the lo- 

cation of the hubs and the routing of the commodities, as if they 

had merged into one single company. Hence the p -UCHLP reduces 

to select p = 
∑ 

t∈ T p 
t hubs from H = 

⋃ 

t∈ T H t and to route the joint 

set of commodities D via the selected hubs so as to minimize the 

overall set-up plus routing costs. Therefore, the p -UCHLP is an un- 

capacitated multiple allocation hub location problem on the given 

input graph where �t ∈ T p 
t hubs must be opened. 

Example 1. Consider the eight node network depicted in Fig. 1 , 

where two carriers operate with the same transportation costs. 

Each horizontal or vertical link has a unit transportation cost 

c i j = 1 , whereas diagonal links have unit transportation costs c i j = √ 
2 . For ease of presentation let us assume that there are no 

set-up costs, neither for the facilities nor for inter-hub arcs, so 

only the routing costs affect the quality of the solutions. As- 

sume also that D 1 = { (5 , 4 , M) , (5 , 2 , ε) , (1 , 4 , ε) , (1 , 8 , ε) } , D 2 = 

{ (1 , 8 , M) , (1 , 6 , ε) , (5 , 4 , ε) , (5 , 8 , ε) } , H 1 = H 2 = V and p 1 = p 2 = 

2 . Let us finally assume that the discount factor α is such that 

1 + α < 
√ 
2 and ε ≪M . 

Fig. (2a) and ( 2 b) depict optimal solutions for the p -NCHLP, for 

carriers 1 and 2, respectively, when both carriers operate indepen- 

dently. Each arc is replicated as many times as it is used in the so- 

lution. Thick lines indicate inter-hub connections. Carrier 1 opens 

hubs at nodes 3 and 6. The commodities of D 1 are routed as fol- 

lows: commodity (5, 4, M ) via path 5 − 6 − 3 − 4 ; commodity (5, 

2, ε) via path 5 − 6 − 2 ; commodity (1, 4, ε) via path 1 − 6 − 3 − 4 ; 

and commodity (1, 8, ε) via path 1 − 6 − 3 − 8 . Carrier 2 opens 

hubs at nodes 2 and 7. The routing of its commodities is: com- 

modity (1, 8, M ) via path 1 − 2 − 7 − 8 ; commodity (1, 6, ε) via 
path 1 − 2 − 6 ; commodity (5, 4, ε) via path 5 − 2 − 7 − 4 ; and 

commodity (5, 8, ε) via path 5 − 2 − 7 − 8 . The routing cost is 

the same for both carriers. Each of them has a routing cost of 

M(2 + 
√ 
2 α) + ε[3 + 3 

√ 
2 + 2 α

√ 
2 ] . 

Fig. 3 depicts an optimal solution to the p -UCHLP, where car- 

riers 1 and 2 fully collaborate, for the instance of Fig. 1 . Now the 

p 1 + p 2 open hubs are located at nodes 2, 3, 6 and 7, which are 

connected with inter-hub discounted edges. Optimal routings for 

the commodities of carriers 1 and 2 are shown in Figs. (3a) and 

( 3 b), respectively (note that alternative optimal routings exist). 

Again carrier 1 routes commodity (5, 4, M ) via path 5 − 6 − 3 − 4 , 

and (5, 2, ε) via path 5 − 6 − 2 (now the discount factor is applied 

to arc (6, 2), since both 6 and 2 are hubs). However, (1, 4, ε) is now 

routed via path 1 − 2 − 3 − 4 , and commodity (1, 8, ε) via path 
1 − 2 − 7 − 8 . Carrier 2 uses the same routing paths as without 

collaboration for commodities (1, 8, M ) and (1, 6, ε), 1 − 2 − 7 − 8 

and 1 − 2 − 6 , respectively, although in the latter the discount fac- 

tor is applied to arc (2, 6) that connects hubs 2 and 6. Commodity 
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Fig. 2. Solution of the non-collaborative model for the illustrative example of Fig. 1 . 

Fig. 3. Solution for the example of Fig. 1 for the p 1 p 2 -UCHLP with full collaboration. 

(5, 4, ε) is now routed via path 5 − 6 − 3 − 4 ; and commodity (5, 

8, ε) via path 5 − 6 − 7 − 8 . The routing cost of carrier 1, which is 

the same as that of carrier 2, is M(2 + 
√ 
2 α) + ε[5 + (2 + 

√ 
2 ) α] . 

3.1. Worst-case analysis 

In this section we make a worst-case comparison between the 

full collaboration p -UCHLP and the non-collaboration model p - 

NCHLP. Let us denote by z ∗( UCHLP ) the optimal value of the p - 

UCHLP and by z ∗( NCHLP ) the optimal value of the p -NCHLP on the 

same given instance. As we see below the costs savings that can 

be obtained with the p -UCHLP with respect to the p -NCHLP can 

be arbitrarily large. Fig. 4 illustrates one such example, which we 

will use in the proof of Theorem 1 . 

Theorem 1. 

(i) There exists no finite upper bound for the ratio 

z ∗( NCHLP )/ z ∗( UCHLP ) . 

(ii) 1 ≤ z ∗( NCHLP )/ z ∗( UCHLP ) and the bound is tight. 

Proof. 

(i) To prove the result it is enough to show that there is at least 

one instance for which the ratio is arbitrarily large. Let us 

show one such instance. 

Consider the input network G = (V, A ) depicted in 

Fig. 4 where two carriers operate. For both carriers, the unit 

Fig. 4. Input graph to illustrate potential savings of p -UCHLP relative to p -NCHLP 

for two carriers. 

Table 1 

Routing paths of commodities in worst-case construction. 

No coll. p -UCHLP 

Path Routing cost Path Routing cost 

(1, 4, 1) 1 − 9 − 10 − 4 2 
√ 
M 2 + ε 2 + αε 1 − 2 − 3 − 4 2 ε + εα

(2, 3, 1) 2 − 9 − 10 − 3 2 M + αε 2 − 3 εα

(5, 8, 1) 5 − 9 − 10 − 8 2 
√ 
M 2 + ε 2 + αε 5 − 6 − 7 − 8 2 ε + εα

(6, 7, 1) 6 − 9 − 10 − 7 2 M + αε 6 − 7 εα

transportation cost through each horizontal arc is M (arbi- 

trarily large), through each vertical arc ε (arbitrarily small), 

and through each diagonal arc 
√ 

M 2 + ε 2 . Let us assume that 

both carriers have the same set-up costs for the hubs and for 

inter-hub arcs, and that, in each case, these costs are all the 

same, i.e. for t ∈ {1, 2}, f t 
k 

= f , for all k ∈ V , and h t 
k,k ′ = h , for 

all ( k , k ′ ) ∈ A . Let us also assume that both carriers have the 

same demand D 1 = { (1 , 4 , 1) , (2 , 3 , 1) , (5 , 8 , 1) , (6 , 7 , 1) } , 
D 2 = { (1 , 4 , 1) , (2 , 3 , 1) , (5 , 8 , 1) , (6 , 7 , 1) } , H 1 = H 2 = V and 

p 1 = p 2 = 2 . Finally, let us assume a discount factor α. 

In the non-collaboration model p -NCHLP both carriers lo- 

cate their hubs at nodes 9 and 10, and activate the inter-hub 

arc (9, 10). The routing of the commodities is the same for 

both carriers and is indicated in Table 1 . The total cost is 

z ∗(NCHLP ) = 2[2 f + h ] + 8 
[ 

M + 

√ 

M 2 + ε 2 + εα
] 

. 

In the full collaboration model p -UCHLP, carrier 1 locates the 

hubs at nodes 2 and 3 and activates the inter-hub arc (2, 3) 

while carrier 2 at nodes 6 and 7 and activates the inter-hub 

arc (6, 7) (or vice-versa). Carrier 1 routes all the commodi- 

ties with origin at nodes 1 and 2, whereas carrier 2 routes 

the commodities with origin at nodes 5 and 6. The routing 

of the commodities is also indicated in Table 1 and the to- 

tal cost of the solution is z ∗(UCHLP ) = 2[2 f + h ] + 8 ε [ 1 + α] . 

Therefore 

z ∗(NCHLP ) 

z ∗(UCHLP ) 
= 

2[2 f + h ] + 8 
[

M + 
√ 
M 2 + ε 2 + εα

]

2[2 f + h ] + 8 ε [ 1 + α] 
, 

which tends to ∞ when M → ∞ . 
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Fig. 5. Solution for the example of Fig. 1 for the p -CCHLP with commodity transfer. 

(ii) To see that 1 ≤ z ∗( NCHLP )/ z ∗( UCHLP ) note that 

z ∗( UCHLP ) ≤ z ∗( NCHLP ) since any feasible solution for the 

p -NCHLP is also feasible for the p -UCHLP. 

To see that the bound is tight we observe that it 

is also possible to build examples where collabora- 

tion produces no savings. One such example is to 

consider again the instance of Fig. 4 with H 1 = H 2 = 

V and p 1 = p 2 = 2 , but assume that the carriers de- 

mand is D 1 = { (1 , 5 , 1) , (2 , 6 , 1) , (3 , 7 , 1) , (4 , 8 , 1) } , D 2 = 

{ (1 , 5 , 1) , (2 , 6 , 1) , (3 , 7 , 1) , (4 , 8 , 1) } . �

Despite the potential savings that the p -UCHLP may produce 

with respect to the non-collaboration model, it can be argued that, 

even if the overall number of hub nodes opened in the unrestricted 

collaboration model p -UCHLP is the same as when no collaboration 

exists, in practice the cost for the design of the network where car- 

riers will operate will be higher, as more inter-hub edges will be 

activated. This will happen especially when there are no inter-hub 

set-up costs, or such costs are small in comparison to the other 

costs. In particular, in the example of Fig. 1 the non-collaborative 

model uses only two inter-hub edges (edge (3, 6) for carrier 1 and 

edge (2, 7) for carrier 2) while the solution to p -UCHLP uses five 

inter-hub edges, namely (2, 3), (2, 6), (2, 7), (3, 6), and (6, 7). 

In the next sections we develop two alternative collaboration 

models where each carrier activates its own hub nodes so the 

maximum overall number of activated inter-hub edges is the same 

as in the unrestricted collaboration model. In all such models the 

following assumptions hold: common hubs for different carriers 

are allowed (i.e. multiple carriers might choose the same hub), 

and, shipment routes cannot share networks of different carriers, 

that is, all the intermediate hubs and inter-hub links used in a 

given shipment route must be activated by the same carrier. 

4. The commodity-transfer collaboration hub location problem 

For the commodity-transfer collaboration hub location problem 

( p -CCHLP) we assume the following agreement among the carri- 

ers. Each carrier selects p t locations for the hubs to open, among 

its candidate set H t . Then, the routing of each commodity can 

be transferred among carriers, so a commodity of D t , t ∈ T can be 

routed by a different carrier t ′ ∈ T , t ′  = t , in the network induced 

by the hubs selected by carrier t ′ , and vice-versa. The objective is 
to minimize the sum of the routing costs of all the commodities. 

Fig. 5 shows an optimal solution to the p -CCHLP for the instance 

of Fig. 1 . Like in the problem without collaboration, carrier 1 opens 

hubs at nodes 3 and 6, and carrier 2 opens hubs at nodes 2 and 

7. Now the routing of commodity (1 , 8 , ε) ∈ D 1 is transferred to 

carrier 2 who offers the smallest routing cost ( 2 + 
√ 
2 α instead of 

2 
√ 
2 + 

√ 
2 α). Similarly, the routing of commodity (5 , 2 , ε) ∈ D 1 is 

transferred to carrier 2. Furthermore, the routing of commodities 

(5 , 4 , ε) ∈ D 2 and (1 , 6 , ε) ∈ D 2 is transferred to carrier 1. All other 

commodities are routed by their original carriers. 

The networks of both carriers and the commodities routed 

by each of them are shown in Fig. (5a) and ( 5 b), respectively. 

Now carrier 1 routes a flow M + ε corresponding to commodi- 

ties (5 , 4 , M) ∈ D 1 and (5 , 4 , ε) ∈ D 2 via path 5 − 6 − 3 − 4 . Fur- 

thermore, carrier 1 also routes commodity (1 , 4 , ε) ∈ D 1 via path 

1 − 6 − 3 − 4 , and commodity (1 , 6 , ε) ∈ D 2 via the direct path 

1 − 6 . Carrier 2 routes a flow M + ε corresponding to commodi- 

ties (1 , 8 , M) ∈ D 2 and (1 , 8 , ε) ∈ D 1 , via the same path as be- 

fore ( 1 − 2 − 7 − 8 ). Furthermore, carrier 2 also routes commodity 

(5 , 2 , ε) ∈ D 1 via the direct path 5 − 2 , and commodity (5 , 8 , ε) ∈ 

D 2 via path 5 − 2 − 7 − 8 . The routing cost of each of the carriers 

is M(2 + 
√ 
2 α) + ε 

[

3 + 2 
√ 
2 + 2 

√ 
2 α

]

. 

Practical settings where the p -CCHLP may be of interest include 

potential collaboration agreements both in air transportation and 

parcel deliveries. Nowadays it is common that several air compa- 

nies offer a shared service of origin/destination trips, which are op- 

erated by one single line but offer transport to customers of other 

companies in the same alliance. It is also common in parcel deliv- 

ery that, depending on the area, service is carried out by a com- 

pany different from the one that was actually hired. 

The following properties hold for the p -CCHLP: 

Remark 1. P1 Feasible solutions for the p -CCHCP are also feasi- 

ble for the p -UCHLP. Clearly, the reverse is not true. Thus the op- 

timal value of the unrestricted collaboration model gives a lower 

bound on the optimal value of the commodity-transfer collabora- 

tion model. 

Worst-case analysis indicates that the commodity-transfer col- 

laboration model p -CCHLP may also produce arbitrarily large sav- 

ings in relation to the non-collaboration model p -NCHLP. Ob- 

serve that the p -UCHLP solution built in item ( i ) of the proof of 

Theorem 1 , which illustrates potential arbitrarily large savings, is 

also a feasible solution to the p -CCHLP on that instance. On the 

other hand, the p -UCHLP solution built in item ( ii ) of the proof of 

Theorem 1 is feasible for the p -CCHLP on that instance as well. We 

therefore have the following result: 

Theorem 2. Let z ∗( CCHLP ) denote the optimal value of the p -CCHLP 

for a given instance and by z ∗( NCHLP ) the optimal value of the same 

instance for the p -NCHLP. Then, 

(i) There exists no finite upper bound for the ratio 

z ∗( NCHLP )/ z ∗( CCHLP ) . 

(ii) 1 ≤ z ∗( NCHLP )/ z ∗( CCHLP ) and the bound is tight. 

4.1. Mathematical programming formulation for the p -CCHLP 

Here we develop mathematical programming formulations for 

some particular cases of the p -CCHLP. We start with the case when 

the underlying hub location model is defined over a complete 

graph and without any set-up costs, that we denote p -CCHLP 0 , 

which allows to concentrate on the role of the collaboration pol- 

icy. 
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Remark 2. 

• Property P2: There is an optimal solution to the p -CCHLP 0 
where routing paths use one inter-hub edge at the most. The 

assumption that the input graph is complete and that rout- 

ing costs satisfy the triangle inequality, together with the fact 

that there are no set-up costs, indicate that if an optimal solu- 

tion routed some flow via a path with more than one inter-hub 

edge, such a path could be substituted by a direct arc connect- 

ing the first and last hubs in the path without deteriorating the 

value of the solution. 
• As opposed to the p -UCHLP, which can be decomposed in | T | in- 

dependent subproblems, the p -CCHLP 0 (and its extensions) can- 

not be decomposed in independent subproblems, since the ac- 

tual set of commodities that will eventually be served by each 

of the carriers is not known in advance. That is, the problem 

incorporates one additional level to the decision-making pro- 

cess, corresponding to the allocation of each commodity of the 

global set R to one of the carriers; recall that such allocation 

can be different from the carrier the commodity originally cor- 

responded to. The decision variables that we use in the for- 

mulation below, reflect this additional decision-making level by 

adding one additional index to both the location and the rout- 

ing variables of the classical 4-index formulation for the p -hub 

location problem. Hence, the formulation below is, in fact, a 5- 

index formulation, which can be seen as an extension of the 

4-index formulation of Marín et al. (2006) for the p -UCHLP. To 

the best of our knowledge, the formulation we present is new, 

as it simultaneously (re)-partitions the global set of commodi- 

ties among the carriers, and builds | T | p -hub location networks 

for serving the commodities allocated to each of the carriers. 

As a consequence of property P2, we can restrict our attention 

to routing paths of the form ( o r , k , l , d r ) where k , l are open hubs 

and it is possible that k = l. When both o r and d r are hubs these 

paths reduce to ( o r , o r , d r , d r ) and consist of one single arc. Oth- 

erwise, if o r is not a hub then k  = o r ; similarly, l  = d r if d r is not 

a hub. Moreover, the unit routing cost through path ( o r , k , l , d r ) 

reduces to C r 
kl 

= w r (c 
t 
o r k 

+ αc t 
kl 

+ c t 
ld r 

) . 

Based on Remark 2 , we can build a valid formulation for the 

p -CCHLP 0 using the following decision variables: 

• Binary variables z t 
k 
, k ∈ H t , t ∈ T . z t 

k 
= 1 if and only if a hub is 

opened at vertex k for carrier t . 
• Binary variables x rt 

kl 
, r ∈ R , t ∈ T . x rt 

kl 
= 1 if and only if commodity 

r is routed by carrier t via hubs k and l . 

The formulation is as follows: 

p −CC 0 : min 
∑ 

r∈ R 

∑ 

t∈ T 

∑ 

k,l∈ H t 
C r kl x 

rt 
kl (1a) 

s.t. 
∑ 

k ∈ H t 
z t k = p t t ∈ T (1b) 

∑ 

t∈ T 

∑ 

k,l∈ H t 
x rt kl = 1 r ∈ R (1c) 

x rt kk + 

∑ 

l ∈ H t : l  = k 

x rt kl + 

∑ 

l ∈ H t : l  = k 

x rt lk ≤ z t k r ∈ R, t ∈ T , k ∈ H 
t 

(1d) 

x rt kl ≥ 0 r ∈ R, k, l ∈ H 
t , t ∈ T 

(1e) 

z t k ∈ { 0 , 1 } k ∈ H 
t , t ∈ T (1f) 

Constraints (1b) impose that the number of hubs selected by 

each carrier is correct. Constraints (1c) guarantee that each com- 

modity is routed by exactly one carrier, whereas (1d) guarantee 

that the intermediate nodes used to serve a commodity are open 

as hubs by the carrier that routes it. Finally, (1e) –(1f) define the 

domain of the variables. Note that, as it happens with other un- 

capacitated hub location formulations, it is enough to impose the 

integrality of the z variables. 

Formulation (1a) –(1f) has �t ∈ T | H t | binary variables z and 

�t ∈ T | H t | 2 continuous variables x . Its number of constraints is | T | + 

| R | 
(

1 + 
∑ 

t∈ T | H t | 
)

. 

Below we extend formulation (1a) –(1f) to deal with set-up costs 

on the design decisions, under the modeling assumption that rout- 

ing paths use one inter-hub link at the most. We refer to this prob- 

lem as p -CCHLP Setup . Recall that, in the presence of set-up costs, 

property P2 no longer holds, so it is needed to impose it explicitly. 

Since, feasible routing paths for p -CCHLP Setup are the same as 

those of p -CCHLP 0 , the only change in the formulation affects the 

objective function, where the terms corresponding to the activated 

hubs and inter-hub links must be included. Using the design vari- 

ables z the set-up costs of the activated hubs can be written as: 
∑ 

t∈ T 

∑ 

k ∈ H t 
f t k z 

t 
k . (2a) 

Unfortunately, with the above decision variables it is not pos- 

sible to express the set-up costs of the inter-hub arcs used by the 

different carriers. For this, we define an additional binary variable 

X t 
kl 

associated with each carrier t ∈ T and potential pair of interme- 

diate hubs k , l ∈ H t , whose value is one if and only if carrier t ac- 

tivates the inter-hub link ( k , l ). Then the set-up cost for inter-hub 

arcs can be expressed as: 
∑ 

t∈ T 

∑ 

k,l∈ H t 
k<l 

h t kl X 
t 
kl . (3a) 

To guarantee the correct activation of the inter-hub arcs that are 

used, the routing variables x used for routing flows through inter- 

hub arcs must be related to the new design variables X . This can 

be done by means of the set of constraints: 
(

x rt kl + x rt lk 
)

≤ X t kl r ∈ R, t ∈ T , k, l ∈ H 
t , k < l. (4a) 

In addition to the variables and constraints of p -CCHLP 0 , formu- 

lation p -CCHLP Setup has | T || H t | 2 additional binary variables X and 

| R | �t ∈ T | H t | 2 additional constraints. 

5. The origin-allocation collaboration hub location problem 

Similarly to the p -CCHLP, in the p - origin-allocation collaboration 

hub location problem ( p -OCHLP) each carrier selects p t locations for 

the hubs to open, among its own candidate set H t , and the collab- 

oration agreement still allows commodity transfer among carriers. 

Though, in this case it is imposed that all commodities with origin 

in the same node must be routed by the same carrier. Note that 

this restriction is not imposed to destinations, i.e., in the p -OCHLP, 

even if as an origin each node is allocated to one single carrier, as 

a destination it may receive flows from several carriers. 

The rationale for this assumption refers to circumstances where 

there are very high installation and operational costs derived from 

administrative or manipulation operations of flows at their ori- 

gins, so these costs can be substantially decreased when restrict- 

ing these operations to at most one carrier per origin. Thus, there 

is an allocation of origin nodes to carriers, although a given node 

may be recipient of commodities routed by different carriers. As 

before, the objective is to minimize the sum of the routing costs of 

all the commodities. 

Fig. 6 shows an optimal solution to the p -OCHLP for the in- 

stance of Fig. 1 . Like in the previous models, for this instance car- 

rier 1 opens hubs at nodes 3 and 6, and carrier 2 opens hubs 

at nodes 2 and 7. Now, origin node 5 is allocated to carrier 1 

whereas origin node 1 is allocated to carrier 2. Hence, carrier 

1 routes commodities (5 , 4 , M) ∈ D 1 , (5 , 4 , ε) ∈ D 2 , (5 , 2 , ε) ∈ D 1 , 
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Fig. 6. Solution for the example of Fig. 1 for the p 1 p 2 -OCHLP with origin-allocation to carriers. 

and (5 , 8 , ε) ∈ D 2 , whereas carrier 2 routes commodities (1 , 4 , ε) ∈ 

D 1 , (1 , 8 , ε) ∈ D 1 , (1 , 8 , M) ∈ D 2 , and (1 , 6 , ε) ∈ D 2 . The optimal 

networks for carriers 1 and 2 are shown in Fig. (6a) and ( 6 b), re- 

spectively. The overall routing cost of each carrier is M(2 + 
√ 
2 α) + 

ε 
[

5 + 
√ 
2 + 2 

√ 
2 α

]

. 

Observe that feasible solutions to p -UCHLP may not be feasi- 

ble for p -OCHLP. Hence a property similar to P1 of Remark 1 no 

longer holds for p -OCHLP in relation to p -UCHLP. Thus, z ∗( OCHLP ) 

does not necessarily yield a valid lower bound on z ∗( NCHLP ). 

Still, we can analyze the worst-case for the savings that p -OCHLP 

may produce relative to the non-collaboration model. In particu- 

lar, since the solution to p -UCHLP used in item ( i ) of the proof of 

Theorem 1 is feasible for p -OCHLP as well, we have the following 

result. 

Theorem 3. Let z ∗( OCHLP ) denote the optimal value of the p -OCHLP 

for a given instance and z ∗( NCHLP ) the optimal value of the same in- 

stance for the p -NCHLP. Then, there exists no finite upper bound for 

the ratio z ∗( NCHLP )/ z ∗( OCHLP ) . 

5.1. Mathematical programming formulation for the p -OCHLP 

Here we develop mathematical programming formulations for 

some particular cases of the p -OCHLP. Again we start with the case 

when the underlying hub location model is defined over a com- 

plete graph and without any set-up costs, that we denote by p - 

OCHLP 0 . Since Property P2 remains valid for the p -OCHLP 0 , we can 

use the following sets of decision variables: 

• Binary variables s t 
i 
, i ∈ O , t ∈ T . s t 

i 
= 1 if and only if all the com- 

modities with origin at vertex i are routed by carrier t . 
• Binary variables z t 

k 
, k ∈ H t , t ∈ T . z t 

k 
= 1 if and only if a hub is 

opened at vertex k for carrier t . 
• Binary variables x rt 

kl 
, r ∈ R , k , l ∈ H t , t ∈ T . x rt 

kl 
= 1 if and only if 

commodity r is routed by carrier t via hubs k and l . 

The formulation for the p -OCHLP 0 is as follows: 

p − OC 0 : min 
∑ 

r∈ R 

∑ 

t∈ T 

∑ 

k,l∈ H t 
C r kl x 

rt 
kl (5a) 

s.t. 
∑ 

k ∈ H t 
z t k = p t t ∈ T (5b) 

∑ 

t∈ T 

s t i = 1 i ∈ O (5c) 

∑ 

k,l∈ H t 
x rt kl = s t o r r ∈ R , t ∈ T (5d) 

x rt kk + 

∑ 

l ∈ H t : l  = k 

x rt kl + 

∑ 

l ∈ H t : l  = k 

x rt lk ≤ z t k r ∈ R, t ∈ T , k ∈ H 
t 

(5e) 

x rt kl ≥ 0 r ∈ R, k, l ∈ H 
t , t ∈ T 

(5f) 

s t i ∈ { 0 , 1 } i ∈ O, t ∈ T (5g) 

z t k ∈ { 0 , 1 } k ∈ H 
t , t ∈ T (5h) 

As before, constraints (5b) impose that the number of hubs se- 

lected by each carrier is correct. Constraints (5c) guarantee that 

each vertex that is the origin of some commodity is allocated to 

one carrier, (5d) that each commodity is routed by exactly one car- 

rier, and (5e) that the intermediate nodes used to serve a commod- 

ity are open as hubs by the carrier that routes it. Finally, (5f) –(5h) 

define the domain of the variables. 

Formulation (5a) –(5h) has �t ∈ T | H t | binary variables z , | O || T | bi- 

nary variables s , plus �t ∈ T | H t | 2 continuous variables x . Its number 

of constraints is | T | + | R | 
(

| T | + 
∑ 

t∈ T | H t | 
)

. 

6. Computational experiments 

In this Section a thorough computational test of the collabora- 

tive models presented in this paper is reported and discussed. The 

design of the experiments was devised to fulfill different goals, as 

follows: 

• perform a proof-of-concept of the collaborative models intro- 

duced throughout the paper; 
• analyze the computational effort required by the adopted for- 

mulations for the collaborative models as compared with those 

for the original non-collaborative model; 
• gather managerial insight on the effects of the different collab- 

orative policies presented in this paper. 

In the remainder of this section we will describe the consid- 

ered testbed and the computational framework, present the out- 

puts of the experiments, and discuss the main findings. The sec- 

tion is divided in several parts, each of them focusing on one spe- 

cific aspect. In particular, Section 6.1 describes the characteristics 

of the benchmark instances we have used and the computational 

environment, as well as the number of decision variables of the 

formulations on complete graphs without set-up costs, and the ta- 

bles summarizing the numerical results obtained with such formu- 

lations for the instances with up to 20 nodes. These formulations 

involve over 40 0,0 0 0 variables already for two carriers and more 

than 6.5 million variables when the number of carriers raises to 

ten. In Section 6.2 we analyze the obtained results in terms of 

the computational burden required by each of the formulations, 

and also relative to the characteristics of the solutions produced 

by each of them. Section 6.3 summarizes the results we have ob- 

tained with a set of larger instances with up to 50 nodes and two 

carriers. We have carried out a final series of experiments on for- 

mulations that include set-up costs for the activated inter-hub arcs, 

whose results are presented in Section 6.4 . 

6.1. Testbed generation and computational framework 

With the aim of assessing the potential impact of hub loca- 

tion collaborative schemes in the context of different application 

settings we considered a computational testbed consisting of two 
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Table 2 

Number of commodities at varying nodes ( n ) and carriers (| T |). 

n Number of carriers 

1 2 4 6 8 10 

5 25 32 44 63 84 103 

10 100 128 179 258 359 407 

15 225 287 438 584 797 909 

20 400 511 768 1036 1411 1626 

main sets adapted from datasets commonly used in the litera- 

ture. To analyze collaborative models in the field of airline trans- 

port we have used the Civil Aeronautics Board (CAB) instances 

( O’Kelly, 1987b ), which are based on the airline passenger interac- 

tions between cities in the United States of America as evaluated 

by the Civil Aeronautics Board and are available at O’Kelly (1987b) . 

The Australian Post instances, also referred to as the AP dataset, 

introduced by Ernst and Krishnamoorthy ( Ernst & Krishnamoor- 

thy, 1996 ), were used for assessing the implications in the field 

of logistics. In these instances nodes represent postcode districts, 

described along with their coordinates, and flow volumes (mail 

flow). 

The complete set of commodities was considered for each in- 

stance, interpreting for each OD pair the amount of demand w i j 

as the overall demand to be served by all carriers altogether. 

The distribution of the overall demand among carriers was com- 

puted by adopting the following procedure. For each commod- 

ity r ∈ R an integer number k r of active carriers was drawn from 

a uniform distribution U (1, | T |). This means that, the total num- 

ber of commodities generated is, on average, | R | (| T | + 1) / 2 , so the 

mean number of commodities originally allocated to each carrier 

is | R | (| T | + 1) / (2 | T | ) . Then, to identify the set of active carriers T r , 
k r indices were drawn, again from a uniform distribution U (1, | T |). 

A weight coefficient λt was drawn from U [0, 100] for each active 

carrier t ∈ T r , and all weight coefficients were finally normalised 

to produce weighted demand values w t 
i j 

= w i j 
λt 

∑ 
t ′ ∈ T r λ

t ′ , t ∈ T r , such 

that eventually 
∑ 

t∈ T w t 
i j 

= w i j . 

Experiments were run for varying values of the network size n , 

the number of carriers | T |, the value of the discount factor α and 

the number p of hubs to be located, as follows: 

• n ∈ {5, 10, 15, 20}. 
• α ∈ {0.25, 0.50, 0.75}. 
• | T | ∈ {2, 4, 6, 8, 10}. 
• p t ∈ {1, 2, 3, 4, 5}. 

Based on the above described procedure and on the size of the 

considered instances, the actual number of commodities consid- 

ered in the instances for each value of nodes and carriers is rep- 

resented in Table 2 , including the case with only one carrier to 

allow a comparison with traditional hub location problems. As can 

be observed, the number of involved commodities rapidly grows 

as the number of nodes increases. For n = 20 , the instances with 

the largest number of carriers ( | T | = 10 ) have over 1600 commodi- 

ties, which is approximately the number of commodities of classi- 

cal models with n = 40 . 

The information of Table 2 is complemented with that of 

Table 3 , where we show the number of z and x decision variables 

involved in each of the proposed formulations, for the considered 

values in the number of nodes ( n ) and carriers (| T |). As can be seen 

with just two carriers ( | T | = 2 ) the instances with 20 nodes involve 

up to 40 and 408,800 binary and continuous variables, respectively, 

depending on the formulation. The largest instances with 20 nodes 

and 10 carriers involve 400 binary variables and over six million 

five-hundred thousand continuous variables. Formulation for the 

OC model includes n × | T | additional binary variables s . 

By testing each instance from both CAB and AP testbeds on all 

of the different 4 formulations, an overall amount of 2400 runs 

were executed. Experimental results were computed by using the 

IBM Ilog Cplex 12.6 solver, running on an 64 bit Intel Xeon CPU at 

2.80 gigahertz with 64 gigabyte Ram and Linux Ubuntu 14.04 as 

an Operating System. All tests were executed with an absolute gap 

tolerance for optimality of 10 −3 and allowing a maximum comput- 

ing time of 7200 seconds. 

The obtained numerical results are summarized in 

Tables 4 –7 . Each table analyzes the effect of a parameter on one 

of the studied performance measures. All tables have the same 

structure. The heading is followed by two blocks of rows: one for 

the CAB instances and one for AP instances . In each table the first 

two columns indicate the testbed (CAB or AP) and the parameter 

that is analyzed. This is followed by four blocks of columns, one 

for each of the tested formulations: the non-collaborative model 

( NC-HLP ), the unrestricted collaboration model of Section 3 ( UC- 

HLP ), the commodity-transfer model of Section 4 ( CC-HLP ), and 

the origin-allocation model of Section 5 ( OC-HLP ). Each block 

consists of three columns: the first one ( cpu ) gives average com- 

puting times in seconds, the second one (% Opt ) the percentage of 

instances of the group that are solved to optimality, and the third 

one (% G ) the average percentage optimality gap at termination. 

The results presented in the tables represent mean values among 

subsets of experiments with the instances of the testbed shown in 

the first column where the parameter analyzed in the table was 

fixed to the value given in the second column, for varying values 

of all other parameters. The last row in each block (with entry 

Avrg in the column of the parameter) gives the averages over all 

the tested values of the parameter, i.e., the averages of the values 

of the previous rows of the block. 

6.2. Discussion and main findings from the computational results 

We discuss here the results and the main findings arising from 

this first large batch of computational experiments, organized in 

two main parts: first, for each set of benchmark instances and 

combination of the relevant parameters, we analyze and compare 

the computational effort required to solve the different collabora- 

tive formulations, as well as the optimality gaps obtained within 

the given time limit. Then, the operational performance secured by 

different collaboration options is compared, to gather useful man- 

agerial insight from the computational experience. 

6.2.1. Analysis of computational effort 

A first general evidence can be observed by analyzing the en- 

tries corresponding to cpu in the last line of each table, where 

the mean computing time required to solve an instance over all 

the experiments on the full testbed is presented. The formula- 

tion for the unrestricted collaborative model turns out to be the 

most easily solvable, together with the non-collaborative model. A 

much stronger computational effort is required on the average by 

the formulations for collaborative models p -CCHLP and p -OCHLP, 

where for the largest instances computing times can be substan- 

tially longer than those required by the previously mentioned for- 

mulations. Such observation is confirmed by looking at the opti- 

mality gaps results on the last line of tables: here, it turns out that 

the time limit suffices to find optimal solutions on all instances for 

p -NCHLP and p -UCHLP, while strictly positive optimality gaps over 

20% are still present on the average on the p -CCHLP and p -OCHLP 

formulations after the allowed 7200 seconds. 

6.2.2. Performance comparison 

Next we direct our attention to managerial insights that can be 

derived from the analysis of the computational results. To this aim 
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Table 3 

Number of z and x variables for the different formulations at varying nodes ( n ) and carriers (| T |). 

| T | 

1 2 4 6 8 10 

n z t 
k x rt 

kl z t 
k x rt 

kl z t 
k x rt 

kl z t 
k x rt 

kl z t 
k x rt 

kl z t 
k x rt 

kl 

5 5 625 10 1600 20 4400 30 9450 40 16,800 50 25,750 

10 10 10,000 20 25,600 40 71,600 60 154,800 80 287,200 100 407,000 

15 15 50,625 30 129,150 60 394,200 90 788,400 120 1,434,600 150 2,045,250 

20 20 160,000 40 408,800 80 1,228,800 120 2,486,400 160 4,515,200 200 6,504,000 

20 20 160,000 40 408,800 80 1,228,800 120 2,486,400 160 4,515,200 200 6,504,000 

Table 4 

Mean CPU times and percent optimality gaps at varying number of nodes. 

n NCHLP UCHLP CCHLP OCHLP 

cpu %Opt %G cpu %Opt %G cpu %Opt %G cpu %Opt %G 

CAB 5 0 .7 100 .00 0 .00 0 .7 100 .00 0 .00 1 .7 100 .00 0 .00 2 .3 100 .00 0 .00 

10 22 .4 100 .00 0 .00 32 .2 100 .00 0 .00 1156 .7 100 .00 0 .07 59 .4 100 .00 0 .00 

15 225 .3 100 .00 0 .00 323 .9 100 .00 0 .00 3785 .2 100 .00 3 .46 2834 .9 77 .33 0 .76 

20 1355 .4 100 .00 0 .00 1799 .9 100 .00 0 .00 5042 .7 94 .67 22 .00 4968 .5 43 .84 16 .24 

Avrg 400 .9 100 .00 0 .00 359 .2 100 .00 0 .00 2488 .0 98 .67 6 .33 1956 .2 80 .54 4 .21 

AP 5 0 .6 100 .00 0 .00 0 .7 100 .00 0 .00 1 .8 100 .00 0 .00 1 .9 100 .00 0 .00 

10 20 .6 100 .00 0 .00 28 .8 100 .00 0 .00 2166 .8 73 .33 2 .68 384 .1 100 .00 0 .00 

15 228 .6 100 .00 0 .00 401 .7 100 .00 0 .00 4424 .3 42 .67 11 .62 4291 .4 45 .33 7 .14 

20 1286 .2 100 .00 0 .00 1690 .9 100 .00 0 .00 5209 .1 36 .49 23 .27 5323 .3 29 .73 22 .80 

Avrg 384 .0 100 .00 0 .00 526 .6 100 .00 0 .00 2942 .9 63 .21 9 .35 2490 .7 68 .90 7 .43 

Table 5 

Mean CPU times and percent optimality gaps at varying number of carriers. 

| T | NCHLP UCHLP CCHLP OCHLP 

cpu %Opt %G cpu %Opt %G cpu %Opt %G cpu %Opt %G 

CAB 2 35 .8 100 .00 0 .00 49 .3 100 .00 0 .00 54 .0 100 .00 0 .00 56 .5 100 .00 0 .00 

4 134 .6 100 .00 0 .00 182 .3 100 .00 0 .00 1520 .3 91 .67 0 .51 1040 .5 98 .33 0 .02 

6 315 .9 100 .00 0 .00 409 .4 100 .00 0 .00 3091 .8 65 .00 4 .39 2187 .7 80 .00 2 .81 

8 592 .1 100 .00 0 .00 850 .8 100 .00 0 .00 3903 .3 58 .33 11 .77 3231 .4 66 .67 7 .12 

10 926 .3 100 .00 0 .00 1204 .2 100 .00 0 .00 3894 .3 50 .85 15 .12 3287 .2 56 .90 11 .22 

Avrg 400 .9 100 .00 0 .00 539 .2 100 .00 0 .00 2488 .0 73 .24 6 .33 1956 .2 80 .54 4 .21 

AP 2 41 .9 100 .00 0 .00 58 .3 100 .00 0 .00 70 .4 100 .00 0 .00 82 .9 100 .00 0 .00 

4 141 .8 100 .00 0 .00 186 .8 100 .00 0 .00 2453 .1 71 .67 2 .60 2360 .3 70 .00 2 .21 

6 287 .6 100 .00 0 .00 407 .1 100 .00 0 .00 3808 .1 51 .67 9 .91 3088 .9 63 .33 6 .01 

8 569 .2 100 .00 0 .00 815 .5 100 .00 0 .00 4368 .2 43 .33 15 .81 3418 .0 55 .00 13 .23 

10 879 .5 100 .00 0 .00 1176 .3 100 .00 0 .00 4033 .0 49 .15 18 .57 3520 .7 55 .93 15 .86 

Avrg 384 .0 100 .00 0 .00 526 .6 100 .00 0 .00 2942 .9 63 .21 9 .35 2490 .7 68 .90 11 .04 

Table 6 

Mean CPU times and percent optimality gaps at varying number of hubs. 

p NCHLP UCHLP CCHLP OCHLP 

cpu %Opt %G cpu %Opt %G cpu %Opt %G cpu %Opt %G 

CAB 1 431.0 100.00 0.00 590.1 100.00 0.00 1035 .5 95.00 0 .97 1150 .7 90.00 3.22 

2 399.4 100.00 0.00 546.4 100.00 0.00 2542 .5 75.00 9 .35 2053 .4 76.67 6.38 

3 393.6 100.00 0.00 511.8 100.00 0.00 3184 .4 63.33 9 .22 2198 .8 79.66 4.76 

4 389.6 100.00 0.00 539.6 100.00 0.00 3065 .6 66.67 7 .08 2210 .7 76.67 4.03 

5 391.0 100.00 0.00 508.1 100.00 0.00 2614 .3 66.10 5 .02 2171 .1 79.66 2.64 

Avrg 400.9 100.00 0.00 539.2 100.00 0.00 2488 .0 73.24 6 .33 1956 .2 80.54 4.21 

AP 1 422,1 100.00 0.00 567.8 100.00 0.00 1033 .8 96.67 0 .15 408 .5 90.00 3.09 

2 365,0 100.00 0.00 518.4 100.00 0.00 3285 .4 58.33 13 .56 715 .1 70.00 9.18 

3 427,4 100.00 0.00 634.1 100.00 0.00 3884 .9 50.00 13 .71 742 .1 63.33 9.99 

4 347,0 100.00 0.00 494.4 100.00 0.00 3632 .2 50.00 12 .31 822 .4 60.00 8.01 

5 358,6 100.00 0.00 416.8 100.00 0.00 2877 .2 61.02 6 .97 844 .1 61.02 6.89 

Avrg 384.0 100.00 0.00 526.6 100.00 0.00 2942 .9 63.21 9 .35 706 .4 68.90 7.43 
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Table 7 

Mean CPU times and percent optimality gaps at varying discount factor. 

α NCHLP UCHLP CCHLP OCHLP 

cpu %Opt %G cpu %Opt %G cpu %Opt %G cpu %Opt %G 

CAB 0.25 109.4 100.00 0.00 536.9 100.00 0.00 2657 .2 72.00 9 .28 2026.7 78.00 6 .45 

0.50 533.7 100.00 0.00 524.8 100.00 0.00 2418 .2 74.00 5 .98 1959.4 82.00 3 .95 

0.75 559.7 100.00 0.00 555.9 100.00 0.00 2387 .7 73.74 3 .70 1881.8 81.63 2 .21 

Avrg 400.9 100.00 0.00 539.2 100.00 0.00 2488 .0 73.24 6 .33 1956.2 80.54 4 .21 

AP 0.25 126.6 100.00 0.00 515.3 100.00 0.00 3035 .3 60.00 14 .59 2553.5 67.00 11 .25 

0.50 509.9 100.00 0.00 504.1 100.00 0.00 2942 .0 65.00 8 .50 2479.6 69.00 7 .23 

0.75 515.6 100.00 0.00 560.9 100.00 0.00 2850 .6 64.65 4 .90 2438.6 79.71 3 .79 

Avrg 384.0 100.00 0.00 526.6 100.00 0.00 2942 .9 63.21 9 .35 2490.7 66.67 7 .43 

Fig. 7. Performance comparison for CAB instances. 

we focus on Figs. 7 and 8 , which respectively depict average sav- 

ing ratios produced by collaborative models relative to the non- 

collaborative model p -NCHLP, at varying values of the considered 

parameters, for the CAB and AP benchmark instances optimally 

solved within the allowed computing time. That is, for a given col- 

laborative model, the saving ratio of each optimally solved instance 

is calculated as the ratio between the objective function values of 

the collaborative model and that of the non-collaborative one on 

that instance. This explains why the values of the series labeled 

NC-HLP are exactly one. 

Concerning the proof-of-concept for collaborative policies in 

hub location, a very general evidence can be derived from these 

pictures where, for each model and set of instances substantial re- 

ductions can be attained. The unrestricted collaboration model al- 

ways permits the most efficient allocation of commodities on the 

network, allowing a minimization of the overall cost which con- 

stantly outperforms all the other models. The commodity-transfer 

collaboration model still guarantees a very good performance as 

compared to the other two models. As can be observed, the 

non-collaborative model is constantly the less cost-effective one 

throughout the whole considered testbed. 

Beyond the proof-of-concept from the above observation, one 

can derive a basic evidence with important implications from an 

application point of view: designing joint managerial policies en- 

hancing a coordinated use of resources, both for the selection of 

hubs to activate and for the allocation of the flows to serve, it is 

possible to satisfy the customers demand at a lower overall logis- 

tics cost, hence producing substantial savings for the overall set of 

carriers. Such savings can be then redistributed according to differ- 

ent strategies, in such a way that the situation of each individual 

carrier also improves. This is an important issue that deserves fur- 

ther attention, although a thorough analysis is outside of the scope 

of this paper. 

Moreover, the figures quantify the effect of the different param- 

eters in the savings of the alternative models, and confirm that 

the relative behavior of collaborative models is similar for the two 

distinct testbeds and, independently of the number of nodes and 

commodities, is as follows: 

z ∗UCHLP < z ∗C C HLP < z ∗OCHLP < z ∗NCHLP . 

By exploring more in detail the results in the figures, it is pos- 

sible to observe the influence of each individual parameter on the 

saving profile associated with each collaborative model. The figures 

reporting results at varying number of carriers are instrumental in 

understanding how the overall savings associated with the use of 

collaborative models improve as the number of carriers progres- 

sively increases from 2 to 10 carriers. Such pattern is common on 

both the testbeds, with the improvement being more regular and 
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Fig. 8. Performance comparison for AP instances. 

intense for the Australian Post testbed. This is particularly inter- 

esting if one considers the current trends in logistics management 

where a number of private carriers are entitled to act on the same 

transportation network with shared facilities, for example in the 

use of different classes of distribution centers in urban areas ac- 

cording to multi-tier city logistics paradigms ( Crainic & Sgalambro, 

2014 ). By enabling practical and collaborative patterns in commod- 

ity demand distribution, performance improvement would benefit 

from the increasing number of actors, with substantial advantages 

for the stakeholders of this logistics process. 

The figures reporting the savings at varying number of hubs 

suggest how the relative performance gain in adopting a collab- 

orative policy is more intense when the number of hubs to be al- 

located decreases, in particular for results on unrestricted collab- 

oration and origin-allocation collaboration models, with a similar 

pattern on both sets of instances. 

While Fig. 7 suggests that for the CAB instances the benefits of 

collaboration increase with instance size, the same trend cannot 

be appreciated for the AP instances in Fig. 8 . As for the influence 

of the discount factor, both figures indicate that, as could be ex- 

pected, benefits increase as α decreases. 

Finally, Fig. 9 visualizes the effects of collaborative models p - 

CCHLP and p -OCHLP in terms of commodity transfer, based on the 

number of active carriers. More in detail, the two bar charts on 

the top of the figure show the average percentage of commodities 

that are transferred between two different carriers for the two dis- 

tinct collaborative models, for CAB and AP instances, respectively, 

whereas the bar charts in the bottom of the figure show the aver- 

age percentage of demand involved in the transfer of commodities 

between carriers. This figure confirms the growth in the impact 

of the collaborative policies as the number of carriers increases, 

ranging quite regularly from around 50% of the commodities in the 

case of 2 carriers until around 90% for the experiments with 10 

carriers, without apparent differences for the two considered sets 

of instances. The same numbers apply roughly for the percentage 

transferred demand. 

6.3. Computational experiments with larger instances 

In order to analyze the scalability of the proposed formulations 

we have run additional computational tests with CAB and AP in- 

stances with up to fifty nodes, with two carriers ( | T | = 2 ), three 

hubs ( p = 3 ) and a discount factor α = 0 . 75 . Now we have not set 

a limit on the maximum computing time, so all instances have 

been solved to optimality. The obtained results are summarized in 

Table 8 , which contains two blocks of rows, one for the CAB in- 

stances and another one for the AP instances. Columns under n and 

| R | show the number of nodes and commodities of the instances, 

respectively. Columns under z t 
k 
and x rt 

kl 
respectively show the num- 

ber of z and x variables of the collaborative formulations, with p - 

OCHLP model utilising 2 n additional binary origin allocation vari- 

ables. As can be seen, the two 50 node instances involve over fif- 

teen million continuous variables. The table contains four addi- 

tional blocks, one for each of the tested models ( NC-HLP , UC-HLP , 

CC-HLP , and OC-HLP ). Each block consists of two columns, the first 

one (under cpu ) with the computing time required to solve the in- 

stance to proven optimality and the second one (under v (·) / v (NC) ) 

with the saving ratio of the corresponding model relative to the 

non-collaborative setting, given by the ratio of the optimal value 

of the tested model over the optimal value of the model without 

collaboration. As could be expected, the computing times rapidly 

increase with the size of the instances and the difficulty of the for- 

mulation. Formulation CC-HLP with the 50 node CAB and AP in- 

stances consumed over 13 and 17 hours, respectively. The comput- 

ing times consumed by the same two instances with formulation 

OC-HLP are over 15 and 17 hours, respectively. 

The reader may observe that the savings that are shown 

in Table 8 are, in general, smaller than the ones displayed in 

Figs. 7 –8 . This is not surprising, as the table corresponds to ex- 

periments for the smallest number of carriers ( | T | = 2 ), which, as 

mentioned, produces the smallest savings. 
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Fig. 9. % of transferred commodities and demand at varying number of carriers. 

Table 8 

Summary of results with larger instances: dimensions, computing times, and saving ratios. 

n | R | z t 
k x rt 

kl NCHLP UCHLP CCHLP OCHLP 

cpu v (NC) / v (NC) cpu v (UC) / v (NC) cpu v (C C ) / v (NC ) cpu v (OC) / v (NC) 

CAB 20 511 40 408,800 162 1.00 168 0.88 184 0.89 173 0.93 

25 791 50 988,750 180 1.00 633 0.88 638 0.90 634 0.97 

30 1121 60 2,017,800 640 1.00 1844 0.82 1900 0.84 1809 0.90 

35 1529 70 3,746,050 1833 1.00 4662 0.84 4720 0.86 4753 0.92 

40 2001 80 6,403,200 4687 1.00 10500 0.82 10902 0.85 10193 0.92 

45 2520 90 10,206,000 50564 1.00 20548 0.79 20657 0.85 23796 0.92 

50 3115 100 15,575,000 23392 1.00 38912 0.74 47484 0.79 56130 0.89 

AP 20 511 40 408,800 169 1.00 173 0.86 196 0.88 210 0.91 

25 791 50 988,750 183 1.00 616 0.85 744 0.88 776 0.90 

30 1121 60 2,017,800 645 1.00 1956 0.87 2043 0.89 2287 0.91 

35 1529 70 3,746,050 4536 1.00 4518 0.86 5537 0.88 6147 0.91 

40 2001 80 6,403,200 4850 1.00 10685 0.87 13635 0.89 15684 0.92 

45 2520 90 10,206,000 10910 1.00 20553 0.88 26883 0.89 31902 0.92 

50 3115 100 15,575,000 25102 1.00 39578 0.87 60890 0.89 61867 0.92 

6.4. Computational experiments with models with set-up costs for 

inter-hub arcs 

We finally summarize the results of the last series of experi- 

ments that we have run, where we have considered fixed set-up 

costs for the activated interhub arcs. For these experiments the 

tested formulations include binary decision variables X t 
kl 

that rep- 

resent the interhub arcs that are activated, the additional set of 

constraints (4a) that force the activation of inter-hub arcs when 

they are used for sending flows, and the additional term (3a) in 

the objective function to compute the total set-up cost of the ac- 

tivated arcs. We have used CAB and AP instances with n ∈ {10, 15, 

20}, p = 3 , | T | = 2 , and α = 0 . 75 . Furthermore, we have considered 

set-up costs for the interhub arcs independent from the carriers 

and the arcs, i.e., h t 
kl 

= F for all k , l ∈ H t , t ∈ T . The tested values are 

F = 50 , 0 0 0 × s with s ∈ { 0 , 1 , . . . , 10 } , namely 0, 50,0 0 0, 10 0,0 0 0, 

150,0 0 0, 20 0,0 0 0, 250,0 0 0, 30 0,0 0 0, 350,0 0 0, 40 0,0 0 0, 450,0 0 0, 

and 50 0,0 0 0. Again a time limit of two hours has been set for each 

run. 

Results of these experiments are presented in Tables 9 and 

10 . Table 9 contains two blocks of rows, corresponding to CAB 

and AP instances, respectively. Each block contains one row per 

tested value of F , plus a final row with the averages over the 

tested values of F . The type of instance (CAB or AP) is given in 

the first column, and the values of F in the second column. The 

remaining columns show, for each HLP model, mean values over 

all the instances of the block with the tested value of F , of the 

following indicators: number of activated inter-hub arcs ( # IA ); 

total cost for interhub arc activation, in percentage of the overall 

routing plus set-up cost ( %IAC ); total cost for the routing of flows 

through non-inter-hub arcs, in % of the overall routing plus set-up 

cost ( %NRC ); total cost for the routing of flows through inter-hub 

arcs, in % of the overall routing plus set-up cost ( %IRC ); and 

mean amount of flow routed through each activated inter-hub arc 

( Flow ). Table 10 presents the same organization for rows, while the 

columns show, for each HLP model, average values of the following 

indicators: saving ratios ( SR ) produced by collaborative models rel- 

ative to the non-collaborative model (as defined in Section 6.2.2 ), 

percentage of commodities transferred between carriers (% TC ) 

and percentage of demand transferred between carriers (% TD ), 

the last two being only applicable for p -CCHLP and p -OCHLP 

models. 

The numerical results in Tables 9 and 10 show how a progres- 

sive increase in the set-up costs yields a rather regular decrease 

in the activation of inter-hub arcs, which is fully consistent with 

the expectations, as the savings secured by the presence of the 

discount factor become less prominent with respect to the acti- 

vation costs. In general, the contribution of the set-up cost term 
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Table 9 

Results on instances with set-up costs: impact on the use of inter-hub arcs. 

F NCHLP UCHLP CCHLP OCHLP 

# IA %IAC %NRC %IRC Flow # IA %IAC %NRC %IRC Flow # IA %IAC %NRC %IRC Flow # IA %IAC %NRC %IRC Flow 

CAB 0 6 .00 0 .00 55 .07 44 .93 8713 .09 28 .00 0 .00 24 .96 75 .04 3183 .00 6 .00 0 .00 39 .75 60 .25 10715 .44 6 .00 0 .00 46 .66 53 .34 10846 .50 

50,000 5 .67 0 .67 55 .44 43 .89 8915 .09 19 .33 2 .30 25 .82 71 .88 4389 .88 5 .67 0 .71 39 .56 59 .72 11062 .02 5 .33 0 .68 46 .73 52 .59 12193 .72 

100,000 5 .33 1 .16 55 .99 42 .86 9189 .70 15 .67 3 .31 28 .81 67 .88 5328 .35 5 .33 1 .36 39 .88 58 .76 11783 .27 4 .67 1 .12 47 .38 51 .50 13299 .33 

150,000 5 .00 1 .64 56 .00 42 .36 9843 .29 12 .67 3 .88 31 .60 64 .51 6758 .15 5 .33 2 .01 39 .66 58 .32 11783 .27 4 .67 1 .67 47 .14 51 .18 13299 .33 

200,000 4 .25 2 .12 54 .59 43 .29 9288 .36 8 .75 3 .69 37 .45 58 .86 6844 .45 4 .75 3 .14 36 .43 60 .43 12013 .28 4 .00 2 .16 46 .47 51 .37 11862 .67 

250,000 5 .50 1 .63 61 .31 37 .06 12365 .62 11 .50 3 .55 35 .74 60 .70 10282 .89 4 .50 1 .45 46 .97 51 .58 17788 .15 4 .50 1 .51 53 .09 45 .40 19655 .33 

300,000 4 .33 2 .26 58 .13 39 .61 11039 .55 7 .67 3 .54 41 .88 54 .58 10284 .60 4 .33 3 .16 41 .37 55 .47 13831 .93 3 .67 2 .53 49 .19 48 .29 16341 .94 

350,000 4 .00 2 .45 57 .66 39 .88 12744 .56 7 .00 3 .87 42 .65 53 .48 10571 .17 4 .00 3 .08 43 .26 53 .65 14380 .54 3 .33 2 .36 51 .08 46 .56 17261 .67 

400,000 4 .00 2 .79 57 .47 39 .74 12744 .56 6 .67 4 .27 42 .86 52 .86 10877 .55 3 .67 2 .85 45 .78 51 .37 15020 .77 3 .33 2 .68 50 .91 46 .40 17261 .67 

450,000 4 .00 3 .13 57 .27 39 .60 12744 .56 6 .00 4 .49 45 .05 50 .46 11581 .46 3 .67 3 .20 45 .63 51 .18 15020 .77 3 .33 3 .01 50 .75 46 .24 17261 .67 

500,000 3 .33 3 .18 59 .44 37 .39 13850 .13 6 .00 4 .96 44 .84 50 .20 11581 .46 3 .67 3 .54 45 .47 51 .00 15020 .77 3 .33 3 .33 50 .59 46 .08 17261 .67 

Average 4 .64 1 .93 56 .92 41 .15 10946 .61 11 .67 3 .45 36 .57 59 .99 8230 .62 4 .64 2 .28 41 .84 55 .88 13317 .75 4 .18 1 .93 48 .89 49 .18 14904 .36 

AP 0 6 .00 0 .00 87 .25 12 .75 6 .06 29 .00 0 .00 58 .27 41 .73 3 .52 6 .00 0 .00 75 .94 24 .06 10 .44 6 .00 0 .00 80 .94 19 .06 8 .94 

50,000 6 .00 0 .46 86 .84 12 .70 6 .06 25 .67 2 .39 57 .53 40 .07 3 .86 6 .00 0 .54 75 .53 23 .93 10 .44 6 .00 0 .52 80 .52 18 .95 8 .94 

100,000 5 .33 0 .81 86 .92 12 .27 6 .39 19 .00 3 .49 60 .03 36 .48 4 .92 6 .00 1 .07 75 .13 23 .80 10 .44 5 .67 0 .98 80 .35 18 .67 9 .23 

150,000 4 .33 0 .99 87 .17 11 .84 7 .21 15 .00 4 .09 62 .27 33 .64 5 .67 5 .67 1 .52 75 .01 23 .47 11 .27 5 .67 1 .47 79 .96 18 .57 9 .23 

200,000 4 .33 1 .31 86 .89 11 .80 7 .21 11 .67 4 .21 65 .78 30 .01 6 .12 5 .33 1 .91 75 .30 22 .80 11 .00 5 .67 1 .95 79 .57 18 .48 9 .23 

250,000 3 .67 1 .39 87 .55 11 .06 7 .65 10 .33 4 .62 67 .29 28 .10 6 .19 5 .00 2 .23 75 .20 22 .57 11 .53 5 .33 2 .29 79 .73 17 .98 9 .83 

300,000 3 .67 1 .67 87 .30 11 .03 7 .65 8 .00 4 .31 71 .31 24 .38 6 .70 4 .67 2 .49 75 .66 21 .85 11 .67 5 .00 2 .57 80 .01 17 .42 9 .91 

350,000 3 .33 1 .77 87 .80 10 .43 7 .72 6 .33 3 .99 74 .90 21 .11 7 .32 4 .33 2 .67 76 .17 21 .16 12 .00 4 .00 2 .39 81 .68 15 .93 10 .89 

400,000 3 .00 1 .82 88 .44 9 .74 7 .72 4 .67 3 .28 79 .03 17 .69 7 .69 4 .00 2 .81 76 .55 20 .64 12 .22 3 .33 2 .27 82 .77 14 .97 11 .22 

450,000 2 .33 1 .57 90 .07 8 .36 8 .24 3 .67 2 .91 82 .19 14 .90 7 .04 3 .33 2 .63 78 .79 18 .58 12 .56 3 .00 2 .31 83 .86 13 .84 10 .89 

500,000 1 .67 1 .26 92 .22 6 .52 7 .57 2 .67 2 .32 85 .77 11 .91 7 .15 3 .33 2 .91 78 .57 18 .52 12 .56 2 .67 2 .28 85 .39 12 .33 11 .00 

Average 3 .97 1 .19 88 .04 10 .77 7 .22 12 .36 3 .24 69 .49 27 .27 6 .02 4 .88 1 .89 76 .17 21 .94 11 .47 4 .76 1 .73 81 .34 16 .93 9 .94 
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Table 10 

Results on instances with set-up costs: impact on savings and carrier collaboration. 

F UCHLP CCHLP OCHLP 

SR SR % TC % TD SR % TC % TD 

CAB 0 0.882 0.923 48.58 40.20 0.944 49.58 53.14 

50,000 0.900 0.923 50.28 59.15 0.944 47.50 39.16 

100,000 0.912 0.923 48.93 48.70 0.945 51.79 59.97 

150,000 0.921 0.924 49.16 39.07 0.945 52.50 60.84 

200,000 0.941 0.933 50.50 59.59 0.952 50.86 56.56 

250,000 0.901 0.910 48.86 43.83 0.932 52.19 55.78 

300,000 0.932 0.929 47.32 43.64 0.946 47.95 40.73 

350,000 0.934 0.930 47.80 43.50 0.946 49.44 46.68 

400,000 0.935 0.930 50.47 50.12 0.946 47.24 39.85 

450,000 0.937 0.930 49.70 51.91 0.946 50.56 53.32 

500,000 0.939 0.930 52.29 59.10 0.946 50.56 53.32 

Average 0.922 0.927 49.49 49.46 0.945 49.97 50.87 

AP 0 0.813 0.855 52.96 53.42 0.885 48.34 47.64 

50,000 0.831 0.856 50.78 51.71 0.886 49.45 49.30 

100,000 0.844 0.856 50.98 51.75 0.887 51.66 52.36 

150,000 0.853 0.858 48.02 47.36 0.888 51.66 52.36 

200,000 0.860 0.859 52.30 52.87 0.889 48.34 47.64 

250,000 0.865 0.861 47.14 46.17 0.891 49.38 49.15 

300,000 0.870 0.862 53.99 54.84 0.892 51.59 52.20 

350,000 0.873 0.863 53.44 54.38 0.893 48.41 47.80 

400,000 0.875 0.864 48.26 48.00 0.894 52.18 52.76 

450,000 0.877 0.865 47.60 46.95 0.895 50.09 50.45 

500,000 0.878 0.866 53.61 54.04 0.895 50.03 50.29 

Average 0.858 0.861 50.83 51.05 0.891 50.10 50.18 

%IAC is small for all models, and the trend for the variation of %IRC 

and %NRC at increasing values of F shows no substantial differences 

among models. 

Columns under Flow of Table 9 show that increasing the value 

of F produces a regular increase on the mean amount of flow cir- 

culating per activated inter-hub arc. This confirms the capability 

of the considered collaborative policies for modeling economies of 

scale. Note the high differences in the values for the entries of such 

columns between the CAB and AP instances, which are due to the 

very different demand values on the adopted benchmarks which, 

on average, are 141379.33 and 241.67, respectively. 

By observing the results in Table 10 , it appears how the cost 

savings enabled by the collaborative models present different be- 

haviours when the set-up costs increase. In fact, the unrestricted 

collaboration model shows a regular and substantial decrease in 

the cost savings, whereas the other two collaborative policies turn 

out to be less sensitive to set-up cost increase. For the latter, no 

regular trend can be appreciated for the savings or the percent- 

age of transferred commodities and demand. On the other hand, 

while UCHLP shows a relative advantage with respect to CCHLP 

and OCHLP in terms of cost savings for low set-up values, such 

advantage tends to disappear as the fixed costs increase. 

7. Conclusions 

In this paper we have introduced several hub location models 

that address the potential gains that can be attained when collab- 

orative policies among carriers that operate on the same network 

are implemented. To the best of our knowledge this is the first 

time that collaboration among carriers is studied in the context of 

hub location, encompassing uncentralized systems as well. Three 

different collaborative policies have been proposed. Theoretical 

analyses have shown that in all cases arbitrarily large savings 

can be attained with respect to traditional non-collaborative 

approaches. For each model a mixed integer programming for- 

mulation has been proposed and computationally tested on two 

sets of testbed instances adapted from the literature. The obtained 

numerical results confirm empirically the advantages of each of 

the models and the influence of problem parameters on their 

performance. 

In our opinion this paper opens several avenues of research. 

On the one hand, our results indicate that the formulations pro- 

posed for the considered collaborative models are in practice very 

demanding computationally for available off-the-shelf solvers and 

only instances based on reduced size networks can be solved to 

proven optimality. This is particularly true for the p -OCHLP for- 

mulation, which incorporates the allocation variables s i and the 

origin-allocation constraints (5d) . Therefore ad hoc solution meth- 

ods for these models, exact or heuristic, able to produce optimal 

or near-optimal optimal solutions of larger instances in small com- 

puting times would allow to validate and extend the potential of 

our findings in logistics management. 

On the other hand, even if our theoretical analysis applies to 

general graphs and more general models, our computational ex- 

periments have been carried out for p -HLPs with instances de- 

fined over complete input graphs; in some cases we have con- 

sidered inter-hub set-up costs, but so far we have ignored set-up 

costs for the hubs that are activated. Indeed the trend nowadays 

is to consider more general settings, with not necessarily com- 

plete networks, set-up costs for all the elements that are activated 

and allowing for longer commodity routing paths with possibly 

more than one inter-hub arc. While from a model-building point 

of view this offers no particular difficulty, the requirements of the 

formulations tested in our computational experiments indicate that 

off-the-shelf software will no longer be useful for solving similar 

formulations for more general models, and specific sophisticated 

methodologies will be required. 

A similar observation applies with respect to discount factors. 

To alleviate notation we have assumed that the discount factor for 

inter-hub arcs is the same for all carriers, although all our develop- 

ments remain totally valid also when these discount factors are not 

necessarily the same. The reader may note however that the same 

could apply to each individual carrier, who could possibly have a 

heterogeneous fleet so the discount factor would not necessarily be 

the same for all vehicles. To the best of our knowledge this (really 

interesting issue) has not yet been addressed in the literature for 

classical models with one single carrier. 

Finally, the issue of how to distribute the obtained savings 

among carriers is a closely related topic, which deserves specific 

attention. In this paper we have shown that substantial savings can 

be attained by applying collaborative policies. It is thus clear that 

these savings can be redistributed among the carriers participating 

in the collaboration in such a way that each of them benefits from 

part of this savings. Still, the redistribution can be carried out ac- 

cording to different redistribution criteria. A thorough analysis of 

this topic from a game-theoretical perspective could be therefore 

an appropriate complement to the optimization viewpoint we have 

followed. Such a methodology has already been applied in Skorin- 

Kapov (1998) for the redistribution of the costs among demand 

points in a classical p -median hub location problem. A different 

perspective would be however needed in our case, not only be- 

cause several carriers operate simultaneously, but also because sav- 

ings must be redistributed among carriers (instead of redistribut- 

ing costs among demand points). 
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