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Enhanced Current-Limiting Droop Controller for

Grid-Connected Inverters to Guarantee Stability and

Maximize Power Injection under Grid Faults
Alexandros G. Paspatis, Student Member, IEEE, George C. Konstantopoulos, Member, IEEE, and

Josep M. Guerrero, Fellow, IEEE

Abstract—Droop controlled inverters are widely used to in-
tegrate distributed energy resources (DERs) to the smart grid
and provide ancillary services (frequency and voltage support).
However, during grid variations or faults, the droop control
scheme should inherit a current-limiting property to protect both
the inverter and the DER unit. In this brief, a novel structure of
the recently developed current-limiting droop (CLD) controller is
proposed to accomplish two main tasks: i) guarantee current lim-
itation with maximum power injection during grid faults and ii)
rigorously guarantee asymptotic stability of any equilibrium point
in a given bounded operating range of the closed-loop system for
a grid-connected inverter. Since the maximum power of the DER
unit can be utilized under grid faults with the proposed enhanced
CLD, then inspired by the latest fault-ride-through requirements,
it is further extended to provide voltage support to a faulty grid
via the maximum injection of reactive power. This is achieved by
simply adjusting the reactive power reference opposed to existing
control schemes which require adjustment of both the real and the
reactive power. Hence, a unified current-limiting control scheme
for grid-connected inverters under both normal and faulty grids
with a simplified voltage support mechanism is developed and
experimentally verified in this brief.

Index Terms—Nonlinear control, inverter, droop control,
current-limiting property, stability analysis, voltage support,
voltage sags.

I. INTRODUCTION

DROOP controlled inverters play a key role in modern

smart grids, where adaptability and autonomy repre-

sent essential properties for every inverter that interfaces a

distributed energy resource (DER) to the grid [1]. Inspired

by the response of conventional synchronous generators to

grid voltage and frequency variations, droop control has been

adopted by inverters to provide voltage and frequency support,

via adjusting the injected real and reactive power [2]. The

droop control methodology has dominated the control system

of inverters and still represents an active area of research in

terms of improving its dynamic performance using a virtual

impedance [3] or by adjusting the droop parameters [4]. In

the same framework, a universal droop controller has been

proposed in [5] that regulates the voltage and frequency of the

grid independently of the output impedance of the inverter;

thus significantly enhancing system robustness.

However, in addition to the desired droop control operation,

the stability of droop controlled inverters must be guaranteed
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at all times [6], [7]. Since the power measurements that are

required for the droop control operation introduce nonlinear

dynamics into the control system, the linearization method

(small-signal model) is often employed in order to investigate

the stability of a droop controlled inverter [8]. In the vast

majority of these cases, the stability analysis is based on

a root locus approach for the controller parameters, where

the accurate values of the inverter and grid/load parameters

are assumed to be known [5]. Even when the parameters

of the system are accurately known, which is not always

true in practice, the stability proof is conducted only for a

given inverter application. Hence, there is a need for designing

droop controllers for inverter-interfaced units that ensure the

stability of any equilibrium point within a given operating

range independently from the system parameters. For inverter-

based microgrids, conditions for stability have been presented

in [9] without requiring knowledge of the system parameters

while in [10], voltage stability is guaranteed using a nonlinear

quadratic droop control. Nevertheless, several assumptions on

the system characteristics are often taken into account to ensure

stability, such as a lossless network structure and small or

bounded power angles [9], [11], [12].

Although stability is an essential property of droop con-

trolled inverters, the protection of the inverter device is also of

great importance especially under faulty conditions. Maintain-

ing the inverter current below its predefined maximum value

is an essential requirement in order to avoid damages in the

power components. To this end, current-limiting techniques

have been proposed for grid-connected inverters in [13], [14]

or for inverter-interfaced microgrids in [15], [16] and ensure

a current limitation either through current control or by intro-

ducing a virtual resistance. However, these techniques either

assume fast regulation or require saturation units, external lim-

iters or a switching action between different dynamic control

schemes under normal and faulty grid conditions, which may

lead to instability, as discussed in [17], [18], [19]. In [20], it

is shown that when switching between the original and the

current-limiting controller occurs, two undesirable phenomena

may arise, i.e. integrator wind-up and latch-up. In order to

overcome these issues, it is important to obtain a unified

control scheme that incorporates a current-limiting property

within the droop control and thus, avoid switching between

different dynamic controllers. Recently, a droop controller that

can ensure a current limitation under a maximum value at

all times, without any switching operation, was proposed for

grid-tied inverters [21]. However, the controller proposed in
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[21] cannot utilize the full capacity of the inverter under faults

and hence, the current is limited to a value lower than the

maximum when a fault occurs depending on the grid voltage

sag. According to the current grid codes, the capacity of the

DERs connected to the grid should be utilized under faults in

order to support the grid voltage and avoid the instant tripping

of DERs [22], [23], [24], [25]. In this context, Fault-Ride-

Through (FRT) requirements have been recently introduced

to standardize the way DERs support the voltage at their

connection point, by injecting reactive power depending to the

voltage drop percentage [26].

In this brief, the droop control design for grid-connected

inverters with current-limiting characteristics is revisited and

an enhanced version of the current-limiting droop controller

is proposed. Using ultimate boundedness analysis, it is an-

alytically proven that the proposed controller can guarantee

the desired current-limiting property at all times, even under

transient phenomena, without using any saturation units or

depending on the system parameters. This current limitation

is proven independently from the grid voltage variations; thus

enabling maximum power utilization under grid faults. In

addition, the asymptotic stability of any equilibrium point

of the closed-loop system within a given operating range

is proven for the first time with the proposed controller.

Hence, compared to the original CLD controller presented in

[21], the novel contributions of the proposed enhanced CLD

controller include: i) new controller structure and dynamics

that guarantee the desired limitation and can utilize the maxi-

mum power capacity of the inverter under grid faults, i.e. the

inverter current reaches the maximum allowed value during

faults, ii) the asymptotic stability of the closed-loop system,

is proven for first time in this brief using a current-limiting

droop controller independently of the system parameters. It

is worth mentioning that opposed to existing stability proofs

that assume a small (or bounded) power angle [11], [12],

according to the authors knowledge, this is the first time

that the boundedness of the power angle is guaranteed by

the control design and does not represent an assumption.

Finally, since the maximum power capacity of the inverter

(or equivalently the DER unit) can be utilized under faults,

the final contribution of this brief includes an extension of

the proposed enhanced CLD to provide voltage support under

faults by injecting maximum reactive power (inspired by FRT

requirements). In contrast to existing voltage support methods

that adjust both the real and the reactive power reference [27],

[28], the proposed control scheme introduces only a change

of the reactive power reference to accomplish the same tasks.

The efficacy of the proposed control approach is validated with

extended experimental results for a grid-connected inverter

under both normal and faulty grid conditions.

II. SYSTEM MODELING AND PROBLEM DESCRIPTION

The power system under consideration is a single-phase

inverter connected to the grid through an LCL filter, as

depicted in Fig. 1. The capacitor of the filter is denoted as C

while the inductances are denoted as L and Lg with parasitic

resistances r and rg, respectively. The output voltage and

current of the inverter are v and i, while the capacitor voltage

dcV
+

-

L i

+

-
v vg

 Inverter

+

-
vc C

Lg ig

+

-
vo

rgr

Figure 1. The inverter connected to the grid via an LCL filter

is denoted as vc. The voltage and current of the grid are vg
and ig with vg =

√
2Vg sinωgt, where Vg is the RMS grid

voltage and ωg is the angular grid frequency.

The dynamic equations of the system can be obtained as

L
di

dt
= v − vc − ri

C
dvc

dt
= i− ig (1)

Lg
dig

dt
= vc − vg − rgig

where v represents the control input and corresponds to the

voltage at the output of the inverter.

Although the plant (1) is linear, the complexity of analyzing

a grid-connected inverter increases due to the nonlinearities

of the control dynamics, which arise from the calculation

of the real power P and reactive power Q, such as in the

case of the droop control. Different droop control schemes

have been proposed in the literature; however, the current-

limiting droop control proposed in [21] adopts the P ∼ V

and Q ∼ −ω droop expressions of the universal robust droop

controller [5], which have been shown to hold independently

of the output impedance. Hence, a desired current limitation

under a maximum value is achieved without using saturated

integrators that can lead to instability by incorporating the

bounded integral control (BIC) structure, developed in [29],

which mimics the response of a saturated integral controller

but does not suffer from integrator wind-up.

The significant drawback of the original CLD controller

[21] is that the maximum capacity of the inverter is not

utilized under voltage sags. In fact, only a limited amount

of power can be injected to the grid during faults which

corresponds to the percentage of the voltage drop. For example,

in a short circuit scenario, the injected current will be zero,

which is similar to disconnecting the inverter. Thus the inverter

cannot support the grid voltage under faults. In addition, the

asymptotic stability of the closed-loop system has not been

proven yet and therefore the stable operation of the grid-

connected inverter cannot be guaranteed. To this end, a novel

enhanced current-limiting droop controller that overcomes all

the above limitations is presented in the sequel.

III. THE PROPOSED CONTROLLER

The main goal in this paper is to propose a droop controller

that inherently limits the inverter current to protect the device

under unrealistic power demands or under grid faults, while

supporting the grid voltage at all times. Hence, inspired by

the structure of the original CLD in [21], a dynamic virtual

resistance is introduced in series with the filter inductor

through the control input v, which should remain positive and

bounded. Although this bounded dynamic virtual resistance
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Figure 2. Proposed controller implementation

can be implemented using traditional integral control with

saturation, such an approach can lead to integrator wind-up

and instability [17]. Therefore, the bounded integral control

(BIC) concept proposed in [29] is utilized here to overcome

this limitation. Finally, due to the virtual resistance introduced

from the control design, the P ∼ V and Q ∼ −ω droop

expressions of the universal droop controller are employed

[5], [30]. Keeping in mind these facts, in order to overcome

the limitations of the original CLD mentioned in the previous

section, the novel control structure of the current-limiting

droop controller proposed in this work takes the form:

v = vo +
(w − wm)

2

∆w2
m

(√
2E∗ sin(ωgt+ δ)− wi

)

, (2)

with control dynamics

[

ẇ
ẇq

]

=





0 −cwf(Pg, Vg)w
2l−1
q

cwwq

l∆w2
m
f(Pg, Vg) −

kw
l

(

(w−wm)2

∆w2
m

+w2l
q −1

)





[

w − wm
wq

]

(3)
[

δ̇

δ̇q

]

=





0 cδg(Qg, ωg)δ
2l−1
q

−

cδδq

l∆δ2m
g(Qg, ωg) −

kδ
l

(

δ2

∆δ2m
+δ2lq −1

)





[

δ
δq

]

(4)

where l ≥ 1 ∈ N and f(Pg, Vg) and g(Qg, ωg) are given by

f(Pg, Vg) = n(Pset−Pg)+Ke(E
∗−Vg) (5)

g(Qg,ωg)= m(Qg−Qset) + ω∗ − ωg (6)

and represent the droop control expressions, with cw, cδ , kw,

kδ , wm, ∆wm and ∆δm being positive constant parameters

of the controller, E∗ and ω∗ being the rated grid voltage and

frequency and n, m representing the droop coefficients. The

initial conditions are defined as w0 = wm, wq0 = 1 and δ0 =
0, δq0 = 1.

As it is obvious from Fig. 1, when the inverter is not

connected to the grid, then vo = vg and when the relay closes,

vo = vc. Parameters w and δ represent a virtual resistance and

phase shift, respectively, which vary according to the nonlinear

dynamic expressions (3)-(4). In order to guarantee bounded-

ness of the controller states w,wq, δ and δq without using satu-

ration units, a generalized version of the BIC [29], is proposed

in this brief depending on the value of l ≥ 1 ∈ N . To further

explain this, one can consider the functions Ww =
(w−wm)2

∆w2
m

+w2l
q

and Wδ = δ2

∆δ2m
+δ2lq for systems (3) and (4), respectively, and

following similar analysis with [19], [21], [29], [31], it can be

easily proven that the controller states w, wq and δ, δq will start

and remain on the sets Ew =
{

w,wq ∈ R :
(w−wm)2

∆w2
m

+w2l
q =1

}

and Eδ =
{

δ, δq ∈ R : δ2

∆δ2m
+δ2lq =1

}

, based on the given initial

conditions. Thus, it holds that w ∈ [wmin, wmax] > 0 and

δ ∈ [−∆δm,∆δm] for all t ≥ 0. Note that for l = 1, the

dynamics (3)-(4) take the form of the original BIC [29], while

wmin = wm − ∆wm, wmax = wm + ∆wm, ∆δm can be

set by the control operator and represent the minimum and

maximum values of the virtual resistance and the maximum

absolute value of the phase shift, respectively.

Regarding the selection of the rest of the controller param-

eters, the variables cw and cδ represent the controller integral

gains and the variables kw and kδ are used to increase the

robustness of the control states wq and δq. These parameters

can be selected according to the analysis in [21]. Furthermore,

note that w0 = wm corresponds to the initial current Im
that flows through the LC filter when the switch in Fig. 1

is open (before grid connection) and thus, it can be selected

as wm = E∗

Im
= E∗

ωgCVg

√

(

1− ω2
gLC

)2
+ (rωgC)2.

By removing the terms Ke(E
∗ − Vg) and ω∗ − ωg from

equations (5) and (6), the proposed controller can easily change

its operation from the PQ-droop mode to the PQ-set mode in

order to regulate the real and reactive power at their reference

values. It is underlined that, compared to the original CLD

in [21], here the proposed enhanced controller introduces

the generalized nonlinear dynamics (3)-(4) and a different

expression for the control input v given in (2). In particular,

the proposed inverter voltage v depends only on the virtual

resistance w and the phase shift δ (controller states) and makes

use of the rated value E∗ of the voltage. The new structure

of the controller ensures that the maximum power capacity of

the inverter is utilized under faults and facilitates a rigorous

stability analysis, as shown in the section that follows, which

represent two of the key contributions of this brief.

IV. STABILITY ANALYSIS

A. Current-limiting property

By applying the proposed controller (2) into the original

system dynamics (1) and assuming grid-connected operation

where vo = vc, the closed-loop dynamics of the inverter

current become

L
di

dt
= −ri− (w − wm)

2

∆w2
m

wi+
(w − wm)

2

∆w2
m

√
2E∗ sin(ωgt+δ).

(7)

For system (7), consider the continuous differentiable function

V representing the energy stored in the inductor L, i.e.

V =
1

2
Li2. (8)

Since w ∈ [wmin, wmax] > 0 for all t ≥ 0 according to the
boundedness property of the generalized BIC explained above,
the time derivative of V is calculated as

V̇ =−ri2 − (w − wm)2

∆w2
m

wi2+
(w − wm)2

∆w2
m

√
2E∗i sin(ωgt+ δ)

≤−ri2 − (w − wm)2

∆w2
m

wmini
2+

(w − wm)2

∆w2
m

√
2E∗|i||sin(ωgt+ δ)|

≤−ri2, ∀ |i| ≥
√
2E∗

wmin

.
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Thus, according to the Theorem 4.18 in [32], there exists a

KL function β so that for any initial condition i (0) , there is

a T ≥ 0 such that

|i (t)| ≤ β (|i (0)| , t) ∀0 ≤ t ≤ T

|i (t)| ≤
√
2E∗

wmin
∀t ≥ T,

proving that the solution of the inverter current is uniformly

ultimately bounded. Note that if initially |i (0)| ≤
√

2E∗

wmin
, then

T = 0, i.e. it holds true that

|i(t)| ≤
√
2E∗

wmin
, ∀t ≥ 0. (9)

Since wmin is linked to the controller parameters (wmin =
wm−∆wm), which are designed by the user, then by selecting

wmin =
E∗

Imax
(10)

it yields

|i(t)| ≤
√
2Imax, ∀t ≥ 0. (11)

The previous inequality holds for any t ≥ 0 and for any

constant positive Imax. As a result

I ≤ Imax, ∀t ≥ 0, (12)

where I is the RMS value of the inverter current, showing that

the proposed controller introduces a current-limiting property

below a given value Imax, that can be selected by the control

operator. Since inequalities (9) and (12) do not depend on the

grid voltage or frequency, i.e. Vg or ωg , it is clear that the

proposed controller can limit the RMS value of the current

under Imax irrespectively of grid variations or faults, utilizing

the maximum power capacity of the inverter at all times. This

is a significant advantage compared to the original CLD.

B. Asymptotic stability

In the previous subsection, the dynamic model (1) was used

to prove the desired current limitation for the instantaneous

value of the current, irrespective of the functions f(Pg, Vg)
and g(Qg,ωg); hence, the current-limiting property holds at all

times, even during transients. However, to investigate whether

the closed-loop system can regulate the real and reactive

power or operate under the droop control mode, the functions

f(Pg, Vg) and g(Qg,ωg) should be considered in the analysis.

Note that for a single-phase inverter, the Pg and Qg ex-

pressions represent the average real and reactive power of the

inverter. Hence, as it is shown in [9], [11], [33], in order

to analyze the stability of a droop-controlled single-phase

inverter, the expressions of Pg and Qg that use the RMS

voltages and the power angles, i.e. the phasor voltages, should

be utilized. This approach can be used in this work since the

inverter frequency does not introduce additional dynamics due

to the utilization of the PLL to obtain ωg (PLL response is

much faster than the inverter and droop control dynamics [34]

and hence the phasor analysis makes sense).
As it can be seen from (7), the dynamics of the inverter

current, when grid-connection has been achieved, are partially
decoupled from the capacitor voltage and grid current dynam-
ics due to the feed-forward term vc used in (2). Thus, the

Veq

Vg

Lg IgC

Lg Ig

CI
Vg

 2

2

*m

m

w w

w
E 






rg

rgL

Z

r

 2

2

*m

m

w w

w
E 






 

L

 2

2

m

m

w w
w

w




r I

I

 2

2

m

m

w w
w

w




Figure 3. Equivalent circuit of the closed-loop system.

equivalent circuit of the grid-connected inverter takes the form
shown in Fig. 3. Here,

Veq = −jXCI

where Xc =
1

ωgC
and

I =
E∗ (w−wm)2

∆w2
m

∠δ

(w−wm)2

∆w2
m

w + r + jωgL
.

Considering that Vg = Vg∠0
o, then the real and reactive

power delivered at the grid are given from the following
expressions explained in [33] and [35]:

Pg = −

V 2
g

Z
cos (θZ)+

VgE
∗ (w − wm)2Xc

∆w2
m

√

(

(w−wm)2

∆w2
m

w+r

)2

+(ωgL)
2Z

cos(ϕ) (13)

Qg =−

V 2
g

Z
sin (θZ) −

VgE
∗ (w − wm)2Xc

∆w2
m

√

(

(w−wm)2

∆w2
m

w+r

)2

+(ωgL)
2Z

sin(ϕ), (14)

with Z = Z∠θZ =

√

r2g+
(

ωgLg−
1

ωgC

)2
∠tan−1

(

ωgLg−
1

ωgC

rg

)

and

ϕ=δ−tan−1





ωgL

(w−wm)2

∆w2
m

w+r



−θZ−
π
2 . Since δ is bounded, i.e. δ ∈

[−∆δm,∆δm], then ϕ is also bounded and can take positive

or negative values to allow the inverter to inject or receive

reactive power from the grid. Thus, without loss of generality,

we can assume that ϕ ∈
(

−π
2 ,

π
2

)

and ω2
gLgC < 1.

The closed-loop dynamics for the stability analysis can be

obtained by combining (3)-(6) with (13)-(14) and the state

vector is given as x = [wwq δ δq]
T
. Note that by considering

constant Vg and ωg (not necessarily equal to their rated values),

an equilibrium point xe = [we wqe δe δqe]
T

of the closed-loop

system can be obtained. Hence, the stability properties of the

grid-connected inverter under the proposed enhanced CLD are

summarized in the following proposition.

Proposition 1. Every equilibrium point xe = [we wqe δe δqe]
T

of the closed-loop system obtained by (3)-(6) and (13)-(14),
with we ∈

(

wmin,
wm
3

)

and δe ∈ (−∆δm,∆δm) is asymptot-
ically stable when ∆δm is selected as

∆δm=min

{∣

∣

∣

∣

∣

max

{

0,
π

2
+tan

−1

(

2
(

(wmin + r)2+(ωgL)
2
)

ωgL(3wmin−wm)
−

wmin+r

ωgL

)}

+

+tan
−1

(

ωgL

wmin + r

)

+ θZ

∣

∣

∣

∣

, π+tan
−1

(

27ωgL∆w
2
m

4w3
m + 27∆w2

mr

)

+ θZ

}

. (15)

Proof: Considering any equilibrium point xe =
[we wqe δe δqe]

T
with we ∈

(

wmin,
wm
3

)

and δe ∈
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(−∆δm,∆δm), the Jacobian matrix of the system takes the
form

A =





AT 02x1 02x1
A1 −2kww

2l
qe 0

A2 0 −2kδδ
2l
qe



 ,

where

AT=





−aζ cos(ϕe)−
aωgLψ∆w2

m
ε

sin(ϕe) −a (we − wm)2 sin(ϕe)

bζ sin(ϕe)−
bωgLψ∆w2

m
ε

cos(ϕe) −b (we − wm)2 cos(ϕe)





with ε =

((

(we−wm)

∆w2
m

2
we + r

)2

+ (ωgL)
2

)

∆w4
m,

a =
cwnVgE

∗w2l
qe

ωgC
√
εZ

, b =
cδmVgE

∗δ2lqe
ωgC

√
εZ

, ψ = (we − wm)3 (3we − wm) ,

γ =

(

(we−wm)2

∆w2
m

we + r

)

∆w2
mψ and ζ = γ

ε
− 2 (we − wm) .

Since we ∈
(

wmin,
wm
3

)

and δe ∈ (−∆δm,∆δm),
then wqe, δqe ∈ (0, 1] and therefore −2kww

2l
qe < 0 and

−2kδδ
2l
qe < 0 (for details see [21]). Hence, the eigenvalues

of A will have negative real parts if the eigenvalues of AT
have negative real parts. The characteristic polynomial that is
derived from the characteristic equation det [λI −AT ] = 0
takes the form

λ2+λ
((

b(we − wm)2 + aζ
)

cos(ϕe)

+
aωgLψ∆w2

m

ε
sin(ϕe)

)

+abζ (we − wm)2 = 0.

Since abζ (we − wm)
2
> 0, then xe is asymptotically stable

if
(

b(we − wm)
2
+aζ

)

cos(ϕe) +
aωgLψ∆w

2
m

ε
sin(ϕe)>0 (16)

is satisfied. Since ϕe ∈
(

−π
2 ,

π
2

)

, then

tan
−1











ωgL

(we−wm)2

∆w2
m

we + r











+ θZ < δe < π+tan
−1











ωgL

(we−wm)2

∆w2
m

we + r











+ θZ. (17)

The term b (we − wm)
2
cos(ϕe) is always positive and by

substituting all the considered variables, (16) will hold true if

tan(ϕe)>

2∆w2
m

((

(we−wm)2

∆w2
m

we+r

)2

+(ωgL)
2

)

ωgL (we − wm)2 (3we − wm)
−

(

(we−wm)2

∆w2
m

we+r

)

ωgL
(18)

yielding

δe>tan
−1







ωgL

(we−wm)2

∆w2
m

we + r






+ θZ +

π

2
+

+ tan
−1











2∆w2
m

((

(we−wm)2

∆w2
m

we+r

)2

+(ωgL)
2

)

ωgL (we − wm)2 (3we − wm)
−

(

(we−wm)2

∆w2
m

we+r

)

ωgL











.

(19)

By combining inequalities (17) and (19), the condition that
δe needs to satisfy in order to guarantee asymptotic stability
becomes

max























0,
π

2
+tan

−1













2∆w2
m

((

(we−wm)2

∆w2
m

we+r

)2

+
(

ωgL
)2

)

ωgL (we − wm)2 (3we − wm)
−

(

(we−wm)2

∆w2
m

we+r

)

ωgL



































+

+tan
−1











ωgL

(we−wm)2

∆w2
m

we + r











+θZ <δe <π+tan
−1











ωgL

(we−wm)2

∆w2
m

we + r











+θZ. (20)

Since we ∈
(

wmin,
wm
3

)

, then (20) will be always satisfied if
the following condition holds:

max

{

0,
π

2
+ tan

−1

(

2
(

(wmin + r)2+(ωgL)
2
)

ωgL(3wmin−wm)
−

wmin + r

ωgL

)}

+ (21)

tan
−1

(

ωgL

wmin + r

)

+ θZ <δe<π + tan
−1

(

27ωgL∆w
2
m

4w3
m + 27∆w2

mr

)

+ θZ ,

where wmin = E∗

Imax
according to (10) and wm = wmin +

∆wm. Taking into account that −∆δm < δe < ∆δm from the

proposed controller dynamics and we ∈
(

wmin,
wm
3

)

, then if

∆δm is selected from (15), it is concluded that (21) is always

satisfied guaranteeing asymptotic stability for the considered

equilibrium point xe.

Remark 2. Compared to the existing approaches that consider

the assumption of small power angle to guarantee stability, here

the bound for the phase shift δ is guaranteed via the control

design and does not represent an assumption.

For typical values of L, E∗ and Imax in low power-

rating grid-connected inverter applications, where also small

parasitic resistances r and rg are considered, the term
2
(

(wmin+r)2+(ωgL)
2
)

ωgL(3wmin−wm)
− wmin+r

ωgL
takes small values and θZ ≈ −π

2
.

Therefore, from (21), it is clear that ∆δm can be simply

selected as ∆δm = π
2 . In practice, a slightly lower value than π

2

can be used to compensate the very small terms tan−1
(

ωgL

wmin+r

)

and tan−1

(

27ωgL∆w2
m

4w3
m+27∆w2

mr

)

. However, for inverters with higher

power ratings, the original expression (21) should be used to

realize ∆δm.

Remark 3. Proposition 1 shows that asymptotic stabil-

ity is guaranteed for any equilibrium point where we ∈
(

wmin,
wm
3

)

. This corresponds to the range of the inverter

RMS current 3Im < Ie < Imax, i.e.
3ωgCVg

√

(1−ω2
gLC)

2
+(rωgC)2.

<

Ie < Imax, which shows that the smaller the filter capacitor

C the largest the operating range for the inverter current with

guaranteed asymptotic stability.

V. EXTENDING THE PROPOSED CONTROLLER TO INHERIT

VOLTAGE SUPPORT CAPABILITY UNDER GRID FAULTS

As proven in Section IV-A, the maximum power capability
of the inverter can be now utilized with the proposed controller.
Thus, inspired by the FRT requirements that have been pro-
posed for DERs connected to the transmission and distribution
networks, the proposed controller can be extended to provide
support to the grid voltage under faults. As showcased in
different FRT applications [26], voltage support is demanded
when the voltage at the point of common coupling drops under
0.9 p.u. and it is practically accomplished through injection of
reactive power. In order to introduce the voltage support mode
(VSM) into the control design, expression (6) is proposed to
take the form:

g(Qg, af , ωg)=m(Qg− afQset−(1− af )Sn)+ af (ω
∗
−ωg), (22)

where af is a parameter defining whether VSM is enabled

(af = 0) when Vg < 0.9 p.u., or disabled (af = 1) when Vg ≥
0.9 p.u.

As discussed in the stability analysis of Section IV-B, the

phase shift δ in the proposed controller (2) is bounded in

the range δ ∈ [−∆δm,∆δm] independently from the function

g(Qg, af , ωg) in (4). Hence, when the phase shift δ reaches the

upper or lower limit of its value (∆δm or −∆δm), from (13)

and (14), it is clear that Pg = 0 in both cases while the reactive

power becomes Qg = −Sn and Qg = Sn, respectively, where

Sn is the nominal apparent power of the inverter. This property,

combined with the inherent current limitation, leads to the

VSM of the proposed controller as explained below.
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Table I
SYSTEM AND CONTROLLER PARAMETERS

Parameters Values Parameters Values

L 7mH ω∗ 2π x 50 rad/s

Lg 6mH l 1

r 0.5Ω rg 0.5Ω
C 11µF Imax 3A

E∗ 110V wmin 36.66Ω
Sn 330VA ∆wm 531.66Ω
cw 380 Ke 10
cδ 20 kw, kδ 1000
n 0.1667 m 0.0095

Considering a relatively stiff grid with Vg = E∗ and a small

voltage drop between the capacitor voltage Vc and the grid

voltage Vg , which can be neglected, then it yields

S = VcI ≈ VgI ≤ E∗Imax = Sn. (23)

This expression actually provides the selection of the maxi-

mum current Imax, when the nominal apparent power of the

inverter is known, i.e. Imax = Sn
E∗ .

However, under grid faults, the grid voltage Vg drops by

a percentage p and then according to (23), the proposed

controller limits the apparent power below (1 − p)VgImax.

When VSM is enabled, i.e. p > 0.1, then αf = 0 and according

to (4) and (22), the dynamics of the phase shift δ become

δ̇ = cδm(Qg − Sn)δ
2l
q . (24)

Since the apparent power S of the inverter is limited below

(1 − p)VgImax due to the current-limiting property, then in

(24) there is

δ̇=cδm(Qg−Sn)δ
2l
q ≤ cδm((1−p)VgImax−E∗Imax)δ

2l
q <0.

This means that the phase shift δ will keep decreasing and
since δ ∈ [−∆δm,∆δm], due to the bounded control structure
of (4), there is δ → −∆δm. This means that Qg → Qe =
(1−p)E∗Imax < Sn, i.e. the reactive power will be regulated
to the maximum apparent power under the grid voltage drop.
Obviously, the real power will automatically converge to zero
since

Pg → Pe =

√

((1− p)E∗Imax)
2 −Q2

e = 0.

This property indicates that opposed to existing algorithms

that change both the real and reactive power references during

faults, the proposed controller requires only a change in the

phase shift dynamics of δ which are related to the reactive

power while the real power will automatically drop to zero

to allow maximum reactive power injection with an inherent

current limitation and support the grid voltage. Furthermore,

the change of the value of af during grid faults, changes

only the function g(Qg, af , ωg) that is being integrated, while

in conventional approaches the controller switches between

dynamic controllers. Hence, the proposed controller keeps a

unified structure with the same dynamic states at all times.

VI. EXPERIMENTAL VALIDATION

To verify the proposed control approach, a single-phase

inverter with rated power Sn = 330VA was experimentally

tested using a modified version of the Texas Instrument (TI)

Development Kit HV DC/AC Solar Inverter connected to

a Chroma 61830 Regenerative Grid Simulator. The system

and controller parameters are shown in Table I. A sinusoidal

 

 
Q: [75 Var/div] 

P: [75 W/div] 

Figure 4. Operation under normal grid conditions

 

Q: [75 Var/div] 

P: [75 W/div] 

ig: [5 A/div] 

vc: [50 V/div] 

Figure 5. Transient response when Pset changes from 225W to 350W and
Qset = 0 (current-limiting property)

tracking algorithm PLL was used to obtain the required

ωg. The inverter switching frequency was 15 kHz while the

proposed controller was implemented using a F28M35H52C1

DSP with a sampling frequency of 4 kHz. A lower sampling

frequency (compared to the switching frequency) was selected,

as commonly done when implementing the power control

loops for inverter applications. For the droop functions, it is

expected that at the nominal power Sn, a maximum of 5%
deviation of the voltage and 1% deviation of the frequency

is allowed [36]. Thus, since the P ∼ V and Q ∼ −ω

droop expressions are being used, the droop coefficients can

be calculated as n = 0.05KeE
∗

Sn
for the real power droop and

m = 0.01ω∗

Sn
for the reactive power droop, according to [5]. The

real and reactive power is calculated using the measurements

of the capacitor voltage vc and the inverter current i, which are

available at the TI inverter kit. For typical low-power inverter

applications, the real and reactive power delivered to the grid

(Pg and Qg) are very close to the values of the real and reactive

power delivered at the filter capacitor (P and Q), and hence

P and Q can be used in the controller dynamics based on the

measurements of vc and i to simplify the implementation.
To verify both PQ-set control and PQ-droop control modes

of the proposed controller, in Fig. 4 the following scenario

is presented: At t = 0.25 s the inverter is connected to the

grid and the real and reactive power reference values are set

to 150W and 0Var, respectively. After 1 s, the real power

reference is increased to 225W and 1 s later the reactive power

reference is increased to 75Var. As it is shown in Fig. 4, both

P and Q reach the desired values after a short transient. The

real power droop control is enabled after 1 s and the real power

drops in order to bring the output voltage of the inverter closer
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Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

vc: [50 V/div] 

vc: [50 V/div] Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

Figure 6. Operation under 37% drop of the grid voltage (110V → 70V)

 

Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

vc: [50 V/div] 

vc: [50 V/div] Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

Figure 7. Operation under 50% drop of the grid voltage (110V → 55V)

to the rated value. Similarly, the reactive power droop control

is enabled 1 s later and the injected reactive power drops since

during that period the grid frequency was at 49.98Hz, i.e.

lower than the rated ω∗. In order to verify the current-limiting

property (Imax = 3A), in Fig. 5, the reference value of real

power Pset is changed from 225W to 350W when the reactive

power is zero. As it can be seen in Fig. 5, the RMS inverter

current value is limited to almost 3A and hence, the output real

power is limited to slightly below 330W, which corresponds

to Sn for Q = 0. Thus, it is validated that the proposed

controller protects the inverter from unrealistic power reference

values. It is noteworthy that a THD around 5% is present at the

grid current waveform. This is due to the fact that inner loop

controllers are not considered in the controller implementation

since the main goal of this brief is to propose the enhanced

CLD controller and rigorously prove its theoretical current-

limiting and stability properties for first time. However, when

lower THD is required, conventional inner current and voltage

control loops can be considered.

In order to test the proposed controller efficacy under grid

faults, in Fig. 6, a drop of the grid voltage from the nominal

value (110V) to 70V is applied at 340ms. Due to the voltage

drop, the real power increases and the current reaches its

upper limit, leading the real power to its steady-state value

Pe =
√

(1− ρ)2 S2
n −Q2

e =
√
0.6323302 − 622 W = 198W. When

the fault is cleared, both the real and reactive power return

to their original values according to the droop control after a

 

Q: [75 Var/div] 

P: [75 W/div] 

ig: [2 A/div] 

vc: [50 V/div] 

Q: [75 Var/div] 

P: [75 W/div] vc: [50 V/div] 

ig: [2 A/div] 

Figure 8. Operation under 50% drop of the grid voltage (110V → 55V)
with voltage support enabled

short transient. One can see that during this short transient,

the voltage returns to its nominal value instantly while the

current remains at its maximum value for a short period of

time. Hence, as it is depicted in Fig. 6, the apparent power

is driven from the maximum available power during the fault

to Sn, for a short time before returning to its original value,

however it never exceeds Sn as required. At the bottom part of

Fig. 6, the instances when the fault occurs and is being cleared

are presented, where it can be clearly observed that the current

remains below its maximum value during transients as well.

A similar response is observed for a voltage drop of 50% of

the nominal voltage in Fig. 7. Compared to the original CLD

in [21], where the inverter current is limited to lower values

under faults (Ie ≤ (1− ρ) Imax), here, the proposed controller

leads the inverter current to almost Imax = 3A; thus utilizing

the maximum power capacity of the inverter.

Since the maximum power utilization is now verified under

grid faults, the voltage support mode can be enabled in the

control system, as explained in Section V. Although the

voltage support operation based on FRT requirements is mainly

applied to three-phase inverters for MV and HV grids, very

recently, the voltage support capability has shown increased

interest for single-phase inverters connected to the LV grid

as well [37]. The scenario of a 50% voltage drop is again

tested while the inverter operates in the PQ-droop mode. As

illustrated in Fig. 8, when the voltage sag occurs, the VSM

algorithm is enabled and reactive power is maximized to

support the voltage, while real power drops automatically to

values close to 0W, as described in Session V. As it can be

observed in Fig. 8, when the fault is cleared, the real and

reactive powers return to their original values. Note that the

inverter current reaches the upper limit during the fault but

never violates it, even during transients, as rigorously proven

by the nonlinear ultimate boundedness theory in Section IV-A.

VII. CONCLUSIONS

A new current-limiting droop controller for grid-connected

inverters was proposed in this brief to guarantee the maximum

power utilization of the inverters under grid faults and closed-

loop system stability. By addressing all limitations of the

original CLD, the proposed enhanced version facilitates a

rigorous asymptotic stability proof of any equilibrium point
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within a given range. The proposed controller structure was

further extended to provide voltage support under grid faults.

Extensive experimental results verified the proposed control

approach under normal and faulty grid conditions.

Although the inherent current limitation with voltage sup-

port capability and guaranteed closed-loop stability were the

key contributions of this work, the validation at higher power

levels and the optimal design of the LCL filter to further

enhance the power quality are interesting topics for future

research. These should be combined with an analysis of the

effects of delays that may arise during the practical implemen-

tation of the proposed controller, both in the cases of single and

cascaded control design (including inner current and voltage

control loops).
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