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a b s t r a c t

In structural health monitoring (SHM), ‘data driven models’ are often applied to investigate
the relationship between the dynamic properties of a structure and environmental/opera-
tional conditions. Dynamic properties and environmental/operational conditions may not
be directly measured but are rather inferred based on measured structural response data.
Conventional data driven models assume training data as precise values without uncer-
tainty, but this may not be justified when they are identified by operational modal analysis
(OMA) where identification uncertainty can be significant. The associated confidence or
precision may also vary depending on their identification uncertainties. This paper devel-
ops a Bayesian data driven model for modal properties identified from OMA. Identification
uncertainty is incorporated fundamentally through the posterior distribution of modal
properties of interest given the ambient vibration measurements. A Gaussian Process
model is used for describing the potential unknown relationship between the modal prop-
erties and environmental/operational condition, which is subjected to OMA identification
uncertainty. An efficient framework is developed to facilitate computation. The proposed
method is validated by synthetic and laboratory data. Typhoon data from two tall buildings
illustrates the field application of the proposed method.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Structural health monitoring (SHM) aims at assessing the physical conditions of structures based on measured response
data with applications in, e.g., damage detection and maintenance [1–5]. With an increasing number of SHM systems built
into modern structures such as tall buildings and long-span bridges [1,6], it has the premise for evaluating structural service-
ability and reliability throughout their whole life-cycle. Various quantities can be measured for SHM including strain, pres-
sure and vibration. Among others, vibration-based SHM technique has become a popular non-destructive method where the
modal parameters (e.g., natural frequencies, damping ratios and mode shapes) identified from vibration response data are
investigated [7–10]. One premise is that by tracking the changes of these modal parameters against the environmental or
operational conditions, it may be possible to monitor the health condition of the subject structure.

Operational modal analysis (OMA), also known as ambient modal identification, aims at identifying modal parameters
based on vibration response of a tested structure under natural excitations such as wind, microtremor and cultural activities.
It can be conducted when the structure is under operational condition without artificial loading, where the unknown
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excitations are assumed to be statistically random. For its high economy and convenience in applications, OMA has gained
popularity over the past few decades [11–14]. Since the loading information is unknown and cannot be directly controlled,
the associated uncertainty of identified modal parameters is a major concern in OMA. Methods have been developed for
quantifying identification uncertainties, e.g. [15–17].

One way of understanding dynamic behaviour of structures under different conditions is to apply ‘data driven regression
models’ [18–20], which aim at expressing the identified modal parameter values of structures from OMA as a function of
environmental or operational variables. In this regard, the modal properties and the environmental/ operational variables
are taken as training data for constructing the data driven models. Models used in the literature include Polynomial Chaos
Expansions [21]; Functionally Pooled model [22] and Kernel Principal Component Analysis [23]. Among others, Gaussian
Process (GP) has been found to offer an effective means for constructing data driven models [24]. Applications include using
GP time-series model with Principal Component Regression for structural response prediction [25]; treed GP model for
switching different environmental regimes [20]; GP model with the generalized likelihood ratio test for novelty detection
[26] and GP model under Engle-Granger framework for nonlinear cointegration [27]. A typical assumption of conventional
data driven models is that the training data are known precisely. However, this is usually not the case in SHM. For vibration-
based SHM, both the modal parameters and environmental/operational conditions may not be directly measured but are
rather identified from measured response data, which inevitably carry imprecision. Such uncertainty can be affected by test
configurations such as sensor noise and measurement duration, which can also vary among the identified training data
points. GP models considering uncertain input training data have been developed [28] where uncertainty is effectively incor-
porated when calculating the expected covariance function. It was shown that the expected covariance function can be
obtained analytically when using the squared exponential function and assuming Gaussian input noise. Monte Carlo expec-
tation maximization method has also been applied to compute the marginal evidence under uncertain input data in training
Gaussian process models [29]. The general problem of training a data driven model with uncertain input has been studied in
[30], which is known as ‘errors-in-variables regression’.

Conventionally, the uncertainty in output data is considered through the additive modelling error term in the GP model.
This is different from the imprecision arising from the identification uncertainty of training data in the SHM context of this
work, where the uncertainty need not be additive and the distribution should be consistent with its origin (e.g., how modal
properties are identified) rather than being subjected to heuristic choice.

Motivated by the above considerations, this paper proposes a Bayesian framework capable of inferring data driven models
with training data identified from OMA where their associated identification uncertainty is incorporated through the poste-
rior distribution given the ambient vibration measurements. Efficient computation requires one to express the posterior dis-
tribution of hyper parameters (related to data driven model) given the ambient vibration measurements in an explicit form
but that is highly non-trivial. In Section 3 we accomplish this for a general context (i.e., not limited to OMA) following a Baye-
sian approach, where the posterior distribution of hyper parameters is expressed in terms of that of the modal properties
(training data) and the marginal distribution of output training data given the input training data as well as the hyper param-
eters. Theoretical issues are investigated in detail. The resulting formula is intuitive and conducive to analysis and compu-
tation. The general framework is specialised to OMA and efficient computation strategy is proposed in Section 4 where a GP
model is used for inferring the hyperparameters. Computational efficiency is further enhanced in Section 5 by considering
the characteristics of OMA identification uncertainty in practice. Illustrative examples with synthetic and experimental data
are presented in Section 6, where the proposed method is compared with conventional GP model. It is also applied to SHM of
two tall buildings where the dynamic properties exhibiting amplitude dependence in natural frequency and damping ratio
during a typhoon event is investigated.

2. Problem context

Conventionally, data driven models assume that the training data are known precisely without uncertainty. Fig. 1 shows
the schematic diagram for this situation. The set of hyper parameters w of the data driven model are inferred directly based
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Fig. 1. Conventional data driven model.
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on the input and output training sets. This is not always the case in applications, however. Both the input and output training
data may not be directly measured but are rather identified based on observations or response measurements from the sys-
tem; and different training points may have different precision arising from different identification uncertainties.

In SHM for example, the relationship between the modal parameters (e.g., natural frequencies, damping ratios and mode
shapes) of the structures and environmental/operational conditions (e.g., temperature and power spectral density of the
excitation) is often investigated using data-driven models. In this context, both the dynamic properties and environmental/-
operational conditions may not be directly obtained but are identified based on the measured vibration response (e.g., accel-
eration data). The quality of the structural response data may vary due to sensor noise andmeasurement duration etc., which
leads to varying levels of uncertainty in the derived training data. When the identified dynamic properties and environmen-
tal/operational conditions are used as training data to infer the hyper parameters of the data driven model, their identifica-
tion uncertainty should be taken in consideration so that the quality of the training data is properly accounted for. This work
focuses on such context. Fig. 2 shows the schematic diagram of the problem described above. The input and output training
data xi; yif g (i ¼ 1; :::;ns where ns is the number of training points) are both identified from system measurements Di.
Acknowledging limited data and imperfect model, the ‘exact’ value of the quantity used as training data is unknown, or
philosophically speaking, does not exist. Only the posterior distribution of the input and output data given the measurement
D and in the context of identification model, i.e., p X;Y Djð Þ is available.

Making a probabilistic prediction of y for a given x requires the posterior distribution of hyper parameters w given the
measurement D, i.e., p w Djð Þ. This distribution is analytically intractable in general, however. As one key theoretical contri-
bution in this work, we will express p w Djð Þ, in terms of the posterior distribution of the training data, i.e., p X;Y Djð Þ, and the
conventional marginal distribution for data driven models, i.e., p Y X;wjð Þ, in order to facilitate computation.

3. Bayesian framework

Let h be a set of parameters identified from the available measured data set D. They contain three groups:

h ¼ X;Y;Z½ � ð1Þ

Here, X and Y are used as input and output training data for inferring the data driven model, respectively; Z contains the
remaining parameters identified from D but not related to the data driven model. Let w denote the hyper parameters that
describe the data driven model that gives a probabilistic description of Y given X. Using the theorem of total probability,
the marginal distribution of w given D is

p w Djð Þ ¼
Z

p w; h Djð Þdh ð2Þ

Using Baye’s theorem,

p w; h Djð Þ ¼ p D w; hjð Þp w; hð Þ
p Dð Þ ð3Þ

Substituting Eq. (3) into Eq. (2) gives

p w Djð Þ ¼ p Dð Þ�1
Z

p D w; hjð Þp w; hð Þdh ð4Þ

Given h, the probability distribution of D can be fully determined via p D hjð Þ. The additional information from w is there-
fore redundant, i.e.,
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p D w; hjð Þ ¼ p D hjð Þ ð5Þ

Further applying Baye’s theorem gives,

p D hjð Þ ¼ p h Djð Þp Dð Þ
p hð Þ ð6Þ

Substituting Eqs. (5) and (6) into Eq. (4) gives

p w Djð Þ ¼
Z

p h Djð Þp w; hð Þp hð Þ�1dh ð7Þ

Eq. (7) is now expressed in terms of the posterior distribution of h given D, i.e. p h Djð Þ, which encapsulates the posterior
uncertainty of h. However, the equation still contains information about Z (inside h), which is redundant when making infer-
ence about w. It is also necessary to rewrite p w; hð Þ in a more tractable form.

Recall h ¼ X;Y;Z½ � from Eq. (1),

p w; hð Þ ¼ p X;Y;Z;wð Þ ¼ p X;Y;Z wjð Þp wð Þ ð8Þ

Note that Z is not related to w. Assuming that X;Yf g and Z are conditionally independent for a given w:

p X;Y;Z wjð Þ ¼ p X;Y wjð Þp Zð Þ ð9Þ

Substituting Eq. (9) into Eq. (8) gives

p w; hð Þ ¼ p X;Y wjð Þp wð Þp Zð Þ ð10Þ

Eq. (9) also implies that X;Yf g and Z are unconditionally independent:

p X;Y;Zð Þ ¼
R
p X;Y;Z wjð Þp wð Þdw

¼ p Zð Þ
R
p X;Y wjð Þp wð Þdw

¼ p X;Yð Þp Zð Þ
ð11Þ

Substituting Eqs. (10) and (11) (noting that p hð Þ ¼ p X;Y;Zð Þ) into Eq. (7), the posterior distribution can now be expressed
as:

p w Djð Þ ¼
R R R

p X;Y;Z Djð ÞdZ p X;Y wjð Þp wð Þp X;Yð Þ�1
dXdY

¼
R R

p X;Y Djð Þp X;Y wjð Þp wð Þp X;Yð Þ�1
dXdY

¼
R R

p X;Y Djð Þp Y X;wjð Þp X;wð Þp X;Yð Þ�1
dXdY

¼
R R

p X;Y Djð Þp Y X;wjð Þp w Xjð Þp Y Xjð Þ�1
dXdY

ð12Þ

It is reasonable to assume that p w Xjð Þ is slow-varying with respect to w compared to p Y X;wjð Þ since only knowing X does
not provide much information about w due to the absence of Y. On the other hand, in the absence of knowledge about w that
characterises the probabilistic description of Y given X, p Y Xjð Þ is slow-varying with respect to X and Y compared to p Y X;wjð Þ
and hence can be assumed practically constant. We can now express p w Djð Þ as

p w Djð Þ /
Z Z

p X;Y Djð Þp Y X;wjð ÞdXdY ð13Þ

Eq. (13) provides the means for incorporating the identification uncertainty of training data when inferring about the
hyper parameters of the data driven model. It expresses the posterior distribution of w in terms of two posterior probability
density functions (PDFs), i.e., the posterior PDF of training set given the system measurements and the posterior PDF of out-
put data given input training data and hyperparameters. Compared to Eq. (2), Eq. (13) is computationally tractable since the
first term p X;Y Djð Þ results directly from Bayesian inference of X;Yf g based on measurement D and the second term p Y X;wjð Þ
results directly from the data driven model adopted.

4. Application to OMA data using GP model

The Bayesian framework in the previous section is generally applicable as long as the assumptions are met. In this section,
it is specialised to OMA context where D is a set of ambient vibration measurements. The training data is what one would
like to explain a potential phenomenon, e.g., amplitude dependence of natural frequency and damping in structural-wind
engineering. In this context, the input training X can be modal force PSD or other environmental conditions and the output
training data Y can comprise modal properties of interest such as natural frequencies or damping ratios. Both X and Y with
their associated uncertainties may be identified based on D using OMA techniques. The target is to construct a data driven
model for predicting modal properties Y as a function of environmental or operational variations X. A Gaussian Process
model is adopted for the relationship between X and Y.
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Recall that Eq. (13) is expressed in terms of two posterior PDFs. In Section 4.1, the first PDF p X;Y Djð Þ will be derived fol-
lowing an existing Bayesian OMA approach. The second PDF p Y X;wjð Þ will be derived based on Gaussian GP model in Sec-
tion 4.2. An efficient formulation is developed in Section 4.3 by considering the characteristics of posterior uncertainty for
OMA.

4.1. Bayesian operational modal analysis

First consider p X;Y Djð Þ in the context of OMA. For given measurement set Di, the posterior distribution p xi;yi Dij
� �

can be
obtained using a Bayesian operational modal analysis (BAYOMA) approach. Compared to non-Bayesian approaches, Bayesian
approach views modal identification as an inference problem. The modal parameters are encapsulated in the posterior dis-
tribution given measured data and modelling assumptions, which fundamentally addresses the identification uncertainty
through its posterior covariance. The identification formulations include using time domain data [31], frequency domain
data based on sample power spectral density [32–34] and Fast Fourier Transform (FFT) [35,36]. Approaches considering dif-
ferent situations in real implementation, e.g., asynchronous data [37,38] and buried mode [39], have also been developed
recently. Applications of BAYOMA approaches in SHM of modern civil infrastructures include super tall buildings [40,41]
and long-span bridges [42,43].

A frequency domain Bayesian OMA method [17,44] based on FFT of ambient vibration measurements is adopted in this
work. It does not involve averaging concept (not so for power spectral density based methods) and allow one to make infer-
ence based on the FFT data within a selected band around the mode(s) of interested (not so for time domain methods), which
simplifies the identification model and reduces the modelling error. The main theory is reviewed in this section. The data Di

is now the FFT of ambient acceleration measurement within a selected frequency band containing the modes of interest, say
Fkf g, and xi; yif g are the parameters in h to be identified from Di. At frequency fk, the FFT Fk is modelled as

Fk ¼
Xnm

j¼1

uj€gjk þ ek ð14Þ

whereuj and €gjk denote the mode shape and FFT of modal acceleration of the j th contributing mode in the band (j ¼ 1; :::;nm

where nm is the total number of contributing modes in the frequency band of interest), respectively; ek is the scaled FFT of
prediction error arising from measurement noise or modelling error. Assuming classically damped modes, the modal accel-
eration satisfies the modal equation of motion:

€gj tð Þ þ 2fjxj _gj tð Þ þx2
j gj tð Þ ¼ pj tð Þ ð15Þ

where xj ¼ 2pf j(rad/s); f j(Hz), fj and pj tð Þ are the natural frequency, damping ratio and modal force of the mode,
respectively.

Taking FFT on both sides of Eq. (15) and re-arranging (noting that gjk ¼ �€gjk=x
2
k and _gik ¼ �i€gjk=xk) gives

€gjk ¼ 1� b2
jk � i 2fbjk

� �h i�1
pjk; bjk ¼ f j=fk ð16Þ

The unknown modal forces are modelled as a stationary stochastic process with a constant PSD matrix within the reso-
nance band. The prediction error is modelled as Gaussian band-limited white noise, independent among different measure-
ment channels and with a common PSD constant within the resonance band. Substituting Eq. (16) into Eq. (14), the
theoretical PSD matrix of data is then given by

Ek ¼ E½FkF�k� ¼ UHkU
T þ SeIn ð17Þ

where U ¼ u1 � � � unm

� �
2 Rn�nm ; Se is the (constant) PSD of prediction error, In denotes the n� n identity matrix and

Hk 2 Cnm�nm is the theoretical PSD matrix of modal acceleration given by:

Hk ¼ diag hkð ÞSdiag h
�
k

� �
ð18Þ

Here, S is the PSD matrix of modal forces, hk 2 Cnm is the vector of modal frequency response function with

hjk ¼ 1� b2
jk � i 2fbjk

� �h i�1
ð19Þ

and diag hkð Þ denotes a diagonal matrix with the j th element equal to hjk.
Using Bayes’ theorem and assuming a uniform prior distribution, the PDF of h given Fkf g is proportional to the likelihood

function, i.e.,

p h Fkf gjð Þ / p Fkf g hjð Þ ð20Þ

Assuming long data duration, Fkf g are asymptotically independent at different frequencies and jointly (circularly sym-
metric) complex Gaussian [45]. The likelihood function is then given by:

Y.-C. Zhu, S.-K. Au /Mechanical Systems and Signal Processing 136 (2020) 106511 5



p Fkf g hjð Þ ¼ ðpÞ�nNf �
Y

k

detEkð Þ�1exp �
X

k

F�kE
�1
k Fk

" #

ð21Þ

It is more convenient to write:

p h Fkf gjð Þ / exp �LðhÞ½ � ð22Þ

where

L hð Þ ¼
X

k

lndetEk þ
X

k

F�kE
�1
k Fk ð23Þ

is the ‘negative log-likelihood function’ (NLLF).
For sufficient data, modal identification problem is ‘globally identifiable’ [46]. The posterior PDF (i.e., p h Fkf gjð Þ) then has a

centralised shape with a unique peak at the most probable value (MPV). The MPV of h can be determined by maximising the
posterior PDF (or equivalently minimising the NLLF with respect to h). The posterior PDF can be approximated by a Gaussian
PDF [46],

p h Fkf gjð Þ � 2pð Þ�nh=2 detĈ
� ��1=2

exp �1
2

h� ĥ
� �T

Ĉ
�1

h� ĥ
� �� 	

ð24Þ

where nh is the number of parameters in h; ĥ is the MPV and Ĉ is the posterior covariance matrix, equal to the inverse of
Hessian of NLLF at MPV. The posterior covariance of a particular parameter in h can be extracted from the corresponding

entry of Ĉ.
When the training data xi;yi


 �
is taken from h, for a given data Di, p xi;yi Dij

� �
can be expressed as:

p xi;yi Dij
� �

� 2pð Þ�1 detĈi

� ��1=2
exp �1

2
xi

yi

� 	

� x̂i

ŷi

� 	� T

Ĉ�1
i

xi

yi

� 	

� x̂i

ŷi

� 	� " #

ð25Þ

where Ĉi is the partition of Ĉ with respect to xi and yi.
The identification results of xi; yif g from Di will be taken as training data for constructing the Gaussian process model in

order to learn the relationship between X and Y. Given xi; yif gnsi¼1, the system measurements Dif gnsi¼1 are assumed to be inde-
pendent. Together with the fact that Di only depends on xi; yif g, we have p D X;Yjð Þ ¼Qns

i¼1p Di X;Yjð Þ ¼Qns
i¼1p Di xi; yijð Þ. Conse-

quently, using Baye’s theorem with a flat prior on X;Yð Þ, we have

p X;Y Djð Þ / p D X;Yjð Þ ¼
Yns

i¼1

p Di xi; yijð Þ /
Yns

i¼1

p xi;yi Dij
� �

¼ N
X

Y

� 	
X̂

Ŷ

" #

;
CX CXY

CYX CY

� 	
�
�
�
�
�

 !

ð26Þ

which is a Gaussian PDF with CX ¼ diag ½cx1 :::cxns �
� �

, CY ¼ diag ½cy1 :::cyns �
� �

and CXY ¼ CYX ¼ diag ½cx1y1 :::cxns yns �
� �

.

4.2. Gaussian process model

Now consider p Y X;wjð Þ for a GP model. Without loss of generality, a regression model with unknown relationship f

between a given input x and output y can be written as:

y ¼ f xð Þ þ e ð27Þ

where e accounts for modelling error. Instead of parameterising f , a GP model assumes that given the input data X the output
data Y are jointly Gaussian:

Y � GP M;Kþ r2
e I

� �
ð28Þ

It is characterised by the meanM and covariance K, which are functions of the input training data X and hyperparameters
w. The modelling error e is assumed to be Gaussian and its variance r2

e is a hyper parameter as well. Accordingly,

p Y X;wjð Þ ¼ 2pð Þ�ns=2det Kþ r2
e I

� ��1=2
exp �1

2
Y �Mð ÞT Kþ r2

e I
� ��1

Y �Mð Þ
� 

ð29Þ

4.3. Efficient formulation with BAYOMA

As apparent in Eq. (13), evaluating p w Djð Þ requires integrating the product of PDFs with respect to both input and output
training data. This may not be analytically tractable. For general cases, advanced numerical tools such as Monte Carlo inte-

6 Y.-C. Zhu, S.-K. Au /Mechanical Systems and Signal Processing 136 (2020) 106511



gration may be pursued. Here we develop a strategy that takes advantage of the properties of p X;Y Djð Þ for OMA to facilitate
computation.

First rewrite p X;Y Djð Þ as

p X;Y Djð Þ ¼ p Y X;Djð Þp X Djð Þ ð30Þ

For OMA, p X;Y Djð Þ is a Gaussian PDF (see Eq. (26)). Clearly, p X Djð Þ is a Gaussian PDF with mean X̂ and covariance matrix
CX. On the other hand, p Y X;Djð Þ is the conditional PDF, which from standard results is also a Gaussian PDF for Y with mean

Ŷ þ CYXC
�1
X X� X̂
� �

and covariance matrix CY � CYXC
�1
X CXY.

Substituting Eq. (30) into Eq. (13) and swapping the sequence of integration gives

p w Djð Þ /
Z Z

p Y X;wjð Þp Y X;Djð ÞdY
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F Xð Þ

p X Djð ÞdX ð31Þ

The inner integrand p Y X;wjð Þp Y X;Djð Þ is a product of two Gaussian PDFs with respect to Y, which can be integrated ana-
lytically. The result is a Gaussian-like form:

F Xð Þ ¼ 2pð Þ�ns=2det CWð Þ�1=2exp �1
2
WTC�1

W W

� 

ð32Þ

where

W ¼ Ŷ þ CYXC
�1
X X� X̂
� �

�M ð33Þ

CW ¼ CY � CYXC
�1
X CXY þ Kþ r2

e I ð34Þ

It is interesting to note thatW is simply the difference of the mean vectors of these two Gaussian PDFs; and CW is the sum
of the covariance matrices.

The resulting integrand F Xð Þp X Djð Þ in Eq. (31) generally depends on X in a nonlinear manner and is not proportional to a
standard distribution. Without resorting to brute-force numerical integration that is prohibitive, a Gaussian type approxima-
tion as in Section 3.2.2 of [47] is adopted, which gives

p w Djð Þ /
Z

F Xð Þp X Djð ÞdX � 2pð Þ�ns=2det C0
W

� ��1=2
exp �1

2
W0TC0�1

W W0
� 

ð35Þ

where

W0 ¼
R
WN X X̂;

�
�
� CX

� �

dX

¼ Ŷ �M0
ð36Þ

C0
W ¼ CY þ r2

e Iþ K0

� CXYC
�1
X

R
X� X̂
� �

MTN X X̂;
�
�
� CX

� �

dX

� CXYC
�1
X

R
M X� X̂
� �T

N X X̂;
�
�
� CX

� �

dX

þ
R
MMTN X X̂;

�
�
� CX

� �

dX�M0M0T

ð37Þ

with

M0 ¼
Z

MN X X̂;
�
�
� CX

� �

dX ð38Þ

K0 ¼
Z

KN X X̂;
�
�
� CX

� �

dX ð39Þ

A detailed investigation of the quality of this approximation can be found in [47]. The approximation is briefly explained
in the appendix. Whether the analytical expressions of W0 and C0

W (i.e., Eq. (36) and (37)) are available still depends on the
form of the mean and covariance function. For a zero mean function (i.e., M ¼ 0, commonly assumed for GP models), W0 and
C0

W can be simplified as:

W0 ¼ Ŷ ð40Þ
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C0
W ¼ CY þ r2

e Iþ K0 ð41Þ

which no longer depend on the posterior correlation CXY. On the other hand, it turns out [47] that when the covariance func-
tion K is linear, Gaussian, polynomial or a mixture of these three, K0 can be evaluated analytically. Consider the squared
exponential covariance function (which is widely used), i.e.,

K xi; xj
� �

¼ r2
f exp �1

2
xi � xj
� �T

w�1 xi � xj
� �

� 

ð42Þ

where rf and w are the hyper parameters that denote the signal variance and characteristic length-scale, the analytical
expression of K0 can be obtained as [28]

K0 xi; xj
� �

¼
r2

f exp � 1
2 x̂i � x̂j
� �T

wþ cxi þ cxj

� ��1
x̂i � x̂j
� �

� 

1þw�1 cxi þ cxj

� �

1� dij
� �

�
�
�

�
�
�

1=2 ð43Þ

where dij is the Kronecker delta, i.e., dij ¼ 1 if i ¼ j and zero otherwise.
For inferring the hyper parameters w, it is more convenient to work with the negative log-likelihood function

Lw ¼ 1
2
lndet C0

W

� �
þ 1
2
W0TC0�1

W W0 ð44Þ

such that

p w Djð Þ / exp �Lw
� �

ð45Þ

The hyper parameter w now can be obtained by maximising p w Djð Þ, or equivalently minimising Lw.

5. Further simplifications in specialised OMA

Eq. (44) applies to the general condition of OMA with long data. Below we consider some special situations that further
take advantage of characteristics of identification uncertainty in OMA.

5.1. Neglecting posterior correlation

For well separated modes, long data duration and small damping (which is commonly the case in OMA), the posterior
correlation between any pair among the identified modal parameters are asymptotically small (except for the posterior cor-
relation between damping ratio and modal force PSD) [48,49]. When xi; yif g come from such uncorrelated pairs, Eq. (26) can
be expressed as:

p X;Y Djð Þ ¼
Qns

i¼1
p xi Dijð Þp yi Dijð Þ

¼ p X Djð Þp Y Djð Þ
¼ N X X̂;

�
�
� CX

� �

N Y Ŷ;
�
�
� CY

� �

ð46Þ

Substituting Eq. (46) into Eq. (13) gives

p w Djð Þ /
Z Z

p Y Djð Þp X Djð Þp Y X;wjð ÞdXdY ¼
Z Z

p X Djð Þp Y X;wjð ÞdXp Y Djð ÞdY ð47Þ

The integrand p X Djð Þp Y X;wjð Þ depends on X in a non-linear manner. Applying an approximation similar to Eq. (35) gives
Z

p X Djð Þp Y X;wjð ÞdX � N Y M0;
�
� K00 þ r2

e I
� �

ð48Þ

where

M0 ¼
Z

MN X X̂;
�
�
� CX

� �

dX ð49Þ

K00 ¼ K0 þ
Z

MMTN X X̂;
�
�
� CX

� �

dX�M0M0T ð50Þ

Substituting Eq. (48) into Eq. (47) gives a product of two Gaussian PDFs with respect to Y, which yields a scaled Gaussian
PDF. Integrating Y out gives the scaling factor only. The resulting negative loglikelihood function now can be written as
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Lw ¼ 1
2
lndet CY þ K00 þ r2

e I
� �

þ 1
2

Ŷ �M0
� �T

CY þ K00 þ r2
e I

� ��1
Ŷ �M0
� �

ð51Þ

It is easy to check that this is consistent with Eq. (44) when CYX ¼ CXY ¼ 0.

5.2. Neglecting uncertainty of input training data

Consider the case where the uncertainty in input training data X can be neglected. For example, the environmental/op-
erational variables may be directly measured without identification process, e.g., the temperature. For such training data, the

posterior PDF of input data can be practically taken as a delta function at the MPV X̂, i.e.,

p X Djð Þ ¼ d X� X̂
� �

ð52Þ

Substituting Eq. (52) into Eq. (31) gives

p w Djð Þ /
R R

p Y X;Djð Þp Y X;wjð Þd X� X̂
� �

dXdY

¼
R
p Y X̂;D

�
�
�

� �

p Y X̂;w
�
�
�

� �

dY

¼
R
N Y Ŷ;

�
�
� CY

� �

N Y M̂;
�
�
� K̂þ r2

e I
� �

dY

¼ 2pð Þ�ns=2det CY þ K̂þ r2
e I

� ��1=2
exp � 1

2 Ŷ � M̂
� �T

CY þ K̂þ r2
e I

� ��1
Ŷ � M̂
� �� 

ð53Þ

where M̂ and K̂ are the conventional mean and covariance function calculated based on X
^

. The corresponding negative log-
likelihood function is now given by

Lw ¼ ns
2 ln2pþ 1

2 lndet CY þ K̂þ r2
e I

� �

þ 1
2 Ŷ � M̂
� �T

CY þ K̂þ r2
e I

� ��1
Ŷ � M̂
� � ð54Þ

which further simplifies the computation.

Although the term CY þ K̂þ r2
e I in Eq. (54) has an effect similar to simply adding non-stationary modelling errors for dif-

ferent training points, the nature is different. The imprecision in the training data considered in this work stems from the
remaining uncertainty after using information from the ambient measurements in the context of OMA model, which is
related to the quality of the measurement. The ‘output uncertainty’ considered in conventional data driven models refers
to the probability distribution of modelling error e (see Eq. (27)). It reflects the quality of the data driven model f when
expressing the output y as a function of the input x, which need not reflect consistently to the quality of measured response
data.

6. Illustrative examples

Three examples are presented to compare the performance of the classic GP model (which considers the training data as
precise values without uncertainty) and the proposed method that accounts for the identification uncertainty. Except for the
synthetic data example, the training data are first normalised (i.e., subtracted by the sample mean and divided by sample
standard deviation) to facilitate computation. The GP models used in these examples are based on the squared exponential
covariance function and zero mean function. The first example is based on synthetic data, where the true function between
the input and output data exists and is known in advance, so that the method can be benchmarked. The second example is
based on OMA data measured from a laboratory shear building model, where physical complexity is naturally reflected in the
measurements and there need not be any ‘true’ function between the input and output training data. Finally, the proposed
method is applied to OMA data of two tall buildings during a typhoon event, which illustrates its feasibility to SHM data in
real applications.

6.1. Synthetic data validation

In order to investigate the behaviour of both the conventional GP model and the GP model considering identification
uncertainty, a simple sinusoidal function f xð Þ ¼ sinx is considered in this example. Twenty training data points of X are uni-
formly sampled from the range [�1,10]. Additional noise is added to the output of each sampling point. The posterior dis-
tribution of the output training points (i.e., p Y Djð Þ) is assumed to be Gaussian with mean value at the output values and a
posterior variance equal to the square of the added noise value. The posterior uncertainty of input training points (i.e.,
p X Djð Þ) are assumed to be Gaussian distributed with mean value at the sampled input points. Three scenarios are considered.
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In the first scenario, the noise is randomly generated as zero mean Gaussian with a standard deviation of 0.2. In the second
scenario, five training points are randomly picked and contaminated with noise as zero mean Gaussian with a standard devi-
ation of 1. For the remaining training points, the noise is generated as zero mean Gaussian with a standard deviation of 0.2.
For the first two scenarios, the posterior variance of each input training data is set to be the same as that of the corresponding
output data. The third scenario is the same as the second one except that the posterior variance of each input training data is
sampled uniformly in [0, 5].

Figs. 3 and 4 show a typical set of results for the first two scenarios, respectively. The true values of the sinusoidal function
are shown as a solid line. The training data are plotted as squares with error bars indicating ±one standard deviation of iden-
tification uncertainty. The conventional GP model is shown with mean values as a dotted dashed line and ±2 standard devi-
ation (i.e., about 95% confidence interval) as the light grey area. The data driven model based on the proposed method
(considering both input and output uncertainty in training data) is shown with mean values as a dashed line and ±2 standard
deviation as the dark grey area. For the first scenario, the data driven models based on these two methods are basically the
same, as evidenced from the variation of the mean lines in Fig. 3. This is reasonable as the identification uncertainty among
the training points does not vary too much. This is not the case for the second scenario, however. Discrepancies can be found
between these two methods, especially around the training points with large uncertainty. For the conventional GP method,
the training points are treated equally without considering their associated uncertainties. On the other hand, the proposed
method effectively put more weights on the training points with smaller uncertainty. The resulting data driven model based
on the proposed method shows better behaviour compared to the conventional GP model in this case.

To investigate the effect of uncertainty in the input training data, confine now to the proposed method. Figs. 5 and 6 show
the trained data driven models in the second and third scenarios, respectively. The model considering both input and output
uncertainty (i.e., Eq. (44)) and the model considering output uncertainty only (i.e., Eq. (54)) are compared. As seen in Fig. 5,
these two models do not differ significantly when the posterior variance of the input and output data are identical. Different
trials have been conducted where posterior variance of the input data is proportional to that of the output data, which show
qualitatively the same result. Discrepancies can be found between these two models when the uncertainty in the input and
output training data are not systematically related (as seen in Fig. 6). Considering the uncertainty in both input and output
data in this case will have a significant effect on the importance of each training point when the GP model is trained com-
pared to the case when only the uncertainty in output training data is considered.

In this example, the identification uncertainty of the output training points is set based on the differences compared to
true values of the function. It should be noted that this is not the case in real applications but is used here to benchmark the
proposed method. The identification uncertainty in real application is related to the measured data from which the training
point is identified. It need not be related to the ‘true function’ (if any) that describes the relationship between the input and
output data.

6.2. Laboratory shear building model

Consider a three-storey laboratory aluminium shear building structure as shown in Fig. 7. Each floor measures
25:5cm� 30:5cm� 2:5cm and each column section measures 0.5 cm by 2.5 cm. The storey height is 8 cm for all floors. Three
piezoelectric accelerometers distributed at the centre of each floor are used to measure the vibration in the weak direction
(parallel to the paper).

1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

+-2 std Conventional GP

+-2 std Proposed Method

True Value (y=sinx)

Training Points with +-std

Mean Conventional GP

Mean Proposed Method

Fig. 3. Typical learning of sinusoidal function, Scenario 1.
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Fig. 4. Typical learning of sinusoidal function, Scenario 2.

1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x

y

+-2 std Model 1

+-2 std Model 2

True Value (y=sinx)

Training Points with +-std

Mean Model 1

Mean Model 2

Fig. 5. Comparison between two proposed models, scenario 2 (model 1: GP model considering both x and y uncertainty; model 2: GP model considering y
uncertainty only).
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Fig. 6. Comparison between two proposed models, scenario 3 (model 1: GP model considering both x and y uncertainty; model 2: GP model considering y
uncertainty only).

Fig. 7. Three-storey laboratory shear building setup.
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To investigate the modal properties of the structure under different excitation levels. The structure is excited with differ-
ent levels of Gaussian white noise provided by an electrodynamic shaker. The resulting modal force PSD ranges from

10�13g2=Hz to 10�6g2=Hz. The vibration response of the structure was recorded with different durations (i.e., 1 min,
2 min and 5 min), which led to different uncertainty of the identified modal parameters. Fifteen sets of vibration response
data were measured in total at a sampling rate of 2048 Hz. The recorded data were subsequently decimated to 512 Hz for
analysis. Fig. 8 shows the root singular value (SV) spectrum of a typical data set (i.e., a plot of the square root of the eigen-
values of the real part of the spectral density matrix against frequency. This is equivalent to the singular values since the
spectral density matrix is real symmetric.). Modal analysis focuses on the mode around 77 Hz. The selected frequency band
is [75 80]Hz (shown as ‘[�]’ in the figure) and the initial guess of the natural frequency is 77 Hz (shown as ‘o’ in the figure).
Fig. 9 shows the identified mode shape based on this data set. Fig. 10 shows the identified natural frequencies of this mode
against the modal force PSD among the measured data sets, where the error bar denotes ±2 standard deviation of the iden-
tification uncertainty. Different marks reflect the duration of the measured vibration data from which the modal parameters
are identified. It can be seen that the identified natural frequency generally decreases with the modal force PSD.

In this example, the modal force PSD (reflecting the level of the white noise excitation generated by the shaker) is the
operational parameter and is considered as the input of the data driven models. The identified natural frequencies are the
modal properties of interest and considered as the output of the data driven models. The data driven models trained based
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Fig. 8. Root SV spectrum, laboratory shear building.
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Fig. 9. Identified mode shape, laboratory shear building (dashed line: undeformed mode shape; solid line: deformed mode shape).
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on the identification results are plotted in Fig. 10. Discrepancies can be observed between the conventional GP model and the
proposed model that considers identification uncertainty in both the modal force PSD and natural frequency. The data driven
model based on the proposed method is more sensitive to the training points with smaller uncertainty, i.e., the ones iden-
tified based on 10 min data. On the other hand, the conventional GP model simply averages out the variation of the natural
frequencies with different values of identification uncertainty at different modal force PSD ranges. The results based on a
simple linear regression model are also plotted in Fig. 10. Compared to the GP model, the simple linear regression model
only provides a general trend without capturing the detailed relationship between the natural frequencies and the modal
force PSD.

6.3. Tall building SHM under typhoon event

The field data used in this example is from a previous work [40]. Two buildings in Hongkong under a typhoon event are
instrumented in this example. Building A is a tubular concrete building with a central core wall system located in the north-
west of Waglan Island station in Hong Kong. It is 310 m tall and 50 m by 50 m in plan. Building B is 320 m tall and 50 m by
50 m in plan. Benchmark tests of these two buildings have been conducted under normal wind conditions with four triaxial
accelerometers placed at four corners on the roof. Detailed modal identification results with mode shape plots can be found
in Figs. 1 and 2 of [40].

The vibration response of the buildings was measured during Typhoon Koppu in 2009. Typhoon Koppu visited Hong Kong
at about 11 am on 14th September 2009 with wind speed at Waglan ranging between 25 km/hr to 120 km/hr, which pro-
vided an opportunity to investigate the in-situ dynamic behaviour of these two buildings under strong wind. A triaxial force
balance accelerometer was placed in a secure room on the roof of the buildings to measure vibration response. Forty-eight

hours of acceleration time history data were recorded. The accelerometer has a noise level of 0:5lg=
ffiffiffiffiffiffi

Hz
p

and the data was
logged using a 24bit digital signal recorder at a sampling rate of 50 Hz. The whole time history data is divided into non-
overlapping segments each with a duration of 30mins. The input loading and structural response are modelled as stationary
stochastic process within each segment such that OMA techniques can be applied to identify the modal parameters. The
investigation here focuses on applying the proposed data driven model to investigate the dynamic properties of the structure
against environmental variations. Specifically, environmental variation here refers to the modal force PSD, which reflects the
intensity of the wind. The natural frequency and damping ratio are the dynamic properties investigated in this example. Sim-
ple linear regression models have been applied in the previous work (see details in [40]) and the investigation here focuses
on classic GP model and the proposed method.
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Fig. 10. Identified natural frequencies against modal force PSD with data driven models, laboratory shear building.
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Fig. 11 shows a typical time history data measured from Building A starting at 15th September 2009 1:35am when the
wind was strong. Figs. 12 and 13 show the corresponding root PSD (i.e., the square root of power spectral density of the indi-
vidual measured data channels.) and SV spectrum. Modal analysis focuses on the first two modes marked in Fig. 13, where ‘
[�]’ denotes the selected frequency band and ‘o’ denotes the initial guess of natural frequency. These two modes are trans-
lational modes (see mode shape plot in Fig. 14) identified simultaneously based on the same band as they are closely-spaced.
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Fig. 11. Typical time history data under strong wind, building A (15th September 2009 1:35 am).
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Fig. 12. Root PSD Spectrum of Data, Building A (15th September 2009 1:35 am).
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The interactions between these two modes also increase the identification uncertainty of the modal parameters. Figs. 15 and
16 show the identified natural frequency against the modal force PSD for Mode 1 and Mode 2, respectively. The square in the
figure denotes the MPV and the error bar represents ±2 posterior standard deviation. The modal force PSD reflects the vibra-
tion amplitude of the structure. There is an inverse trend between the natural frequency and modal force PSD, indicating the
amplitude dependence of the tested structure.

The proposed method and conventional GP model have been applied to investigate such amplitude dependence. The
squared exponential function is selected as the covariance function and the mean function is set as zero for both models.
The predictive mean values with the predictive 95% confidence bounds (i.e., ±2 standard deviation) for both methods are
shown in Figs. 15 and 16 as well. It can be seen that the prediction from the proposed model is similar to that based on
the conventional GP model based on the training data of mode 1. This is reasonable as the posterior uncertainties among
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the training data for mode 1 are similar. This is not the case for mode 2 however. Significant discrepancies between these two

models can be found around modal force PSD of 10�9g2=Hz. This is due to the large identification uncertainty of the training
points marked in the red square shown in Fig. 16. The conventional GP model does not consider the uncertainty of individual
training points and so it tries to fit the training points with the same weight. This is not the case for the proposed method.
The training points marked in the red square take less weight when the model is trained by the proposed method due to their
large uncertainty. The resulting data model is therefore less sensitivity to these (low quality) training points compared to the
model based on conventional GP method.

Figs. 17 and 18 show the identified damping ratio against the modal force PSD for Mode 1 and Mode 2 of Building A,
respectively. The damping ratio does not show a significant amplitude dependence against the modal force PSD for these
two modes. The prediction from the classical GP model and proposed model almost coincide and visually there is no clear
trend for these two GP models. This is not the case for Building B however and the analysis here focuses on the damping
ratios of the identified modes. Fig. 19 shows the root SV spectrum of a typical set of measurement from Building B. The first
three modes marked in the figure are investigated, where ‘[�]’ denotes the selected frequency band and ‘o’ denotes the initial
guess of natural frequency. Fig. 20 shows the identified mode shapes of these three modes. The first two modes are trans-
lational modes and the third one is a rotational mode (see detailed plot in Fig. 2 of [40]). Figs. 21–23 show the identified
damping ratios against the modal force PSD for these three modes, respectively. The square in the figure denotes the
MPV and the error bar represents ±2 posterior standard deviation. The data driven models based on conventional GP method
and the proposed method are also plotted in the figures. The damping ratio generally increases with the modal force PSD for
all the three modes. The conventional GP and the proposed method are close. This is reasonable as the identification uncer-
tainties among the training data do not vary a lot with only one or two points having large uncertainty.
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Fig. 20. Identified mode shapes, Building B.
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Fig. 21. Identified damping ratio against modal force PSD with data driven models, Building B mode 1.
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Fig. 22. Identified damping ratio against modal force PSD with data driven models, Building B mode 2.
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7. Conclusions

Conventional data driven models assume that the input and output training data are known precisely without uncer-
tainty. In real applications of SHM however, the training data may not be obtained directly but identified from the measured
structural response data, which inevitably introduces identification uncertainties. This paper has proposed a Bayesian data
driven framework taking account of the identification uncertainty of the training data. The posterior distribution of the hyper
parameters related to the data driven model is derived rigorously in terms of the available information in the problem (i.e.,
the posterior distribution of the training data given the system measurements and the posterior distribution of output train-
ing data given the input training data and the hyper parameters) which strictly obeys the Baye’s theorem without any
heuristic equations involved.

To summarise, one may refer to Eq. (13) for the general formulation where the posterior covariance of input and output
training data are fully considered when training the data driven model. However, the analytical expression may not be avail-
able in this case and numerical integration methods (e.g. Monte-Carlo sampling) shall be used in the optimisation procedure.
Besides the general formulation, the proposed framework has considered an OMA context where the identification uncer-
tainty of the modal parameters is significant. An efficient algorithm has been developed based on the proposed framework
considering the characteristics of the posterior uncertainty of identified modal parameters. Specialising to OMA context
where posterior distribution of training data given the measurement (i.e., p X;Y Djð Þ) are Gaussian distributed, efficient com-
putational strategy has been proposed in Section 4 and one can refer to Eq. (44) in training the GP model. For practical appli-
cations in OMA, some special cases were also discussed, which further simplifies the calculation. When the posterior
correlation between the input and output training data is neglectable, the formula can be simplified to Eq. (51). When
the posterior uncertainty in the input training data can be neglected, one may refer to Eq. (54) to facilitate computation.

The proposed method has been illustrated using synthetic and laboratory data. It has been applied to SHM of two tall
buildings under a typhoon event, which illustrates its feasibility to real data. It was shown that when the variation of the
identification uncertainty among the training data is small, the proposed method provides similar performances compared
to classic GP model. The proposed method has better performances when there are large discrepancies among the identifi-
cation uncertainty of the training data sets. The classical GP model treat all the training data equally as the associated uncer-
tainty of each individual training data is not considered. On the other hand, the proposed method is more sensitive to the
training points with smaller uncertainty.

The findings in this work are not claimed to propose an entirely new method of constructing GP model as many research-
ers have considered inferring GP model with uncertain training data. Nevertheless, the main aim is to investigate the feasi-
bility of training the GP model based on OMA data incorporating identification uncertainty information and develop efficient
means to facilitate computation by considering the practical properties of the posterior uncertainty in OMA. Although a
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Fig. 23. Identified damping ratio against modal force PSD with data driven models, Building B mode 3.
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Bayesian OMAmethod based FFT data is used in this work to identify the modal parameters with the associated uncertainty,
it should be noted that the proposed data driven model in this work can also be applied empirically to modal parameters
identified using other OMA methods as long as identification uncertainty can be properly accounted for, e.g., in a frequentist
manner.
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Appendix A. Gaussian type approximation

Note that F Xð Þ in Eq. (32) takes the form of a Gaussian PDF with zero mean, covariance matrix CW and argumentW. Given

a fixed X, F Xð Þ can be viewed the PDF of a Gaussian vector Y0(say) with mean M� CYXC
�1
X X� X̂
� �

, covariance matrix CW and

evaluated at Ŷ. When X is random and has a PDF of p X Djð Þ,
R
F Xð Þp X Djð ÞdX is simply equal to the PDF value of Y0 evaluated at

Ŷ, which follows the theorem of total probability. Generally Y0 need not be Gaussian when X is random but as an approxi-
mation it is taken to be so while its mean and covariance matrix are maintained to be the exact mean of covariance of Y0.
Enforcing the mean and covariance leads to the formulae for M0 and C0

W in Eqs. (38) and (37), respectively. This is shown
as follow.

The mean of Y0 is given by

E Y0� �
¼

R
Y0 R p Y0 Xj

� �
p X Djð ÞdX

� �
dY0

¼
R R

Y0p Y0 Xj
� �

dY0� �
p X Djð ÞdX

¼
R

M� CYXC
�1
X X� X̂

� 

N X X̂;
�
�
� CX

� �

dX

� ð55Þ

Note that
Z

X� X̂
� �

N X X̂;
�
�
� CX

� �

dX ¼ 0 ð56Þ

Substituting Eq. (56) into Eq. (55) gives

E Y0� �
¼
Z

MN X X̂;
�
�
� CX

� �

dX ð57Þ

which is the formula for M0 in Eq. (38). On the other hand, the covariance matrix of Y0 is given by

cov Y0� �
¼ E Y0Y0T

h i

� E Y0� �
E Y0� �T

¼
R
Y0Y0T R p Y0 Xj

� �
p X Djð ÞdX

� �
dY0 �M0M0T

¼
R R

Y0Y0Tp Y0 Xj
� �

dY0
� �

p X Djð ÞdX�M0M0T

¼
R
CWN X X̂;

�
�
� CX

� �

dX

þ
R

M� CYXC
�1
X X� X̂
� �� �

M� CYXC
�1
X X� X̂
� �� �T

N X X̂;
�
�
� CX

� �

dX

� M0M0T

ð58Þ

Note that
Z

X� X̂
� �

X� X̂
� �T

N X X̂;
�
�
� CX

� �

dX ¼ CX ð59Þ
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Substituting Eqs. (56) and (59) into Eq. (58) gives

cov Y0� �
¼ CY þ r2

e Iþ K0

� CXYC
�1
X

R
X� X̂
� �

MTN X X̂;
�
�
� CX

� �

dX

� CXYC
�1
X

R
M X� X̂
� �T

N X X̂;
�
�
� CX

� �

dX

þ
R
MMTN X X̂;

�
�
� CX

� �

dX�M0M0T

ð60Þ

which is the formula for C0
W in Eq. (37).
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