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Abstract

The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task 

force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full 

tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, 

flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking 

the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-

inductive operation (q95  =  5.5, βN � 2.8) at low density. Higher installed electron cyclotron 

resonance heating power �  6 MW, new diagnostics and improved analysis techniques have 

further enhanced the capabilities of AUG.

Stable high-density H-modes with Psep/R � 11 MW m−1 with fully detached strike-

points have been demonstrated. The ballooning instability close to the separatrix has been 

identified as a potential cause leading to the H-mode density limit and is also found to play an 

important role for the access to small edge-localized modes (ELMs). Density limit disruptions 

have been successfully avoided using a path-oriented approach to disruption handling and 

progress has been made in understanding the dissipation and avoidance of runaway electron 

beams. ELM suppression with resonant magnetic perturbations is now routinely achieved 

reaching transiently HH98(y,2) � 1.1. This gives new insight into the field penetration physics, 

in particular with respect to plasma flows. Modelling agrees well with plasma response 

measurements and a helically localised ballooning structure observed prior to the ELM is 

evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D 

perturbations on heat load patterns and fast-ion losses have been further elaborated.

Progress has also been made in understanding the ELM cycle itself. Here, new fast 

measurements of Ti and Er allow for inter ELM transport analysis confirming that Er is 

dominated by the diamagnetic term even for fast timescales. New analysis techniques allow 

detailed comparison of the ELM crash and are in good agreement with nonlinear MHD 

modelling. The observation of accelerated ions during the ELM crash can be seen as evidence 

for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable 

operational regime in DEMO studies of ‘natural’ no ELM regimes have been extended. Stable 

I-modes up to n/nGW � 0.7 have been characterised using β-feedback.

Core physics has been advanced by more detailed characterisation of the turbulence with 

new measurements such as the eddy tilt angle—measured for the first time—or the cross-

phase angle of Te and ne fluctuations. These new data put strong constraints on gyro-kinetic 

turbulence modelling. In addition, carefully executed studies in different main species (H, D 

and He) and with different heating mixes highlight the importance of the collisional energy 

exchange for interpreting energy confinement. A new regime with a hollow Te profile now 

gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear 

interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help 

to validate the fast-ion codes for predicting ITER and DEMO.

Keywords: nuclear fusion, magnetic confinement, tokamak physics, ITER, DEMO

(Some figures may appear in colour only in the online journal)

1. Introduction and technical improvements

The ASDEX Upgrade (AUG) tokamak is the only medium 

sized (Rgeo = 1.65 m, a = 0.5 m, Bt � 3.2 T, Ip � 1.4 MA, 

δ � 0.5, κ � 1.8) D shaped tokamak with a full metal—mainly 

tungsten (W)—wall [1]. W is currently regarded as the most 

viable material for plasma facing components (PFC) in a future 

fusion reactor. The programme on AUG is geared towards 

developing the physics basis for ITER and (EU)-DEMO 

and is jointly executed with the EUROfusion Medium Size 

Tokamak task force (EU-MST1). Integrated scenario devel-

opment to prepare future device operation, detailed physics 

studies to improve predictability of fusion devices and testing 

of fusion relevant technologies are all part of the comprehen-

sive programme. Here, the full tungsten wall not only requires 

efficient techniques to control W accumulation, but also 

modifies the edge and scrape-off-layer (SOL) conditions (e.g. 

due to changes of the neutral influx from the wall). The high 

overall installed flexible heating power of PNBI � 20 MW 

neutral beam injection (NBI), PICRF � 7 MW ion cyclotron 

range of frequency heating (ICRF) and PECRH � 6 MW dual 

frequency 140 GHz (4.8 MW with 105 GHz) electron cyclo-

tron resonance heating (ECRH, coupled � 5.4 MW with 140 

GHz) allows the simulation of reactor relevant divertor and 

Nucl. Fusion 59 (2019) 112014
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SOL conditions in H-mode (see section 2) as well as access to 

fully non-inductive scenarios [2] (see section 4). All heating 

systems are specified for 10 s pulse length.

Aside from various diagnostic upgrades the most note-

worthy improvements of the device capabilities are the new 

ECRH III system [3] and the new/improved power sup-

plies for the 16 in-vessel 3D perturbation coils (B-coils) [4]. 

ECRH III operated at half capacity (two gyrotrons) from 2017 

and will reach its full capacity with four gyrotrons shortly 

allowing for up to 7 MW coupled power at 140 GHz. So far 

PECRH = 5.5 MW have been coupled during the commis-

sioning of the last two gyrotrons. The 16 B-coils now each 

have their own faster power supply allowing a great flex-

ibility for the application of magnetic perturbations (MP) (see 

section 3).

To prevent previously observed deep vertical cracking 

of the W tiles in the divertor (see figure  1(a)) [5] a new 

design was employed in 2017 (figures 1(b) and (c)) [6]. The 

standard divertor sector consists of eight tiles. The two outer-

most positions, which see the highest electromagnetic forces 

(loads), were equipped with more ductile heavy W alloy tiles 

(HPM1850, containing Fe and Ni) [7] and in the six remaining 

positions split tiles were mounted to reduce the thermo-

mechanical stresses (figure 1(b)). In addition three sectors 

had special setups: (1) with castellated W tiles (figure 1(c)); 

(2) with target clamping and wide W tiles; (3) with optim-

ized target clamping and split W tiles. Inspection after about 

1000 discharges with  >  40 discharges with Pheat > 15 MW 

(maximum Pheat = 20 MW) showed that in setup (3) as well 

as in the standard setup the vertical cracks were completely 

suppressed with no macroscopic damage for correctly aligned 

tiles (see figure 1(b)). For setups (1) and (2), however, deep 

cracks in the W tiles were observed (figure 1(d)) [8]. For the 

next campaign the standard split tile setup is mounted in all 

sectors, but with titanium clamps. The performance of the 

HPM1850 tiles was also notable and the melt behaviour (see 

section 2) for misaligned HPM1850 tiles is similar to that of 

pure W. No Fe or Ni has been observed in the plasma [9].

2. Divertor and edge

The interplay between PFC, divertor and SOL and the plasma 

edge is still a critical issue in particular for W PFCs [10]. 

On the one hand the transients due to edge localised modes 

(ELMs) pose a large threat to future devices as a recent 

multi-machine scaling for the energy fluence at the target 

ε|| ∝ ppedRgeo (pped : pedestal top pressure, Rgeo: geometric 

major radius) still extrapolates to at least three times higher 

heat loads than viable for the integrity of currently foreseen 

materials in ITER [11–13]. On the other hand the necessity 

of high divertor neutral pressure requiring high fuelling rates 

leads to a degradation of plasma confinement due to an out-

ward shift of the pressure profile at the edge [14–16]. This 

shift can also be parametrised by the separatrix density ne,sep 

and on AUG a clear correlation of reduced edge stability and 

therefore reduced confinement with ne,sep is observed. This is 

attributed to the presence of the high field side high density 

(HFSHD) region the dynamics of which has been further char-

acterised by high and low-field side reflectometer measure-

ments [17] and modelled with a 2D fluid code (SOLPS5.0) 

[18]. The modelled and observed dynamics of the HFSHD 

region also reconcile the confinement improvement observed 

with impurity seeding (N2, CD4 and Ne).

Figure 1. Divertor tiles on AUG made from (a) W before 2017, (b) 1/2 standard sector (split W and HPM1850), (c) sector 16 with double 
castellated design and (d) dismounted castellated tiles showing deep cracks. The inlet (e) shows a poloidal cross section of the divertor with 
the bulk tungsten (W) tiles in the outer divertor shown in the photos marked in green.
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ITER and DEMO will operate at high ne,sep. Analysis of 

Thomson scattering data from AUG and JET suggests that 

there could be a maximum achievable ne,sep limited by the 

ballooning stability just inside the separatrix [19], which 

is responsible for the H-mode density limit (HDL). As can 

be seen from figure  2 the ballooning parameter increases 

linearly with the separatrix density normalised to the 

Greenwald density nGW until it reaches ne,sep/nGW ≈ 0.3 or 

αsep = 2µ0Rq2
cylpsep/(Bt

2〈λp〉) ≈ 1.5, when confinement starts  

to degrade. Here qcyl = 2πabBt/(µ0IpR) is the cylindrical q 

(a, b are the half width and half height of the plasma), psep 

is the pressure at the separatrix and λp is the pressure fall 

off length in the mid-plane SOL. The linear dependence 

of αsep ∝ ne,sep/nGW reflects the multi-machine scaling of 

λq ≈ 1/2λp but the data seem not to exceed a critical bal-

looning parameter αcrit
sep ≈ 2 · · · 2.5. It is conjectured that 

above this critical value turbulence increases leading to 

enhanced density transport and ultimately the loss of H-mode. 

Using the multi-machine scaling for the SOL decay length λq 

and assuming λp ≈ 2λq—as is found by direct comparison 

of both latter quantities—a critical normalised density of 

ncrit
e,sep/nGW ≈ 6 · αcrit

sep · A−7/2
[

(1 + κ2)/2
]

−6/7
· P

−1/7
sep ≈ 0.5 

(Psep: power flowing over the separatrix) for the HDL can be 

calculated, though strictly the scaling does not apply to high 

density.

The increased turbulence leads to a flattening of ∇ne at the 

separatrix and a narrowing of the pedestal. Here, the electron 

temperature at the separatrix Te,sep ≈ 100 eV drops slightly by 

about 10–20 eV when approaching the HDL. The increase of 

the normalised density from about 0.35 to 0.5 is mainly com-

pensated by a relaxation of the pressure gradient so that the 

ballooning parameter is staying constant. With high shaping 

and reduced magnetic edge shear s = 〈dq/dr〉/〈q〉 this can 

lead to a stabilisation of peeling–ballooning modes and a 

stable high confinement small-ELM regime [13, 20]. On AUG 

also a strong correlation between the divertor pressure p0,div 

and ne,sep ∝ p0.31
0,div has been found [21] (coefficient of determi-

nation R2  =  0.7, RMS = 17%). This correlation observed for 

discharges with and without N2 seeding depends only weakly 

on other experimental parameters. Therefore, under stationary 

conditions the engineering parameter p0,div is directly linked 

to plasma confinement, though some dependence on the 

opacity of the SOL and the dynamic of the HFSHD region 

remain. Both in H-mode (Pheat = 6.5 MW) and L-mode, as 

the effective collisionality in the divertor increases, the SOL 

ne profile tends to flatten forming a density shoulder com-

monly attributed to a large blob-size of the filamentary cross-

field transport in the SOL. However, in H-mode a flattening is 

only observed with increased blob-size if also p0,div increases 

[22]. The physics of the shoulder formation is important as for 

example in L-mode 20% of the power flux can be observed 

in the far SOL [23]. Here, the ions are carrying a large frac-

tion of the power flux into the SOL and Ti ≈ 3Te is measured 

in the mid-plane [23] as previously on MAST [24]. These 

power fluxes are not carried into the divertor and could pose a 

problem to the first wall in ITER and DEMO [23].

High p0,div and N2 seeding is used to promote detachment. 

On AUG stable operation with fully detached strike points has 

been achieved with up-to Psep/R � 11 MW m−1 using N2 and 

Ar seeding. With the use of N also ammonia (ND3) is formed, 

which for fusion power plants increases the in-vessel T inven-

tory. The ND3 production has now been characterised in AUG 

and residual gas analysis measurements have been confirmed 

by divertor spectroscopy. ND3 is formed in particular on the 

peripheral surface areas in the inner divertor [25, 26].

Not only ne,sep is important for the confinement but also 

correlations with the SOL Te decay length, λTe,u have been 

found. The study of the SOL upstream Te profile on AUG [27, 

28] shows that, for detached plasmas, the SOL upstream elec-

tron temperature profile is observed to be broader than for an 

equivalent attached plasma under certain conditions. By com-

paring λTe,u with the global energy confinement, it is found 

that the discharges with broadened profiles also have degraded 

confinement, while those with unchanged profiles have similar 

confinement to that in attached plasmas. In case of N2 seeding, 

for a fixed plasma current, the pedestal top pressure can be 

increased significantly with high heating power, while almost 

no influence on the SOL Te decay length, λTe,u, is observed.

To optimise edge performance with tolerable exhaust and 

confinement properties an improved understanding of the 

ELM cycle is needed. Fast measurements of Er during type-I 

ELMs as well as during limit cycle oscillations show that the 

field is dominated by the diamagnetic term Er ≈ ∇pi/n even 

on the fast time scale following the recovery of ne [29]. In 

figure  3 the type-I ELM synchronised evolution of several 

quantities in the pedestal region are shown: min(Er) from (a) 

neoclassical (NC) calculations using NEOART and (b) the 

impurity force balance; the steepest gradients of (c) Ti, (d) Te 

Figure 2. Relation of the ballooning parameter at the separatrix 
αsep to the normalised separatrix density for AUG and JET 
discharges. Reproduced courtesy of IAEA. Figure from [19].  
© EURATOM 2018.
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and (e) ne (ρpol ∼ 0.99). These have been measured using fast 

charge exchange recombination spectroscopy (CXRS) on He 

(Er, Ti), electron cyclotron emission (ECE) (Te) and lithium 

beam spectroscopy (ne). Comparing figures 3(a) and (b) it can 

be seen that only during the short ∇Ti and ∇ne recovery phase 

just after the ELM crash does Er deviate from the NC predic-

tion. Interestingly the ion and electron temperatures recover 

on different time scales. The three different phases (II–IV: see 

figure 3(a)) can be related to magnetohydrodynamic (MHD) 

activity at different frequencies, with phase I being the ELM 

crash itself. In particular a high frequency n ∼ 11 mode 

(typical f > 200 kHz) in the steep pedestal gradient region 

close to the Er minimum has been identified during the ped-

estal recovery coinciding with the clamping of the ∇Te and 

hence ∇p [30]. This mode showing no ballooning structure 

is present in D, H and He discharges. In the period the high 

frequency mode is present also a low frequency mode ( f ≈ 4

–8 kHz) located in the upper half of the pedestal is observed 

and has been characterised using ECE imaging [31]. The mode 

sometimes has a slowing down characteristic during the ELM 

cycle, which may be attributed to the widening of the pedestal. 

Bi-coherence analysis suggests a nonlinear coupling between 

high and low frequency modes due to their similar mode 

structure and spatial proximity. However, the frequency of the 

high frequency mode shows no slowing down supporting the 

different localisation of the modes. The earlier clamping of 

∇Ti and ∇ne coincides with multi-harmonic lower n medium 

frequency (20 kHz � f � 150 kHz) MHD activity. For an 

accurate localisation of the ECE emission through the ped-

estal radiation transport modelling is required [32]. The radia-

tion transport model has been recently improved to allow for 

the oblique lines of sight of the ECE imaging [33] and also 

for third harmonic emission [34]. The improved edge meas-

urements also allow to assess the ion heat transport during 

the ELM cycle [35]. The ion heat transport in H, D and He, 

model led using ASTRA, was found to be close to NC. For 

the first time this was also done using the bulk ions in He 

discharges [36].

A novel mode analysis shows that during an ELM crash 

itself low n-modes are dominant, in good agreement with 

nonlinear resistive MHD modelling using JOREK [37, 38]. 

The JOREK modelling shows that the initially unstable higher 

n mode couples to low n-modes during the crash [39]. This 

can be seen in figure 4 showing the frequency resolved mode 

spectra (a) before and (b) during an ELM crash in the experi-

ment. The low n sub-structure of the pre-ELM crash comp-

onents appears with strongly reduced f /n (figure 4(a)) but 

similar dominant n = 1, 2, 3, 4, 5 during the crash (figure 

4(b)). Another critical issue for future devices is the W trans-

port by an ELM. This has now been modelled kinetically 

using JOREK [40]. The E × B drifts during the ELM lead to 

a radial transport of the impurities, which is in- and outwardly 

symmetrical in the radial direction. Such transport cannot be 

described by a 1D diffusive ansatz and would lead to a W 

Figure 3. ELM synchronised evolution of the minimum Er from (a) 
neoclassical predictions and (b) CXRS measurements as well as the 
steepest gradients of (c) Ti, (d) Te and (e) ne during a type-I ELM cycle.

Figure 4. Frequency resolved mode number spectra of a 
time window (a) before and (b) during the type-I ELM crash. 
Reproduced courtesy of IAEA. Figure from [37]. © 2017 Max-
Planck-Institut fur Plasmaphysik.
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influx during the ELM in ITER as here hollow W density pro-

files are predicted.

The inward propagation of electron temperature perturba-

tions induced by type-I ELMs has been analysed in a series of 

H-mode plasmas with moderate triangularity δ < 0.28 [41]. It 

was found that the inward penetration of these perturbations 

mostly depends on the plasma current Ip or the edge saftey 

factor. The region affected by the ELMs extends deeper inside 

the confined region at lower Ip, in spite of the weaker ELMs. 

Estimates of the electron heat pulse diffusivity show that the 

transport is too large to be representative of the inter-ELM 

phase. This is in qualitative agreement with non-linear MHD 

simulations of an ELM done with JOREK [37, 38], which 

predicts an ergodization of the magnetic field lines during an 

ELM. The effective radial heat diffusion coefficient caused 

by the stochastic magnetic field perturbation calculated by 

JOREK [42] show a very similar radial profile compared to 

the experimental profile and are lower by a factor of two. 

Taking into account the convective transport as well, even 

better agreement would be achieved, however this detailed 

analysis has not yet been performed.

For the first time ion acceleration during the ELM 

has been measured [43] in plasmas with low den-

sity n̄e � 6 × 1019 m−3, low pedestal collisionality 

ν
⋆ � 0.4, βN ≈ 2.5, Ip = 0.6 · · · 1.0 MA, Bt = 1.8 · · · 2.5 T 

and q95 = 3.7 · · · 4.3. In figure 5 data from the fast ion loss 

detector (FILD) during an ELM crash are shown. A high 

energy tail with energies Eacc � 140 keV above the NBI 

injection energy E0 = 82 keV is evident in this NBI only 

heated discharge (see figure  5). The losses at the two dif-

ferent pitch angles observed in figure 5(a) originate from the 

use of two NBI sources with a more tangential (source 7) 

and radial (source 8) injection geometry. Inverting the data 

with respect to its instrument function reveals three sharp 

energy peaks at the gyroradii ρfull
L = 4.1 cm , ρhalf

L = 2.9 cm  

and ρELM
L = 5.8 cm  e.g. in the gyroradius profile for the pitch 

angle 58◦ � θ � 65◦ (figure 5(b) red line) corresponding to 

E0, E0/2 and  ∼160 keV respectively. The fast-ion loss happens 

temporally in sharp bursts indicating a filamentary behaviour. 

In order to explain the beam ion acceleration, the proposed 

mechanism is a resonant interaction between the beam ions 

and E‖ generated during the ELM crash, when magnetic recon-

nection is believed to take place. Burst of microwave emission 

during the ELM may also be interpreted as evidence of high 

parallel electric fields during the ELM [44]. Such bursts were 

first observed on TFTR [45] but only later on MAST a con-

nection to E‖ inferred from JOREK simulations was reported 

[44]. Further evidence of reconnection during the ELM and 

the formation of an island is gained from analysing the growth 

of non-axisymmetric magnetic perturbations in discharges 

with an applied n  =  1 magnetic perturbation field [46].

To better understand the potential target damage ELMs 

can cause the target heat loads and the thermionic emission 

cur rent have been characterised with specially misaligned 

tiles [47, 48]. This has been used to benchmark modelling of  

the melt threshold and the melt motion using MEMOS 3D [49–

51]. The melt layer motion is dominated by the �jrep ×
�B force, 

where �jrep is the replacement current. �jrep is generated by the 

loss of electrons from the exposed surface due to the electron 

emission processes. MEMOS 3D has been modified to follow 

a self-consistent approach for the replacement cur rent based 

Figure 5. (a) Velocity space of fast-ion losses measured by a 
FILD during an ELM. (b) Gyroradius profile of the FILD signal. 
The blue crosses indicate the experimental FILD signal. In red, 
the undistorted gyroradius profile obtained after the tomographic 
inversion is plotted. The black curve is the expected gyroradius 
profile for the inverted distribution.

Figure 6. (a) Simulated final surface morphology profiles for the 
corrugated surface compared to (b) post-mortem measurements of 
the exposed surface [47].
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on the magnetostatic limit of the resistive thermoelectric MHD 

description of the liquid metal [50]. The escaping thermionic 

current depends on the plasma parameters as well as the B field 

and its inclination angle due to space charge formation and 

prompt redeposition effects [52]. To address this problem, ded-

icated particle-in-cell (PIC) simulations were carried out with 

the 2D3V SPICE2 code for the relevant inter and intra-ELM 

AUG parameters [53]. The PIC results revealed that the lim-

ited thermionic emission current exhibits a Child–Langmuir 

type scaling with the plasma parameters. This scaling has been 

translated into a dependence on the incident field-line parallel 

heat flux and employed in MEMOS modelling of the AUG 

sloped lamella melt experiment [51]. Figure  6 presents the 

simulated final surface morphology profile (b), to be compared 

with the experimental profile (a). The deformation structure is 

fairly well reproduced, with most of the displacement along 

the poloidal direction due to the �jrep ×
�B force. The observed 

ridges in the exposed surface are attributed to the liquid build-

up at the edge of the melt pool during individual melt events. 

Within the uncertainty of the experimental heat flux (about 

25%), an agreement can be reached between modeled and 

observed total displaced melt volume within 10% error.

3. No ELM regimes and 3D perturbations

As the type-I ELM energy fluence to the divertor target scales 

ε‖ ≈ 6πpped · Rgeo · qedge [11], future devices likely need to 

avoid type-I ELMs altogether. A key technique to control ELMs 

is the excitation of a marginally stable kink-peeling response by 

an appropriately aligned (resonant) 3D magnetic perturbation 

field (RMP). Plasma response calculations with the linear resis-

tive MHD code MARS-F and a free boundary 3D equilibrium 

solver VMEC version (NEMEC) can reproduce quantitatively 

the measured 3D displacements giving confidence in the acc-

uracy of the models [54]. Using MARS-F, an analytic expres-

sion to predict the perturbation alignment in differential phase 

(field alignment) has been developed, which is accurate to about 

30◦. This analysis has also been applied to ITER equilibria [55].

At elevated triangularity (δ ∼ 0.25) ELM suppression is 

obtained on AUG at low, ITER like, pedestal collisionality  

[13, 56, 57]. Here good confinement of HH98(y,2) < 1.1 is 

reached transiently and HH98(y,2) � 0.95 stationarily depending 

on the perturbation strength. These normalised confinement 

factors are similar to those without 3D fields, albeit at lower ne 

in the case with the RMP. HH98(y,2) can be somewhat optimised 

by reducing the applied perturbation field but so far it is not 

clear if that can be achieved on AUG with a stationary density. 

The AUG results suggest a more complicated physics picture to 

ELM suppression than previously reported, in particular with 

respect to plasma flows, collisionality and plasma response. 

Interestingly, the MARS-F plasma response calculations for 

a data base of RMP discharges with and without reaching 

ELM suppression show no clear difference of the kink-peeling 

response to differentiate between ELM suppression and ELM 

control [58]. For a fixed perturbation strength higher triangu-

larity leads to a modest increased kink peeling response due to 

an increase of pedestal pressure. However, in the experiment 

the fixed coil currents lead to a decrease of the effective pertur-

bation strength with increasing triangular as the distance of the 

plasma edge to the perturbation coils becomes larger.

JOREK calculations with perturbation currents above the 

experimentally achievable values suggest that it may be an 

enhanced tearing-kink response that leads to resonant plasma 

breaking ωe,⊥ → 0 and ELM suppression [59, 60]. In the 

modelling, the profile degradation by the applied error fields 

is not sufficient to explain the stabilisation of the peeling–

ballooning modes, it only reduces their linear growth rates. 

Instead, non-linear mode coupling between the applied error 

field and the peeling–ballooning (p–b) modes leads to the 

satur ation of the p–b modes [60, 61], which would still cause 

an ELM crash in the absence of the perturbation field at the 

same degraded pedestal profiles. A transition from a large 

ELM crash to a mitigated ELM crash and finally ELM sup-

pression is observed when successively increasing the coil 

currents in the resonant error field configuration. At same coil 

currents, the non-resonant field configuration does not lead to 

ELM mitigation or suppression. In the modelled discharge, 

Figure 7. Profiles of angular rotation frequency of (a) gyrocenters (E × B flow) and (b) the electron fluid perpendicular to B for different 
discharges. The shaded regions indicate the confidence interval. The positions of various resonant surfaces are marked with vertical dashed 
line.

Nucl. Fusion 59 (2019) 112014



H. Meyer for the ASDEX Upgrade and EUROfusion MST1 Teams

10

the modes were still rotating in the ELM mitigation scenario 

while they were locked to the external error field in the ELM 

suppression simulation. This agrees with the general hypoth-

esis for the access to ELM suppression where an island at the 

top of the pedestal forms if the perpendicular electron fluid 

ωe,⊥ ≈ 0 at a rational surface. From two fluid theory, this is 

believed to be necessary for the field to penetrate. However, 

the measurements show that ELM suppression can also be 

achieved with ωe,⊥ �= 0 over the full pedestal region. Whether 

suppression under these conditions can also be obtained in 

MHD simulations remains an open question.

In figure 7 the angular electron fluid rotation frequencies 

for various discharges are shown [57]. As can be seen from 

figure 7(b) the condition ωe,⊥ ≈ 0 close to a rational surface 

is not fulfilled for two of the four cases shown. For discharges 

#34214 (black) and #33133 (blue) a negative ωe,⊥ < 0 is 

maintained over the whole pedestal within the uncertainties 

of the measurement. However, kinetic theory also shows res-

onances close to ωE×B ≈ 0, which is always given close to 

a rational surface near the edge (figure 7(a)). Whilst access 

to ELM suppression seems to be only possible under certain 

conditions the suppressed state has been maintained over a 

wider parameter range, suggesting that different physics may 

determine the density pump-out needed to access ELM sup-

pression on AUG. In addition, ELM suppression has not been 

achieved at the lowest tested collisionalities, which may sug-

gest a lower ν⋆ limit or a pressure pedestal limit imposed by 

the (3D-reduced) ELM stability boundary [57].

Future devices will also need pellet fuelling. The compat-

ibility of this fuelling method with RMP ELM control and 

suppression has been tested [62], extending previous studies 

of pellet and gas fuelling during ELM mitigation [63, 64]. In 

general, a strong correlation between the pedestal density and 

ELM energy loss (Spearman’s correlation coefficient r  =  0.8) 

is found from a database analysis of ELM control discharges 

including those with pellet fuelling [64]. Nevertheless, using 

a pellet rate of Φpel ≈ 0.073Paux/T
ped
i  (T

ped
i : ion temper ature 

at the pedestal top) it was possible to restore the overall line 

integrated density, measured by an interferometer chord 

passing through the core, during the ELM control phase with 

still reduced ELM energy loss. In ELM suppressed scenarios 

at elevated triangularity, each pellet triggers ELM-like events 

but ELM suppression can be preserved in-between pellets, 

though not yet under stationary conditions. After a few pellets 

the plasma transited to an ELMy regime. As a low enough 

edge density or collisionality seems so far a necessary condi-

tion for ELM suppression [57] this is possibly related to the 

increase in edge density

A helically localised mode with ballooning structure (BM) 

has been observed as direct evidence for the modified local 

edge stability with MP [65]. In figure 8 the signature of the 

BM localised on a particular field line is evident from the 

radiation temperature measured with ECE during a rigid rota-

tion of the perturbation field in time (figures 8(b) and (c)). The 

ECE channel at fECE = 112.8 GHz is shown corresponding 

to a poloidal radius averaged over one rotation period 

〈ρpol〉 = 0.97 in the steep gradient region. The measured 

corrugation compares well to the displacement of the 3D 

VMEC equilibrium normal to the axisymmetric equilibrium 

ξn(VMEC). Linear ideal ballooning theory shows a mode 

on the field line region that is least stable against field line 

bending due to the 3D corrugation [66, 67]. Measurements of 

Te and ne perturbations with a new fast He beam diagnostic 

[68] show neither a phase delay between Te and ne oscillation 

nor an inversion radius as expected for an island (see figure 9).  

Together, with the ECE measurement further inside also 

showing no inversion radius this confirms the ideal nature of 

the mode [67].

The alignment of the perturbation (set by the differential 

phase angle: ∆φul) is also important for the fast-ion transport. 

Fast-ion losses at the edge can either be increased or decreased 

depending on the resonance with the bounce orbits (see sec-

tion 5) [69]. The application of 3D perturbations results in a 

2D lobe structure on the target heat load. Measuring the full 

heat load pattern using the rigidly rotating fields in L-mode 

show that the pattern toroidally averages to the unperturbed 

heat load profile on AUG and the toroidal variation decreases 

as the SOL density is increased [70–72]. In particular no local 

re-attachment is observed in detached regimes [73]. EMC3-

EIRENE calculations with a simplified model for the plasma 

screening agree well with the measurements. The model 

only predicts a broadening of the heat flux profile due to 

RMPs for much narrower λq as expected on ITER [72, 74]. 

Furthermore, the 3D corrugation of the plasma also affects 

the coupling of ICRF heating [75]. A variation of the coupling 

resistance of ∆RL ≈ 20 % has been measured in plasmas with 

Figure 8. Evidence of helically localised ballooning modes 
during a rigid rotation of the RMP field in an ELMy H-mode 
(a) calculated growth rate on the most unstable field line (blue) 
as function of rotation angle. (b) ECE radiation temperature as 
function of time with the shaded time range magnified in (c). The 
calculated displacement of the perturbed equilibrium normal to the 
axisymmetric equilibrium, ξn(VMEC), from VMEC is shown in (a) 
and (b) in red.
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rigidly rotating n  =  2 MP fields ( f = 6 Hz, IB = 6.25 kAt: 

current in in-vessel B-coil). This variation in coupling resist-

ance can likely be attributed to the plasma displacement at the 

LFS mid-plane of a few mm as predicted by NEMEC calcul-

ations for IB = 5 kAt. In addition, MHD modes, such as (2,1) 

NTMs, can also lead to variations of RL.

Naturally ELM free high confinement scenarios such as the 

I-mode [76, 77] or QH-mode [35, 78], potentially attractive 

for DEMO, are also explored. For example, the operational 

regime for I-modes has been extended to n/nGW � 0.7 in the 

open upper divertor. Using β feedback stationary I-modes 

with n/nGW � 0.58 and HH98(y,2) ∼ 0.8 have been achieved. 

An example for an I-mode discharge with βpol feedback is 

shown in figure 10. βpol is successively ramped up until an 

H-mode transition occurs. The reduction of NBI power due 

to the feedback recovers the I-mode interestingly at the same 

βpol set-point that led to the I-H transition before. The power 

needed to access I-mode scales only weakly with the magn-

etic field PLI ∝ Bt
0.4 [77]. The average heat flux profile in 

I-mode is slightly narrower than in L-mode, but still broader 

than in H-mode [79]. However, intermittent fast density bursts 

have been observed that might be able to explain the L-mode 

like particle transport in I-mode, though a quantitative assess-

ment is still pending. Each event consists of several bursts 

∆t ≈ 10 µs clearly correlated to the weakly coherent mode 

(WCM). The WCM is apparent in Te and ne and its amplitude 

grows before the bursts and has now also been observed in the 

L-mode phase preceding the I-mode. These bursts also lead 

to a small dip in Te and the measured temperature rise at the 

target is of the order of several 10 K. Owing to the short dura-

tion of these bursts this could correspond to very high parallel 

heat loads, that yet need to be characterised.

With respect to accessing QH-mode with a W wall, clear 

indications of the edge harmonic oscillation have been 

observed transiently [35] in co-NBI heated discharges. 

Following a recipe developed on DIII-D, the plasma rotation 

was increased before entering H-mode by strong NBI during 

an L-mode phase with the ion ∇B-drift away from the X-point 

and a subsequent down-shift of the plasma to enter H-mode at 

strong rotation. This leads indeed to a very deep Er well with 

high shear thought to be crucial for accessing QH-mode. An 

effect on the density transport during the presence of the EHO 

is observed, but it is not strong enough to prevent the ELMs. 

Whilst QH mode was readily achieved on AUG with a C wall 

[80] this is the first time signs of the EHO have been seen 

with the W wall. Attempts are ongoing to develop a stationary 

QH-regime with a W wall and experiments with counter cur-

rent NBI in reversed Bt/Ip are planned.

4. Scenarios and heating

The heating and current drive mix on AUG allows access to 

fully non-inductive MHD quiescent scenarios at Ip = 0.8 MA 

with q95  =  5.5, βN < 2.8 and HH98(y,2) ≈ 1.1 [2]. The plasma 

in this scenario is close to the ‘no-wall’ limit and small 

modification of the current profile as well as external per-

turbations become important [81]. These points are the sub-

ject of actual research for further scenario optimisations. A 

lower Ip = 0.6 MA variant of this non-inductive scenario 

(q95 ≈ 7.2, βN = 2, HH98(y,2) ≈ 0.85) has been sustained for 

several current diffusion times showing that steady state can 

be achieved robustly [82]. At Ip = 0.6 MA the low confine-

ment is due to the application of RMPs for ne reduction. The 

modelling of j(r) in these scenarios is in very good agreement 

with the measured profiles using no free parameters, thus 

proving predictive capability. This work has been aided by an 

improved equilibrium calculation taking the current diffusion 

Figure 9. Evidence for the ideal mode structure from fast 
measurements with the new He beam diagnostic. (a) Divertor 
current (blue) as ELM signature and pedestal top pressure (red),  
(b) Te(R) and (c) ne(R) as function of time. Reproduced from [67]. 
© 2018 Max-Planck-Institut fur Plasmaphysik. CC BY 3.0.

Figure 10. Stationary I-mode with NBI feedback 
control on the value of βpol. (a) NBI power, (b) pedestal 
top Ti and Te (c) plasma energy, (d) βpol, (e) line-
average densities, ( f ) density fluctuation spectrogram at 
ρpol = 0.99. Reproduced from [79]. CC BY-NC-ND 4.0.
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into account [83, 84]. Here, also the understanding of radial 

fast-ion transport is important [85] (see section 5).

Work on the ITER base-line Q  =  10 scenario (IBL) at 

Ip = 1.2 MA (q95  =  3, βN = 1.8, n/nGW = 0.85, δ = 0.4 

and HH98(y,2) = 1) and its higher q95  =  3.6 at Ip = 1.0 MA 

(βN = 2.2, HH98(y,2) = 1.2) alternative (IBL-A) [86, 87] is 

ongoing with the aim to reach the required confinement by 

N2 seeding and to reduce the ELM size using pellet pacing 

and RMPs. So far both high density scenarios still fall short 

of the required confinement by about 20% and ELM control 

techniques have a limited impact on the ELM frequency at 

n/nGW = 0.85, though a slight density pump-out is observed 

with the application of RMPs. A high pressure in the divertor 

and a slightly lower average shear 〈q′〉/〈q〉, however, lead to 

the onset of small ELMs (see section 2). Here, application of 

MP may also aid the transition to small ELMs. Most of the 

work in the past years has been done in the q95  =  3.6 IBL-A 

scenario. Here, seeding of N2 reduces the HFSHD region but 

does not significantly improve the confinement. In contrast to 

studies at lower current and triangularity [14], which show 

a confinement improvement with N2 seeding, in the IBL-A 

scenario the changes in the HFSHD region do not correlate 

with changes in the separatrix density. The performance of the 

IBL-A scenario was also tested using only ECRH and ICRH 

heating to dominantly heat the electrons and also reduce the 

torque input. No marked changes in perfomance have been 

observed. Operating at lower density trying to match ν⋆ of 

ITER rather than n/nGW leads to a higher confinement even 

in the presence of RMPs, which are used to lower ne. For the 

IBL-A scenario ν⋆ ≈ 3ν⋆ITER has been achieved so far.

Scenario development is aided by more sophisticated 

control schemes, e.g. using a state observers based on the 

RAPTOR and RAPDENS codes [88]. This enables for 

example to maintain density control even if measurements 

become unavailable [89, 90]. Whilst switching between dif-

ferent density signals (e.g. interferometer and bremsstrahlung) 

the real time modelling of the density profile using RAPDENS 

can maintain plasma control even if the real-time density 

measurement is lost. Real-time temperature profile estimates 

from the RAPTOR state observer were used for feedback 

control of the electron temperature profile [91]. Using ECRH 

heating at different radial positions and varying the individual 

power level accurate current drive studies with on- and off-

axis NBI were facilitated [85]. The modular structure of the 

frame work allows easy implementation of additional mod-

ules. E.g. a module calculating the NBI fast-ion distribution 

in real time (RABBIT) has been developed and benchmarked 

with NUBEAM [92], which will improve the performance of 

the state observers in future. Work is ongoing to implement 

a path-oriented approach for disruption avoidance into this 

frame work as well. Such a path oriented approach has been 

demonstrated in feed forward by avoiding density limit dis-

ruptions [93] (see section 6).

Using feedback controlled pellet trains a plasma operating 

reliably at n/nGW ≈ 1.2 has been sustained [90]. Pellets have 

also been used to control the H to D ratio. The combined feed-

back of the core density, divertor pressure and strike-point 

electron temperature has been demonstrated using pellets, D2 

and N2 gas puffs as actuators respectively [94]. This way the 

compatibility of the pellet fuelling with divertor detachment 

has been tested.

An improved understanding of the impact of ICRF power 

on the profile of electron density in the SOL nSOL
e  and the back 

reaction of the SOL on ICRF coupling has been gained using 

a set of reflectometer measurements inside the ICRF antenna 

[95] and retarding field energy analyser (RFEA) measure-

ments on the field lines connecting to the antenna [96]. The 

measurements are in good qualitative agreement with self-con-

sistent modelling of the oscillating E-fields (RAPLICASOL) 

and the sheath-rectified DC-fields (SSWICH) which induce 

E × B convection (EMC3-EIRENE) and modifications of 

nSOL
e  [97]. The impact of the three-strap antenna on the SOL 

density is smaller due to the lower DC-fields that also reduce 

W sputtering.

Following the experiments on JET and Alcator C-MOD 

[98] the three ion heating scheme using the 3He resonance 

in H–D mixed plasmas has now been demonstrated on AUG 

as well [99]. Both on- and off-axis resonances were used 

with 30 MHz at Bt = 3 T and Bt = 2.8 T respectively. This 

heating scheme will likely enable ICRF heating on ITER in 

the non activation phase using a H–3He–4He mix. Peaked ion 

temperature profiles doubling the core Ti from Ti = 2 keV to 

Ti > 4 keV with the addition of PICRF = 2.6 MW on top of 

PNBI = 5 MW (#34697) have been observed with the 3He 

Figure 11. Three-ion H–3He–D heating: (a) energy and pitch angle resolved fast-ion loss measured with FILD during on-axis heating, 
(b) energy spectrum of He ions from CXRS during off-axis heating at different ICRF powers.
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resonance on-axis and 1%–1.5% 3He concentration. The pres-

ence of multi-MeV He ions is evident from the large gyroradii 

detected in the FILD measurement shown in figure 11(a). The 

energetic He ions up-to 50 keV have been directly measured 

using CXRS [100] for the first time during three-ion heating 

and on AUG. The increase of the high energy tail between 

10 keV < EHe+ < 50 keV during the ICRF application at dif-

ferent power levels is shown in figure 11(b).

In the next series of experiments on AUG, far off-axis 

three-ion ICRH heating scheme with 3He in H–D mixture 

(ρpol ≈ 0.5) at Bt = 2.5 T and its compatibility with avoiding 

core W accumulation in combination with core ECRH has 

been demonstrated (#35207, figure 12). This closely mimics 

the ITER heating scenario at 3–3.3 T in H–4He mixed 

plasmas discussed in [101], in which off-axis 3He heating 

( f = 40 MHz) has been proposed to facilitate achieving 

H-mode in hydrogen plasmas with  ∼10% of 4He. The mix of 

heating systems on AUG (NBI, ECRH and ICRH) uniquely 

mimics the one of ITER, and further studies of such an inte-

grated ITER-relevant scenario are foreseen on AUG.

5. Core fast-ion physics

A good confinement of the fast-ion population is of crucial 

importance towards the success of ITER and a future burning 

plasma. Fast-ions are, however, subject to transport by a rich 

spectrum of electromagnetic perturbations such as Alfvén 

eigenmodes (AEs), ELMs, NTMs, sawteeth, etc. Some of 

them, such as weakly damped AEs, are expected to be unstable 

in ITER. A profound understanding and control of the fast-

ion distribution and related electromagnetic perturbations is 

thus mandatory. In particular as the fast-ion distribution on 

ITER from the fusion born α-particles (vi,th ≪ vA ≪ vα) is 

isotropic a more complex non-linear interaction is predicted. 

Recently a scenario with off-axis NBI and accumulated W in 

the core creating a hollow Te profile gave access to a large 

variety of energetic particle (EP) modes as can be seen in 

figure 13 [102]. In particular NBI driven steady toroidal Alfén 

eigenmodes (TAEs) during the current flat-top have not been 

accessible previously. For the first time on AUG this unique 

parameter space with βEP/βth ≈ 1 and EEP/Eth ≈ 100 leading 

to non-linear coupling processes between the EP modes is 

accessible and can be diagnosed and modelled with the com-

prehensive set of tools available. For example velocity space 

tomography of the five different FI Dα spectra (FIDA) [103] 

has been used for the first time to infer the total D velocity dis-

tribution in NBI heated discharges showing a non-Maxwellian 

distribution function [104]. Evaluating the density, kinetic 

drift velocity and kinetic temperatures from the moments of 

the distribution function shows an anisotropic temperature 

with T⊥ = 11 keV > T‖ = 9 keV both substantially larger 

than the impurity temperature TB5+ = 7 keV measured by 

CXRS. This is in excellent agreement with TRANSP calcul-

ations as can be seen from figure 14. Using this method also 

the fast-ion redistribution during a sawtooth crash has been 

studied showing clear discrepancies between the measure-

ments and the TRANSP simulations [103].

The fast-ion transport and neutral beam current drive effi-

ciency (NBCD) have been studied in discharges with elevated 

q-profiles, RMPs and edge-TAE activity. While good NBCD 

efficiency is obtained, strong losses of fast-ions with energies 

well below the injection energy are observed. These losses 

can, in part, be attributed to the RMP-induced error-fields, 

as modelled by VMEC and LOCUST. In addition, charge-

exchange losses become strong during RMP operation (20% 

of the injected power) since the associated density-pump-out 

prolongs the fast-ion slowing down time such that the rela-

tive impact of charge-exchange losses increases. In contrast, 

a clear impact of the edge-TAEs on the fast-ion confinement 

could not be observed. If present, the level of the TAE-induced 

transport is below the modelling uncertainties of the fast-ion 

losses due to MPs and due to charge-exchange. The impor-

tance of the radial fast-ion transport has also been highlighted 

in a series of detailed NBCD studies with on- and off-axis NBI 

with feedback on the Te profile [85]. Here, the on-axis case 

deviated from the NC predictions and both an ad hoc model 

of fishbone driven transport as well as turbulence driven trans-

port led to good agreement between the FIDA measurements 

and the predictions from TRANSP modelling.

The effect of MPs on fast-ion losses has been studied in 

detail. The differential phase ∆φul between the upper and 

lower row of B-coils (alignment to the field) can be used to 

influence the fast-ion distribution [69]. The fast-ion trans-

port and loss was analysed in terms of the canonical angular 

Figure 12. Overview of AUG pulse #35207 with far off-axis 
ICRH heating of 3He ions in H D plasmas (2.5 T/0.8 MA): (a) NBI, 
ECRH and ICRH heating power; (b) H/(H  +  D) ratio measured by 
NPA and 3He fuelling blips; (c) plasma stored energy; (d) tungsten 
concentration (core and edge).
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momentum Pφ = mRvφ − Zeψ. The combination of multiple 

linear and non-linear resonances creates an edge transport 

layer in the presence of the RMPs. Here, the structure of the 

perturbed angular momentum 〈δPφ〉 aligns well with geomet-

rical orbital resonances of the bounce frequency divided by the 

average transit frequency ωb/ω̄d = n(l + 1)/[ p0(l + 1)± p′] 
where n is the toroidal mode number of the perturbation, l the 

non-linear harmonic, p = p0 + p′ the bounce harmonic with 

its primary, p 0, and additional, p′, contribution. At different 

∆φul different resonances are activated creating either inward 

transport or outward transport (see figure 15). The modelled 

and measured ∆φul dependence of the fast-ion loss are in 

good agreement if the plasma response is included and also 

the n  =  6 side bands are considered. The RMP induced fast-

ion loss may lead to high localised heat loads at the first wall 

and needs to be minimised together with the suppression of 

ELMs (see section 3).

This ‘tailoring’ of the fast-ion distribution at the 

plasma edge has also been used to demonstrate control 

of TAEs [105]. For this TAEs were excited (Bt = 2.4 T, 

Ip = 0.8 MA) during the flat-top by NBI in an optimised den-

sity range ne ≈ (3.0 · · · 4.5) · 1019 m−3 and a monotonic 

elevated q-profile. Depending on the applied RMP alignment 

TAEs could be generated or suppressed. TAE and reversed 

shear AE (RSAE) control was also demonstrated using off-

axis ECRH deposition [106]. Complete suppression of the 

RSAE was achieved during the ramp-up similar to earlier 

results on DIII-D [107]. However, in the presence of supra-

Alfvénic ICRF accelerated ions TAEs were destabilised 

during the application of ECRH despite also leading to a 20% 

increase in ne. SELFO calculations showed that with ECRH 

the FI slowing down time increases leading to a 40% higher 

FI stored energy and therefore a stronger TAE drive. Both, the 

effects of ECRH on RSAE and TAE result from changes in the 

profiles, which may not be applicable to ITER, but increase 

confidence in the FI modelling capability. The next step is to 

study the effect ECCD and first experiments have been per-

formed recently.

6. Disruptions, runaway electrons and MHD

Disruptions are the single most dangerous abnormal plasma 

event in ITER and DEMO. To prevent damage to machine 

hardware their handling requires a multi stage approach: safe 

Figure 13. Magnetic spectrum of #34924 showing a variety of energetic particle driven modes in particular steady NBI driven TAEs 
during the flat-top previously not accessible on AUG.

Figure 14. Deuterium distribution function in pitch-angle and energy from (a) TRANSP and (b) velocity space tomography of 5 FIDA 
views. Reproduced courtesy of IAEA. Figure from [104]. © 2018 EURATOM.
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scenario control, disruption avoidance and recovery, con-

trolled ramp down and as a last resort disruption mitigation. 

The different evolution a discharge can have towards a disrup-

tion (disruption path) will require a different strategy to handle 

the disruption [93, 108] (e.g. density limit versus βN-limit dis-

ruptions). For each disruption path different sensors, triggers, 

actuators and algorithms may be required. These different 

handling strategies have been recently outlined on AUG and 

the handling of an H-mode density limit (HDL) discharge 

with this approach has been demonstrated [93]. It should be 

noted that generic disruption triggers (e.g. like MHD sig-

natures) often are too quickly followed by a disruption for 

avoidance techniques to be employed. This is particularly the 

case for the HDL which can be avoided on AUG by ECCD 

at the q  =  2 surface together with a reduction in fuelling (see 

figure 16). Here, the ECCD is used to prevent the discharge 

from disrupting until a safe density is reached. Rather than 

a trigger event a discharge state boundary is derived from a 

larger set of HDL disruptions using HH98(y,2) and the line aver-

aged edge density n̄
edge
e  measured with the DCN interferrom-

eter channel H-5 scaling like n̄scal
e = 0.5Pheat

0.4Ip
0.3q0.3

95  (Pheat: 

heating power). So far only the proof of principle has been 

demonstrated but application of this state boundary in the con-

trol system is planned for the upcoming campaign. In future 

more sophisticated machine independent state boundaries can 

be provided e.g. by a module in RAPTOR (see section 4). In 

parallel, in a Europe-wide effort including data from AUG, 

JET and TCV a tool is developed using generic descriptors to 

better identify the plasma states that are followed by disrup-

tions in a machine independent way [109].

As a last resort the disruption has to be mitigated with respect 

to thermal and mechanical forces. On AUG disruption mitiga-

tion is provided using massive gas injection (MGI), whilst the 

ITER design uses mostly shattered pellet injection. The recent 

investigations have concentrated on finding the minimum gas 

(Ne) injection required to mitigate disruptions on AUG [110]. 

Forces and heat loads are mitigated with Ninj > 1021 atoms of 

Ne. The pre thermal quench (TQ) phase has been modelled 

using the 1D ASTRA-STRAHL transport code recovering 

well the trends observed in the experiment validating it for the 

use on ITER [111]. The cooling of the q  =  2 surface to below 

Te � 5 eV is a good indicator for the TQ onset.

Mitigated and unmitigated disruptions are likely to gen-

erate runaway electrons (RE) in larger devices. Since 2014, 

an AUG runaway scenario has been accessed using an 

ne ≈ 3 × 1019 m−3, Ip = 0.8 MA circular plasma disrupted 

by argon MGI [110]. The runaway beams have a typical 

Figure 15. Perturbation of the canonical angular momentum by 
RMPs with overlayed geometrical resonances (lines). Blue areas 
correspond to inward transport and yellow areas to outward transport.

Figure 16. Different discharge trajectories of HDL discharges in 

(n̄
edge
e /n̄scal

e , HH98(y,2)) operational space together with a proposed 
detection contour. As avoidance schema ECCD at q  =  2 is applied 
in feedforward and the gas fuelling is reduced. Three cases are 
shown: (red) no ECCD, (orange) ECCD applied too late and (blue) 
recovered discharge. Reproduced from [93]. © 2017 Max-Planck-
Institut for Plasmaphysics.

Figure 17. Suppression of RE with the application of RMP as 
function of differential phase angle ∆φul; (a) normalised radial 
field at the q  =  5 surface from plasma response calculations with 
MARS-F; (b) generated RE current. Included are also discharges 
with different RMP amplitude (B-coil current: IB and timing (red 
square, orange triangle, blue diamond). Reproduced from [113].  
© 2017 Universitá di Padova.
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current of IRE = 0.2 · · · 0.4 MA and up to 0.5 s duration, 

allowing a large variety of RE studies, for example, RE dis-

sipation by heavy impurities. AUG (and TCV) data show that 

the inclusion of full quantum mechanical treatment for the 

interaction of the relativistic electrons with the high Z mat-

erial [112] improves the prediction of the RE dissipation. The 

application of carefully optimised n  =  1 RMPs before the dis-

ruption creating a plasma response on the q  =  5 surface has 

successfully prevented RE generation [113] in the standard 

RE scenario. This can be seen from figure 17 showing the gen-

erated RE current as function of the differential phase angle 

∆φul between the upper and lower coil row. The application 

of the RMPs has led to a drop in energy and Te by 30% before 

the disruption, and RE generation is expected to have a strong 

temperature dependence. However, when the effect of Te 

before the disruption on the RE generation has been tested 

using ECRH heating, it revealed no clear trend as suggested 

by the RE generation theory. Modeling carried out with the 

GO code (a runaway fluid model coupled with atomic physics 

and background plasma evolution [114]) revealed that the 

nonlinear interplay between Te and MGI assimilation rate and 

speed is hard to disentangle experimentally. The application 

of RMPs after the disruption showed no impact on the REs, 

but the conducting structures around the coils slow down the 

3D field generation enough to hamper its effect. A fluid RE 

generation model has been implemented into JOREK [115] 

and has been successfully benchmarked against GO.

7. Transport

A deeper understanding of the plasma energy, particle and 

impurity transport has been gained by comparing detailed 

fluctuation and profile measurements with gyro-kinetic (GK) 

modelling. A strong constraint for turbulence modelling 

is for example the ne − Te cross-phase angle αnT . This has 

now been measured using correlation ECE [116] coupled to a 

reflectometer on the same line of sight giving simultaneously 

access to the Te and ne fluctuating fields [117]. Comparing 

these measurements with synthetic diagnostics of predicted 

GK (GENE) calculations at ρtor = 0.75 for an ECRH heated 

L-mode quantitative agreement is found with the ion heat flux 

Qi, the electron heat flux Qe, the radial correlation length of 

the Te fluctuations Lr(Te) and αnT , but the relative fluctuation 

level δTe⊥/Te is consistently over-predicted. The reason for 

this discrepancy is still under investigation.

For the first time on AUG the eddy tilt angle of the den-

sity fluctuations has been measured with correlation Doppler 

reflectometry [118, 119]. The measurements for three poloidal 

positions are shown in figure  18. The vertical displacement 

computed from the perpendicular velocity u⊥ and the time 

delay of the cross-correlation function τmax shows clearly dif-

ferent slopes as function of radial separation indicating eddy 

tilting. The observed tilt angle changes in discharges where 

the heating mix is shifted towards dominant electron heating 

by replacing NBI with ECRH are most likely dominated by 

Figure 18. Eddy tilt angle: (a) measurement positions for three angles of incidence are shown on the AUG cross-section. The reference and 
hopping channels are depicted by squares and circles, respectively. Structures are artistically depicted. (b) The perpendicular offset u⊥τmax 
as a function of the radial displacement for the cases depicted in (a).
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changes in the E × B flow shear. In these experiments aimed to 

move from an ITG dominated to a TEM dominated turbulence 

regime the effect due to a change in E × B shear is stronger 

than the change in tilt angle expected from theory due to the 

change of turbulence state. GKW simulations indeed confirm 

that the growth rates and phase velocities correspond to a 

change from ITG to TEM dominated turbulence. Comparison 

of experimental and gyrokinetic results with linear ballooning 

theory shows that the E × B shear dominates the eddy tilt 

angle, in particular in the NBI phase [118, 119].

The change from TEM to ITG turbulence has also been 

considered the main reason behind the observed trans-

ition from linear (LOC) to saturated (SOC) Ohmic confine-

ment with increasing density. Modelling with ASTRA and 

the TGLF model show that the turbulence transition is not 

required to obtain the confinement saturation [120]. This is 

correctly reproduced in the modelling by the increased elec-

tron and ion thermal coupling and the reduction of the impurity 

content with increasing density. The absence of a direct cor-

respondence between the TEM to ITG turbulence transition 

and LOC-SOC transition is also confirmed by measurements 

of the phase velocity of the density fluctuations, comparing 

Doppler reflectometry measurements with E × B velocities 

measured by CXRS [121]. The poloidal velocity required to 

determine the E × B velocities are obtained through the differ-

ence between the HFS and LFS toroidal velocities. Thereby, 

while a turbulence transition from TEM to ITG is observed 

to take place with increasing density in both modelling and 

measurements, this is not related to the confinement mode 

transition and can take place before or after the LOC–SOC  

transition depending on plasma conditions. Furthermore, the 

CXRS measured poloidal rotation is observed to be in the 

ion diamagnetic direction around mid-radius, which is in the 

opposite direction with respect to the neoclassical predictions. 

The widely documented reversal of the intrinsic toroidal rota-

tion in Ohmic plasmas has been simulated with both local 

[122] and global nonlinear GKW calculations [123]. The 

global profile shearing effect has been identified as the domi-

nant symmetry breaking mechanism allowing the simulations 

to reproduce the measured levels of intrinsic rotation profile 

hollowness. The level of hollowness is strongly determined 

by the second derivative of the density profile in particular. 

All local mechanisms produce significantly weaker effects. 

An important role of TEM turbulence, this time destabilised 

by strong density gradients, has been found in gyrokinetic 

modelling of pellet fueled plasmas [124]. A new instability 

driven by reversed density gradients and leading to predomi-

nantly HFS turbulence is found in the GKW simulations and 

predicted to develop significant inward diffusion of passing 

particles at high collisionality. This instability is stabilized by 

a decrease of collisionality to the levels expected in a reactor 

plasma.

The impact of the main ion species on global plasma con-

finement is a key question for predicting DT operation in future 

power plants. Discharges run in H or He often show a degraded 

confinement with respect to D, which is normally not evident 

in GK simulations. The key role of the collisional electron–

ion energy exchange has been highlighted experimentally in 

a study with matched L-mode plasmas in H and D [125]. The 

mass dependence of the collisional coupling is sufficient to 

explain the observed reduced confinement of the H plasma 

with respect to the D plasma, where the same temperature pro-

files are obtained with different heating powers. This result is 

supported by non-linear GK simulations with GENE of the 

stiff ion transport in ITG turbulence and related ASTRA mod-

elling. In the ASTRA modelling the experimental observations 

for H and D are reproduced using a mass independent critical 

gradient model and the same transport coefficients [125]. The 

differences for H and D here are solely a consequence of the 

increased coupling between electrons and ions in H compared 

to D. No mass dependence of confinement is found in H-mode 

plasmas where the pedestal is matched through an increase 

of triangularity from D to H. The significance of the separate 

electron and ion heat transport channels has also been identi-

fied in a companion study dedicated to the understanding of 

the often observed reduced confinement in He plasmas with 

respect to D plasmas. Plasmas with matched conditions in He 

and D and with increasing fraction of electron heating show 

that the usual degradation is only observed in the presence 

of dominant ion heating, whereas in conditions of dominant 

electron heating He and D plasmas exhibit the same confine-

ment. The degradation of confinement in conditions of domi-

nant ion heating is consistent with the predicted reduction of 

zonal flows in electromagnetic ITG turbulence in He with 

respect to D in GKW simulations [126, 127].

An experimental quantification of the ion and electron 

transport stiffness is obtained by two sets of experiments with 

on- and off-axis NBI and on- and off-axis ECRH respectively. 

For the ions, the experimentally identified threshold agrees 

with the GK predictions and the expectations from stiff trans-

port. This is in contrast to a recent interpretation reported on 

DIII-D [128]. On AUG the effect of fast-ion stabilization of 

ITG turbulence is clearly seen and identified by a comparison 

between experimental and GK modelling results. The electron 

heat transport experiments demonstrate a sudden significant 

increase of stiffness when R/LTe
 exceeds 6 around mid-radius, 

with a heat pulse conductivity which suddenly exceeds the 

power balance conductivity. This is consistent with the GK 

predicted destabilization of ETG modes. The importance of 

separately reproducing the ion and electron heat fluxes in 

plasmas which aim at reproducing the conditions in a burning 

plasma has been highlighted in a set of experiments in which 

also the torque and particle sources have been matched to 

those expected in a reactor [129]. In addition, the exper-

imental results show the dominant role of the inward con-

vection with respect to the particle source in determining the 

density peaking in these conditions. Theory-based modelling 

predicts a reduction of the density peaking with increasing β.

The impact of different fractions of electron to ion heating 

has also been studied in the framework of impurity transport. 

For this study a new ICRF modulation technique has been 

developed and exploited at AUG to separately determine 

both the diffusion and the convection profiles of boron [130] 

(see figure 19). In contrast to heavy impurities like W, whose 

behavior in AUG is correctly predicted by the combination of 

neoclassical and GK models [131], light impurities, whose 
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transport is dominated by turbulence in both the diffusive 

and the convective components, are not correctly predicted 

by current theoretical models. The comparison between the 

results from ICRF modulation experiments and the GKW 

predictions reveal that while the diffusivity of B is reason-

ably well reproduced under most conditions (figure 19(a)), 

the observed outward convection in conditions of dominant 

NBI heating is not reproduced by the modelling, which 

predicts an impurity pinch for both dominant ion and elec-

tron heating (figure 19(b)). These results are consistent with 

the recently documented deficiencies of current turbulent 

transport models in completely reproducing the behavior of 

the density profiles of He and B in AUG [132]. This is in 

particular true for hollow impurity density profiles, and dem-

onstrates that the disagreement with theory is predominantly 

in the convective components.

Figure 19. Comparison of (blue) measured radial profiles of the Boron trasport coefficients with coefficients form (purple, circle) neocl. 
plus quasi-linear GKW modelling and (red, squars) flux matched nonlinear GKW modelling. Shown are (a) the diffusion coefficient and (b) 
the convection velocity. Reproduced from [130]. © IOP Publishing Ltd. CC BY 3.0.

Figure 20. New upper divertor: contours of Prad from SOLPS in (a) single null (SN) and (b) LFS snow-flake (SF-) configuration, (c) 
current design and (d) predicted target heat loads for different configurations from SOLPS. Reproduced from [135]. © IOP Publishing Ltd. 
CC BY 3.0.
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8. Summary and outlook

The combined domestic and European programme on AUG 

has considerably improved the physics basis for ITER and 

DEMO during the last two years. Fundamental to this has 

been the direct, detailed comparison between theory, simu-

lation and experiment facilitated by better diagnostics, novel 

analysis techniques and significant code developments. 

Improved tile design and clamping has alleviated the previ-

ously encounter ed cracking in the bulk W tiles. Advances 

in heating capabilities and control have enabled access to 

better scenarios. The upgraded power supplies for the in-

vessel B-coils have allowed more sophisticated studies with 

3D magn etic perturbations (MP) and the MP fields are now 

also used to enable new low collisionality scenarios. Key 

highlights of the programme are the deeper understanding of 

the edge localised mode (ELM) stability, crash dynamics and 

impacts on plasma facing components, the insight into 3D 

physics for ELM suppression and fast-ion confinement as well 

as the detailed comparison between turbulence characteristics 

and gyro-kinetic modelling.

The ELM crash and pedestal recovery have been meas-

ured with unprecedented accuracy in D, H and He and MHD 

modes have been identified that coincide with the clamping 

of density and temperature profiles. Evidence of reconnec-

tion during the ELM crash is given by the acceleration of ions 

detected with the fast-ion loss detector as well as magnetic 

measurements. The W melt motion for misaligned targets 

has been characterised in detail including measurements of 

the thermionic emission currents, which has led to important 

enhancements of the melt motion modelling with respect to 

the replacement currents.

To mitigate the impact of ELMs on the targets ELM control 

via RMPs is studied and the kink peeling plasma response is 

found to be instrumental for the control. The non-linear and 

linear resistive MHD modelling of the edge displacement by 

the plasma response during the application of MPs is in excel-

lent agreement with the measured 3D displacement giving 

further credence to the codes. The operational space for full 

ELM suppression has been widened and scenarios with good 

confinement have been achieved by fine tuning the perturba-

tion field. Here, the operational window to maintain ELM sup-

pression is found to be larger than the access window. Access 

to ELM suppression is to a large extent determined by the 

density pump-out. ELM suppression has been attained with a 

wide variation of the edge rotation questioning the common 

picture requiring a vanishing perpend icular electron flow 

close to rational surfaces to facilitate field penetration and the 

formation of an island at the pedestal top. Direct evidence for 

the altered edge stability in the presence of a MP has been 

found with the observation of a helically localised ballooning 

mode. The mode is destabilised on a single bad curvature line 

and its localisation is in good agreement with growth rates 

predicted by theory.

Ballooning modes, this time destabilised close to the sepa-

ratrix, may also be key to the H-mode density limit and are a 

good candidate for the small ELMs observed at high separatrix 

density and strong shaping. These small ELMs combine good 

confinement with an ITER like SOL. In particular the high 

density manifestation of the AUG ITER base-line scenario 

and its higher q95  =  3.6 derivative are found to be close to the 

threshold for small ELMs. Furthermore, the q95  =  3.6 variant 

has now been extended to pure wave heating with dominant 

electron heating and low rotation as well as low collisionality 

only a factor of two to three above the ITER value. The latter 

is facilitated by density pump-out using MPs. Whilst the high 

density scenario has still too low confinement at the required 

normalised pressure the confinement of the low collisionality 

variant is found to be sufficient. Validating heating methods 

for ITER, such as a novel three ion ICRF heating scheme 

previously explored at CMOD and JET has now been suc-

cessfully adapted on AUG. Efficient ion heating with the 3He 

resonance on-axis and 1%–1.5% 3He concentration could 

be demonstrated. This heating scenario is expected to facili-

tates ICRF heating during the non-active phase on ITER in 

hydrogen (H) plasmas.

Operation without ELMs will likely be crucial for DEMO. 

Apart from ELM suppression by MPs the I-mode scenario 

has been further developed and first attempts on recovering 

QH-mode with a W wall have been started. Stationary I-mode 

on AUG has been achieved with 60% of the Greenwald den-

sity (nGW) and HH98(y,2) = 0.8. Transiently n/nGW = 0.7 has 

been reached. The heat flux width is found to be in between 

L- and H-mode, but fast, transient intermittent density bursts 

have been observed that might lead to a high target heat flux.

A better characterisation of the current drive modelling in 

non-inductive scenarios has given confidence in the predictive 

capability, but also highlighted the importance of radial fast-

ion redistribution. Here, a good reconstruction of the velocity 

distribution of the confined fast-ions has been achieved using 

velocity space tomography of the various fast-ion Dα meas-

urements. In addition, the fast-ion losses have been studied 

using multiple fast-ion loss detectors. The special focus of 

these studies has been the fast-ion loss due to MPs showing 

a good alignment of the orbital resonances with changes in 

the canonical angular momentum. A better understanding of 

energetic particle modes has been gained by accessing a new 

scenario with βEP/βth ≈ 1 and EEP/Eth ≈ 100 and also by 

modifying TAE and RSAE stability with RMPs and via profile 

changes using ECRH. The accurate modelling of this activity 

gives confidence in the predictions of burning plasmas.

With respect to core energy, momentum and particle trans-

port new measurements such as the ne − Te cross phase or 

the eddy tilt angle allow a benchmark of gyro-kinetic (GK) 

simulations to a much deeper level than previously possible. 

The changes in the eddy tilt angle observed with different 

heating schemes to access ITG and TEM dominated regimes 

are so far dominated by the change in E × B flow shear as 

expected changes due to the turbulence state derived from GK 

simulations are small. Poloidal flow profiles, determined from 

LFS-HFS asymmetries of the toroidal flows, supported by 

GK modelling indicate that in Ohmic discharges a transition 

from TEM to ITG turbulence occurs. This transition, however, 

is not related to the transition between linear and saturated 

Ohmic confinement as previously stated.
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The key role of the collisional electron–ion energy 

exchange has been elucidated in a series of experiments, being 

sufficient to explain the differences in core transport observed 

in H, D and He L-mode discharges. The reduction of zonal 

flows in electromagnetic ITG turbulence in He in comparison 

to D seen in GK simulations is consistent with the degrada-

tion of confinement in the presence of dominant ion heating. 

GK simulations also agree with the experimentally identified 

threshold for stiff ion transport and predict a destabilisation of 

ETG when experimentally a sudden increase in the Te profile 

stiffness is observed at mid-radius. With respect to impurity 

transport, discrepancies between modelling and experiments 

are still found for light species such as B and He.

AUG is currently embarking on a substantial enhance-

ment of the upper divertor co-funded by EUROfusion  

[133, 134]. The new upper divertor (see figure  20(c)) is in 

its final design stage and will be implemented during a long 

shutdown starting 2021. The aim is to allow access to different 

alternative divertor configurations in the upper divertor by 

implementing two in-vessel wound poloidal field coils as well 

as a cryogenic pump and a suite of diagnostics to fully charac-

terise the new divertor. This will facilitate studies of these con-

figurations with high P/R. In preparation of this enhancement 

experiments characterising the upper divertor in its current 

state are ongoing to develop the required modelling capability. 

First modelling for the new upper divertor is shown in figure 

20 [135] comparing an upper single null divertor configuration 

(SN, figure 20(a)) with a near snow flake configuration, were 

the additional X-point is in the outer SOL (SF-: figure 20(b)). 

The modelling predicts a stronger radiation in SF- and a factor 

of four reduction in heat flux density under similar up-stream 

conditions (figure 20(d)). In addition to the upper divertor a 

Thomson scattering system in the lower divertor (also co-

funded by EUROfusion) comes online in early 2019. Also for 

2019 an imaging heavy ion beam is planned to probe density 

and plasma potential at the plasma edge. These enhancements 

will further strengthen the key role ASDEX Upgrade plays on 

the path to a future fusion power plant.
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