
This is a repository copy of HIV-2 as a model to identify a functional HIV cure.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/153757/

Version: Published Version

Article:

Esbjörnsson, J., Jansson, M., Jespersen, S. et al. (9 more authors) (2019) HIV-2 as a 
model to identify a functional HIV cure. AIDS Research and Therapy, 16 (1). 24. ISSN 
1742-6405 

https://doi.org/10.1186/s12981-019-0239-x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Esbjörnsson et al. AIDS Res Ther           (2019) 16:24  

https://doi.org/10.1186/s12981-019-0239-x

REVIEW

HIV-2 as a model to identify a functional HIV 
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Abstract 

Two HIV virus types exist: HIV-1 is pandemic and aggressive, whereas HIV-2 is confined mainly to West Africa and 

less pathogenic. Despite the fact that it has been almost 40 years since the discovery of AIDS, there is still no cure 

or vaccine against HIV. Consequently, the concepts of functional vaccines and cures that aim to limit HIV disease 

progression and spread by persistent control of viral replication without life-long treatment have been suggested 

as more feasible options to control the HIV pandemic. To identify virus-host mechanisms that could be targeted for 

functional cure development, researchers have focused on a small fraction of HIV-1 infected individuals that control 

their infection spontaneously, so-called elite controllers. However, these efforts have not been able to unravel the key 

mechanisms of the infection control. This is partly due to lack in statistical power since only 0.15% of HIV-1 infected 

individuals are natural elite controllers. The proportion of long-term viral control is larger in HIV-2 infection compared 

with HIV-1 infection. We therefore present the idea of using HIV-2 as a model for finding a functional cure against HIV. 

Understanding the key differences between HIV-1 and HIV-2 infections, and the cross-reactive effects in HIV-1/HIV-2 

dual-infection could provide novel insights in developing functional HIV cures and vaccines.
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HIV‑1 and HIV‑2 epidemiology and pathogenesis
HIV-2 was irst discovered in 1986 in West Africa [1]. 

Although HIV-2 has been found in other parts of Africa, 

Europe, India and the United States; West Africa has 

consistently had the largest HIV-2 prevalence [2–5]. In 

1994, the irst studies of HIV-2 reported a reduced rate of 

disease progression compared with HIV-1 among female 

sex workers in Senegal [6]. In 1997, it was reported that 

HIV-2 infected individuals had twice as high mortality 

compared with HIV negative individuals in Guinea-Bis-

sau [7]. his was conirmed in later studies that showed 

mortality rates two to ivefold higher in HIV-2 infected 

individuals compared with HIV-negative individuals in 

Guinea-Bissau [8, 9]. Other studies, from he Gambia 

and France, compared HIV-1 and HIV-2 infection and 

reported a generally slower CD4+ T-cell decline in HIV-2 

infected individuals [10, 11]. HIV-2 infected individuals 

therefore exhibit longer asymptomatic stages than HIV-1 

infected individuals [12]. However, in individuals reach-

ing AIDS, HIV-1 and HIV-2 share a similar clinical spec-

trum, with the exception of a lower incidence of Kaposi’s 

sarcoma in HIV-2 infected individuals [13, 14]. Interest-

ingly, studies have also reported that similar baseline viral 

load and CD4+ T-cell levels predict similar prognosis for 

HIV-1 and HIV-2 infected individuals [15, 16]. his could 

indicate that disease prognosis is determined during the 

early stages of both types of HIV infections.

he viral set-point has been suggested to be 10–28 fold 

lower in HIV-2, with lower levels of viraemia persisting 

into clinical stages of disease [17, 18]. As a consequence, 

HIV-2 infection is characterized by lower transmis-

sion rates at both the horizontal and vertical levels [19, 

20]. Moreover, AIDS seem to occur at a relatively lower 

viral load level in HIV-2 compared with HIV-1 infection, 

although the CD4 count is often higher in HIV-2-infected 
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subjects when AIDS-deining illnesses develop [12, 14, 

21]. he lower transmission rates of HIV-2 compared 

with HIV-1 is further highlighted by the parallel HIV-1 

increase and HIV-2 decline seen in West Africa between 

1990 and 2010 [2, 4, 5, 22].

Several reports have indicated that only approximately 

15–25% of HIV-2 infected individuals will progress to 

AIDS if following a natural course of disease [3, 23, 24]. 

However, these assumptions were based on data from 

HIV-2 infected individuals without information on infec-

tion date. On the one hand, lack of infection date will 

inevitably select for individuals with a slower disease pro-

gression rate than the average. On the other hand, such 

population will also enter the study at a more advanced 

stage. hese biases will create a contradiction that will be 

diicult to adjust for when estimating true disease pro-

gression rates. In 2018, data from individuals with an 

estimated date of infection showed that the disease tra-

jectory was almost identical between HIV-1 and HIV-2 

infections, albeit at approximately half the rate among 

HIV-2 infected individuals [12, 25, 26]. Importantly, this 

showed that AIDS will develop among the majority of 

HIV-2 infected individuals without antiretroviral treat-

ment (ART). Nevertheless, although no such indication 

was seen in the study, the existence of a subset of HIV-

2-infected subjects who maintain long-term viral con-

trol and have a normal life expectancy cannot be entirely 

excluded since this would require a complete follow-up 

to the end-stage (AIDS or death) of all study participants 

[27]. However, in such subgroup, the time to AIDS would 

be longer than the predicted human lifespan, meaning 

that the age at HIV-2 infection would be a determining 

factor for the size of the group. In fact, the median age at 

infection was 38 years in the HIV-2 infected group [27]. 

his, together with the lack of information on infection 

date, could explain previous results of the high propor-

tion of HIV-2 infected individuals not developing HIV-

related disease.

HIV‑1 and HIV‑2 virology and immunology
he HIV-1 and HIV-2 epidemics constitute multiple dif-

ferent introductions of simian immunodeiciency viruses 

(SIV) into the human population [28]. HIV-1 has its ori-

gin from SIV of the chimpanzee, whereas HIV-2 origi-

nated from the SIV of the sooty mangabey [29, 30]. Due 

to the parallel evolution of SIV and HIV in simian and 

human populations there is a distinct genetic diversity 

between HIV-1 and HIV-2. To date, a large number of 

groups, subtypes, subsubtypes and circulating recombi-

nant forms have been described for HIV-1, and at least 

nine groups of HIV-2 have been described (termed A–I) 

[28]. Group A and B are most common in HIV-2 infec-

tion, although intergroup recombinants between group 

A and B has been described [30]. However, and despite 

their diferent origins, HIV-1 and HIV-2 are related ret-

roviruses and show approximately 55% similarity in Gag 

and Pol, and 35% similarity in Env on the protein level 

(the overall similarity level is approximately 55% on the 

nucleotide level) [31]. Although the virus types share 

transmission routes and target cells, contrasting results 

in terms of replicative itness and cytopathicity have been 

reported [32, 33].

It is well established that blood plasma viral load is 

lower in HIV-2 compared with HIV-1 infection [34]. It 

would therefore make sense that viral replication could 

largely explain the diference in pathogenicity between 

the two viruses. Studies of natural disease progression 

caused by HIV-1 have indicated large variations in viral 

loads between individuals and the diference in plasma 

viral load may not fully explain the diference in rate of 

disease progression between the two virus infections. 

Interestingly, a recent study showed that CD4+ T-cell 

levels during the asymptomatic stage of infection was 

stronger associated with HIV-2 disease progression rate 

than with CD4+ T-cell decline [35]. Further studies are 

therefore needed to determine the causative efects and 

predictive values of viral load and CD4+ T-cell levels in 

natural disease progression of both HIV-1 and HIV-2 

infection [36, 37].

It has been suggested that untreated HIV-1 and HIV-2 

infected individuals with similar CD4+ T-cell levels have 

similar levels of gag mRNA transcripts, indicating that 

substantial viral transcription occurs in HIV-2 infected 

individuals despite the generally lower viral loads [38]. 

Interestingly, the tat/gag ratio between HIV-1 and HIV-2 

infections has been shown to difer [39–41]. Altogether, 

these studies suggest that tat mRNA levels are reduced 

compared with gag mRNA levels in cells from untreated 

HIV-2 infected individuals, whereas tat mRNA levels 

are more abundant than gag mRNA levels in cells from 

HIV-1 infected individuals. Since tat mRNA represents 

early transcripts, these results could relect a reduced 

rate of recent cell infections in HIV-2 infection. It is also 

possible that post-transcriptional control of viral produc-

tion could be involved in diferences in HIV-1 and HIV-2 

pathogenesis [42].

Lower virus production in HIV-2 compared with 

HIV-1 infection may also relect a lower activation state 

in infected cells, or that HIV-2 is less responsive to acti-

vation. he long terminal repeat (LTR) of both HIV-1 and 

HIV-2 regulates the expression of the virus in response 

to cellular transcription signals. he HIV-2 LTR difers 

from HIV-1 in numbers and type of transcription bind-

ing elements and enhancers, leading to reduced respon-

siveness to transcription factors present in activated 

T-cells [43]. It has been shown that the HIV-2 LTR does 
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not respond as well as the HIV-1 LTR to tumour necrosis 

factor alpha [44]. Similar results were obtained in experi-

ments measuring viral replication [45]. here could also 

be diferences in activation of HIV-1 and HIV-2 infected 

cells. In contrast to HIV-1, the HIV-2 envelope glycopro-

tein was found to stimulate production of higher levels of 

gamma interferon and interleukin 16 (both inhibit viral 

replication), and lower levels of interleukin 4 (stimulates 

viral replication) [46]. Further studies may result in novel 

molecular targets for functional HIV cure strategies.

he latent HIV-1 reservoir has been studied extensively, 

and the HIV-1 reservoir establishment is associated with 

the seeding of virus during the acute HIV-1 infection 

before the adaptive arm of the immune system starts to 

partially control the virus replication [47, 48]. It is also 

well established that HIV-1 remain quiescent in long-

lived CD4+ memory T-cells. Moreover, viral rebound is 

normally seen only a few weeks after secession of ART 

even in patients with previous long-term virus suppres-

sion. Hence, virus latency in these cells remain one of the 

main challenges for inding a functional cure against HIV. 

he size of the virus reservoir has been measured using 

diferent protocols, including qPCR of cell-bound virus 

DNA and mRNA, quantiication of ex  vivo reactivation 

of virus mRNA and proteins, as well as in ex vivo virus 

outgrowth assays. In HIV-1 long-term non-progressors 

(LTNP) and elite controllers (EC), that have been sug-

gested as models for functional cure, the reservoir of 

latently infected cells is reduced compared with HIV-1 

viraemic and treated individuals [49, 50]. Interestingly, 

conlicting results about proviral DNA levels in HIV-2 

compared with HIV-1 infection have been reported. Two 

studies indicated similar proviral levels after adjusting 

for disease stage [51, 52]; whereas a study by Gueudin 

et  al. [40] reported the opposite. hus, further studies 

are needed to establish proviral DNA loads at diferent 

disease stages of HIV-2 infection, and how they difer 

from HIV-1 infection. Moreover, even though quantiica-

tion of virus DNA by qPCR correlate with the size of the 

latent HIV-1 reservoir, these assays often overestimate 

the size of the replication competent latent HIV-1 reser-

voir. Although few studies have characterized the HIV-2 

reservoir, it was recently reported that HIV-2 DNA could 

be quantiied in transitional-memory cells from four of 

14 ART naive HIV-2-infected individuals, and in central-

memory cells from one of 14 ART naive HIV-2-infected 

individuals [41]. Approximately 100 HIV-2 DNA cop-

ies/106 cells were detected in each of the speciic memory 

cell subsets, respectively. However, HIV-2 in  vitro reac-

tivation was only observed in cells from three of the 14 

individuals, suggesting presence of defective proviruses. 

In line with this, the predominance of defective proviral 

DNA in HIV-2 infected individuals on successful ART 

has recently been reported from studies of three virally 

suppressed individuals [53]. In this study, most of the 

HIV-2 genomes had large deletions, whereas hypermuta-

tions were noted in a smaller fraction of the sequences. 

However, complete understanding of the HIV-2 reser-

voir will require larger studies and the use of diferent 

protocols. Moreover, both in vitro and ex vivo studies of 

latency reversal agents used in HIV-1 clinical settings are 

needed for HIV-2 (reviewed in [54]). Still, from available 

proviral load data and studies of HIV-1 in LTNP and EC 

(that in many ways resemble HIV-2) it is plausible that 

the remission of HIV-2 would be relapse-free or delayed, 

and less frequent compared with the general HIV-1 case 

(Fig. 1).

Explanations for lower virus loads and reduced patho-

genicity in HIV-2 compared with HIV-1 infections have 

also been attributed to diferent types of virus-controlling 

immune responses. Robust, broadly cross-reactive and 

polyfunctional virus-speciic responses of both CD4+ 

and CD8+ T-cells have been shown to distinguish HIV-2 

from HIV-1 infections [55–63]. In particular, HIV-2 Gag-

speciic T-cell responses have been shown to correlate 

with virus control [59, 61, 62]. Similarly, CD8+ T-cells 

co-expressing CD28 have been associated with con-

trolled HIV-2 infection [18, 64]. Strikingly, when subjects 

from the “Caió cohort” with high and undetectable viral 

loads were compared, the main distinguishing feature 

was CD8+ T-cell responses to Gag, which were absent 

in 52% of viraemic participants (the “Caió cohort” was a 

large community-based cohort from the small rural vil-

lage Caió, Guinea-Bissau) [63]. Gag-speciic responses 

in HIV-2-infected subjects often show unusually high 

functional avidity, with the capacity to respond to pico-

molar quantities of antigen, and are at an earlier stage of 

diferentiation than HIV-1-speciic CD8+ T-cells, pre-

sumably retaining their ability to proliferate [58, 63]. In 

line with these observations, HIV-2-speciic T-cells from 

LTNPs in the French cohort showed potent suppression 

of viral replication, in many cases exceeding the suppres-

sive abilities of HIV-1-speciic T-cells from elite control-

lers [64]. Given that high potency HIV-speciic cytotoxic 

T-lymphocytes (CTL) without features of exhaustion and 

broad cross-reactivity seem to be required for killing of 

the latent reservoir, there are good arguments to suggest 

that CTL from HIV-2 infected viral controllers would 

meet these requirements [47].

he cellular involvement in modulation of HIV-2 infec-

tions within West African populations also comes from 

HLA associations with viral control (HLA-B*58:01, 

HLA-DPB1*10:01 and HLA-DRB1*11:01) or disease 

progression (HLA-B*15:03 and HLA-B*35) [65–67]. 

Furthermore, the function of natural killer (NK) cells 

appears more well-preserved during asymptomatic 
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HIV-2 compared with HIV-1 infection, whereas the func-

tionality of these cells seem to drop to levels found dur-

ing HIV-1 infection with declining CD4+ T-cells [68]. 

Similarly to HIV-1 infection, chronic immune activation 

is linked to immunopathogenesis and progressive disease 

in HIV-2 infection [18, 69–75]. Elevated frequencies of 

T-cells expressing markers of activation and exhaustion 

appear to distinguish HIV-2 infected individuals that 

progress despite no or low level viraemia, which could be 

the consequence of long infection duration and/or virus 

replication not mirrored by plasma RNA levels [18, 70–

72]. Although these indings could suggest that aviraemic 

HIV-2 infected individuals should be ofered ART, there 

remains a group of aviraemic individuals with HIV-2 

infection without evidence of immune activation who 

may not necessarily beneit from therapy [70].

Both potent and broadly neutralizing antibodies have 

been detected at diferent disease stages in HIV-2 infec-

tion [51, 76–79]. Moreover, although susceptibility of 

HIV-2 to neutralizing antibodies seem to vary according 

to the infecting virus strain, it is in general signiicantly 

elevated compared to HIV-1 [77–80]. Furthermore, 

mutants escaping from neutralizing antibodies seem 

to emerge less frequently in HIV-2 infection and do not 

reach ixation [79, 81, 82]. Fc-mediated efector func-

tions, such as the efect of complement on antibody 

antiviral activity, have also been reported to be potent 

in HIV-2 infection [76]. In addition, antibodies with a 

broad ability to mediate antibody dependent cellular 

cytotoxicity (ADCC), and even cross-react with HIV-1, 

are found in HIV-2 infected individuals [83, 84]. hus, 

despite low-level viraemia, strong antibody responses in 

HIV-2 infection are sustained during both asymptomatic 

and progressive HIV-2 infections and do not distinguish 

between patient groups in diferent disease stages [79]. 

he impact of antibodies on disease progression during 

HIV-2 chronic infection is, therefore, not entirely clear.

Finally, animal models for HIV analysis of virus trans-

mission and AIDS development are rare, and chim-

panzees are the only non-human primates that are 

susceptible to HIV-1 infection. However, due to ethics, 

risk of extinction, and an infection that rarely results 

in progressive disease, these animals are not used as an 

infection model for HIV [85]. Experimental HIV-2 infec-

tion models have instead been established using rhesus 

and pigtail macaques. Still, these infections mainly result 

Fig. 1 Schematic of potential differences between HIV progressor groups in frequency of HIV reactivation from latency. Clearance or control 

of the latent HIV reservoir remains one of the main obstacles to achieve a functional HIV cure. Although the viral reservoir in HIV-1 infection has 

been extensively studied, much less is known about the reservoir size or reactivation frequency from this reservoir in HIV-2, and HIV-1 and HIV-2 

dual-infection. This figure outlines possible differences in HIV reservoir size and reactivation frequency between the main HIV infection types and 

progressor groups discussed in this review. The importance of the order of infection in HIV-1 and HIV-2 dual-infection has been highlighted in the 

figure, and it is likely that the HIV reservoir size and reactivation frequency will differ between depending of the order of HIV infections types
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in low or non-pathogenic infections [86, 87]. In contrast, 

serial in vivo passages of HIV-2 in baboons have resulted 

in the development of an AIDS-like disease model [88, 

89]. It has also been reported that HIV-2 infection of 

humanized mice results in persistent viraemia and CD4+ 

T-cell loss [90]. hese could therefore represent alter-

native models for testing eicacy of antiretroviral and 

latency reversal strategies. As for in  vitro models, com-

petition assays between HIV-1 and HIV-2 have demon-

strated that the replication itness of most HIV-2 isolates 

was lower and outcompeted by HIV-1 isolates [32], and 

others have shown that HIV-2 isolates from aviraemic 

individuals have reduced in  vitro replication capacity 

compared to HIV-2 isolated during viraemia [91].

HIV‑1 and HIV‑2 dual‑infection
Dual-infection with HIV-1 and HIV-2 has been reported 

with a prevalence of up to 3.2% in West Africa [4, 92]. 

However, cross-reactivity in antibody testing and lim-

ited molecular testing to distinguish dual-infections have 

hampered the accuracy of prevalence estimates. Intrigu-

ingly, a possible protective efect of HIV-2 on subsequent 

incident HIV-1 infection was reported in 1995, and sev-

eral studies reported that HIV-2 could alter HIV-1 infec-

tivity and replication in vitro [93–95]. Moreover, HIV-2 

infection has been shown to inhibit immunosuppression 

and simian AIDS after subsequent challenge with path-

ogenic SIV or SHIV in the Macaque model [96, 97]. In 

2012, it was shown that HIV-2 could inhibit HIV-1 dis-

ease progression also in humans, resulting in almost 

twice as long time to AIDS and mortality among HIV-1 

and HIV-2 dual-infected individuals compared with 

HIV-1 single-infected individuals [98, 99]. Importantly, 

the results showed that the slower disease progression 

was determined during the establishment of infection, 

and that the inhibitory efect was strongest among study 

participants where the HIV-2 infection preceded the 

HIV-1 infection (indicating the importance of the order 

of infections, Fig.  1). Moreover, in-depth analyses of 

CD4+ T-cell counts and HIV-1 diversity evolution indi-

cated that the main diference between single and dual-

infected individuals was determined during early HIV-1 

infection. In support, results from the Bissau HIV cohort 

showed that the median CD4+ T-cell count was higher 

and the mortality lower in dual-infected individuals com-

pared with HIV-1 single-infected individuals [100]. In 

contrast, a meta-analysis by Prince et  al. [101] did not 

show any diference between HIV-1 single, and HIV-1 

and HIV-2 dual-infected individuals. However, the data 

used was extracted from studies that were not designed 

for comparing survival between single and dual-infected 

individuals, and lacked information on estimated infec-

tion date and infection order among the dual-infected 

individuals. Most studies sufered from short peri-

ods of patient follow-up or observation time, and some 

were based on hospitalized patients with severe disease 

already at enrollment. Altogether, if identiied, the deter-

minants of the inhibition and slower disease progression 

in HIV-1 and HIV-2 dual-infection compared with HIV-1 

single-infection could represent novel targets suitable for 

HIV cure strategies or vaccines. Moreover, it is possible 

that the viral reservoir in HIV-1 and HIV-2 dual-infected 

individuals is reduced compared to that in the major-

ity of HIV-1 single-infected individuals. Cure strategies 

in dual-infected individuals may therefore be more suc-

cessful compared with HIV-1 single-infected individuals 

(Fig. 1).

Current functional cure strategies 
and the possibility of such studies in HIV‑2 
endemic areas
As the research ield of HIV cure has matured over recent 

years, it has been necessary to deine diferent concepts 

of the term ‘cure’ [48]. Within HIV-1 cure research, the 

aspect of ‘functional cure’ has emerged, or lately ‘relapse-

free remission’ to deine sustained suppression of virus 

without the need for ART. his means that a ‘functional 

cure’ does not have to result in complete absence of HIV 

in the body. Several diferent cure strategies have been 

suggested, e.g. stimulation of the latently infected cells 

to reduce the reservoir size; gene therapy to reduce the 

number of target cells; and immunotherapy to ameliorate 

the HIV-speciic immune response [102–105]. An exam-

ple of naturally occurring ‘functional cure’ are so-called 

elite controllers, which has been described in a small 

minority of HIV-1 patients [106–108]. Interestingly, this 

phenomenon seems to be much more frequent among 

HIV-2 infected individuals, and it is largely unknown why 

this is the case [27]. herefore, there are important les-

sons to be learned from HIV-2 pathogenesis, and HIV-2 

may represent a model to study relapse-free remission 

and open up new avenues towards how to induce relapse-

free remission in HIV-1 infection (Fig. 1).

Antiretroviral treatment efectively suppresses, but 

does not cure HIV infection. Multiple therapeutic 

strategies have been pursued in HIV cure research, 

but there has been a particular focus on using latency-

reversing-agents (LRAs) such as histone deacety-

lase inhibitors (HDACi), disuliram, Protein C kinase 

agonists and Toll-like Receptor agonists, to activate 

HIV-expression in latently infected cells, and thereby 

exposing their infected status to the immune system 

and potentially facilitating immune or virus-mediated 

cell lysis [109]. his is usually termed “shock-and-kill” 

[103]. Yet, although clinical trials of many of these 

compounds have demonstrated that HIV latency can 
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be disrupted in individuals on suppressive ART, this 

does not lead to a reduction in the frequency of latently 

infected cells or delayed viral rebound during analyti-

cal interruption of ART [110]. More recently, attempts 

to reverse latency with compounds that both activate 

virus and modulate immunity to enhance clearance of 

infected cells (so-called immunomodulatory LRAs), 

have been made [89]. he inability of latency-rever-

sal interventions to impact the latent HIV reservoir 

in clinical trials has increased the scientiic focus on 

immune-enhancement strategies towards a concept of 

relapse-free remission after cessation of therapy. his 

is also supported by the demonstration that even in 

individuals with no or extremely low levels of HIV in 

cells or plasma, there is rebound viraemia when ART 

is stopped [111, 112]. his emphasizes that an efec-

tive strategy to achieve long-term ART-free remission 

should include both a component that reduces the 

amount of HIV that persists on ART, and a component 

that improves anti-HIV immune surveillance of resid-

ual viruses. his could involve immune-based therapies 

with immune checkpoint inhibitors, TLR agonists, or 

HIV-speciic broadly neutralising antibodies, which are 

currently under intense investigation for application in 

HIV prevention, treatment and cure [105, 113–115]. 

Additionally, starting ART shortly after infection has 

been a focus area, as this is associated with both a lower 

frequency of latently infected CD4+ T-cells in blood 

and tissue, and a better preserved T-cell function [116, 

117]. Furthermore, early ART increases the likelihood 

of post-treatment control, i.e. the ability to achieve 

durable remission after interruption of ART, which was 

started in primary infection—a phenomenon initially 

described in the French VISCONTI cohort [118].

Despite recent disappointments on the possibility of 

LRAs leading to longstanding remission in HIV-1, there 

could be a case for trying LRAs and “shock-and-kill” 

therapies in HIV-2, since it may be a less it and more 

sensitive virus. HIV-2 cytotoxic CD8+ T-cell responses 

and possibly antibody responses, either broadly neu-

tralizing or mediating ADCC, may partly explain the 

delayed progression of HIV-1 in patients irstly infected 

with HIV-2 and later superinfected with HIV-1 [56, 59, 

77–79, 84, 98, 99, 119–123]. Hence, if HIV-2 immune 

responses play a role in controlling the rate of HIV-1 dis-

ease progression in individuals with dual-infection, it is 

plausible that boosting immunity may be able to induce 

relapse-free remission in HIV-2. here is a need to elicit 

studies on remission-strategies among HIV-2 infected 

individuals as these studies hold important promises for 

achieving an increased understanding of how to achieve 

remission in HIV-1.

An important question is if there is suicient capacity 

to undertake a functional cure study based on HIV-2 in 

the ield sites where there is a suicient number of rel-

evant HIV-2 cases. here are undoubtedly numerous fac-

tors to take into consideration before embarking on such 

highly complex clinical trials, and a number of relevant 

Table 1 Strengths and weaknesses of the Bissau HIV and the Guinea‑Bissau police cohorts and associated research teams

Strengths Weaknesses

World’s largest HIV-2 cohort + professional cohort with long and frequent 
follow-up [4, 12, 98, 130, 131]

High mortality and loss-to-follow-up

HIV-2 epidemiology well-characterized over three decades [4, 22]

Nationwide cohort [131, 132] High patient-turnaround and insufficient staff-resources

Strong collaboration with the National Health Laboratory in Guinea-Bissau Limited lab capacity locally

Large biorepository with preserved plasma and DNA Limited sample volume in historical samples

Cohort clinical real-time database including demographics and follow-up 
data [24, 133–135]

Limited data-entry capacity and political instability [136]

Close linkage with HIV-cure research environment and in-depth molecular 
analysis, including access to humanized mice models, ex vivo infection 
models, full-length genome sequencing and construction of infectious 
chimeric viruses [35, 98, 137–141]

Weak local research environment with few nationals at Ph.D level

Well-functioning national ethical committee with enhanced understanding 
for the complex ethical balancing needed for cure trials

Low health literacy among HIV patients, and extended information and 
consent procedure needed

National ethics committee placed within Ministry of Health, and a permis-
sion also serves as official government authorization for interventions to 
be tested

Limited experience among official health authorities for approval of 
non-approved drugs

Burden of co-infections and other comorbidities [98, 136, 142–151] Limited local diagnostic capacity for a number of co-infections

Resistance testing of HIV-1 [152, 153] Limited local capacity for genotypic resistance, and non-existing for 
HIV-2

Well-described algorithms for the diagnostic challenges of differentiating 
HIV-2 and dual-infections [98, 154–160]

Not the entire cohort tested with updated HIV-2 and HIV-1/HIV-2 dual 
diagnostics, needs retesting prior to trials
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concerns need to be taken into account (summarised in 

Table  1). Yet, these are all manageable challenges that 

have been overcome in previous studies (Table  2). For 

example, both the Bissau HIV cohort and the Guinea-

Bissau police cohort have built a high standard trial 

capacity during the last decades. Moreover, a therapeu-

tic HIV-1 vaccine trial has already been completed in the 

Bissau HIV cohort [124, 125]. Despite limited settings, 

large HIV treatment trials such as the PIONA trial have 

been possible through an experienced clinical trial unit 

that is still in place in Bissau, Guinea-Bissau [126]. his 

trial unit has the capacity to handle 10–20 annual project 

visits that such trials may entail, as well as provide com-

plex treatments requiring long infusions. he set-up for 

advanced analyses of immune-mediated processes is in 

place, both locally and among external partners [65, 71, 

73–77, 80, 84, 119, 127–129]. Finally, more collaborations 

are needed in order to fully take on the many possibilities 

within this emerging ield of HIV-2 cure research, and 

the Bissau cohorts are open to any collaborative eforts in 

this area and possible HIV cure applications.

Conclusion
HIV-2 is a less pathogenic virus than HIV-1, disease pro-

gression is slower and the proportions of controllers and 

slow progressors are higher. Both cellular and humoral 

immune responses, particularly HIV-2-speciic CD8+ 

T-cell responses, are likely to play a role in controlling 

the rate of disease progression in individuals with dual-

infection. A main immunological correlate for the sub-

stantial proportion of the aviraemic slow progressors 

seen in HIV-2 infection is the presence of highly avid, 

early-diferentiated polyfunctional Gag-speciic CTL 

(potentially more efective at targeting reactivated latent 

virus than HIV-1-speciic T-cells). herefore, there are 

important lessons to be learned from HIV-2 pathogen-

esis, and HIV-2 may represent a model to study relapse-

free remission in HIV-1 infection (Fig. 1). Understanding 

the key diferences between HIV-1 and HIV-2 infections, 

and the cross-reactive efects in HIV-1/HIV-2 dual-infec-

tion could provide novel insights in developing func-

tional HIV cures and vaccines. here is a clear need to 

conduct studies on remission-strategies among HIV-2 

infected individuals as these studies would provide valu-

able insights for achieving HIV cure.
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