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PERSPECTIVE

A Quantitative Systems Pharmacology Consortium 
Approach to Managing Immunogenicity of Therapeutic 
Proteins

Andrzej M. Kierzek1,*,†, Timothy P. Hickling2,† , Isabel Figueroa3, J. Cory Kalvass3, Marjoleen Nijsen3, Krithika Mohan3,  

Geertruida M. Veldman3, Akihiro Yamada4, Hiroyuki Sayama5, Sachiko Yokoo5, Abhishek Gulati6, Renu S. Dhanikula7,  

Jochem Gokemeijer7, Tarek A. Leil7, Craig J. Thalhauser7, Mario Giorgi1 , Maciej J. Swat1, Vijayalakshmi Chelliah8, Ben G. Small1, 

Neil Benson8, Michael Walker1, Kapil Gadkar9, Valerie Quarmby9, Rong Deng9, Andrea Ferrante10, Gemma L. Dickinson11,  

Jan-Stefan Van Der Walt12, Lian Zhou11, Xiaoying Chen13, Hannah M. Jones13, Jatin Narula13, Sophie Tourdot2, Thierry Lavé14, 

Benjamin Ribba14 and Piet H. van der Graaf8

Immunogenicity is a major challenge in drug devel-

opment and patient care. Currently, most efforts are 

dedicated to the elimination of the unwanted immune 

responses through T-cell epitope prediction and pro-

tein engineering. However, because it is unlikely that 

this approach will lead to complete eradication of im-

munogenicity, we propose that quantitative systems 

pharmacology models should be developed to pre-

dict and manage immunogenicity. The potential im-

pact of such a mechanistic model-based approach is 

precedented by applications of physiologically-based 

pharmacokinetics.

Immunogenicity (IG) is defined as the propensity of the 

therapeutic protein to generate immune responses to itself 

and to related proteins or to induce certain immunologically 

related adverse clinical events.1,2 In a recent US Food and 

Drug Administration review of 121 approved biological prod-

ucts, 89% of the products had reported IG, and in 49% of 

the cases this impacted its efficacy.3

Currently, IG is mostly tackled pre-emptively by bioinfor-

matics and in vitro analysis of protein sequence to priori-

tize compounds with a low risk of generating an immune 

response or alter compound sequence by protein engineer-

ing before it is tested in the clinic. The most frequently used 

strategy is to predict peptides that bind strongly to major 

histocompatibility (MHC) II receptors and subsequently 

select or engineer protein sequences, particularly those of 

nonhuman origin, in such a way as to avoid peptide mo-

tifs that will bind strongly to MHC II. In our view, this strat-

egy is unlikely to completely eradicate antidrug antibody 

(ADA) responses. For example, for monoclonal antibodies, 

the target binding sites are one likely source of T-cell epi-

topes. However, any engineering within this region could 

affect target binding or other aspects of developability and 

a strategy based on “engineering out” all potential epitopes 

would frequently lead to the rejection of potentially valuable 

compounds. In addition, the consideration of T-cell epitope 

content alone does not take into account a number of other 

important factors related to the drug product, the patients, 

or the route of administration. For example, in combina-

tion therapies, the mechanism of action of one drug could 

influence the immune system or the population variability 

of immune system components in a way that influences 

the immune response to a second drug. Another scenario 

could be that a particular T-cell epitope might not be strong 

enough to initiate a T-cell-mediated immune response in a 

healthy volunteer, but could be sufficient for a response to 

be initiated in a subject with immune dysfunction disease. 

Also, as the immune status of a patient or comedications 

change, a drug that had not appeared immunogenic for 

many years of treatment could begin to induce an immune 

response. Moreover, a marketed drug may exhibit IG for the 

first time in a new and sensitive target population, such as 

patients with an autoimmune disease or children. We be-

lieve that it is very unlikely that IG can be completely erad-

icated by targeting just one process (MHC II binding) in the 

complex cascade of events that culminates in an unwanted 

immune response.

Numerous approved drugs on the market benefit pa-

tients despite inducing the development of ADAs in a sig-

nificant number of individuals3. In these cases, IG is usually 
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managed in an empirical manner either by changes of dos-

ing regimens or cotherapy with immune-suppressive drugs.

A major limitation of current bioinformatic strategies is that 

these only calculate a static risk score rather than a time-de-

pendent profile that could provide insights into whether and 

to what extent IG impacts pharmacokinetics (PK), pharmaco-

dynamics, or both. They do not take into account concurrent 

medications, disease state, or other patient characteristics, 

such as age, gender, body weight, and other physiological 

parameters. Therefore, bioinformatic approaches provide a 

good basis for screening and optimizing compounds, but 

they cannot be used to manage IG once a protein therapeu-

tic has entered human trials. We argue that to more effec-

tively address the major challenges posed by IG, quantitative 

systems pharmacology (QSP) models need to be developed 

to complement the bioinformatics toolbox. A QSP approach 

may provide the basis for a quantitative framework to man-

age and predict IG at all stages of drug development and 

clinical care. It could be argued that this concept bears many 

similarities to the way physiologically-based PK (PBPK) 

modeling has impacted the issue of drug–drug interactions 

(DDIs) in small-molecule development.

PBPK modeling is a bottom-up, mechanistic modeling ap-

proach routinely used in drug discovery, development, and 

regulatory submissions.4 Detailed mechanistic models of 

drug absorption, distribution, metabolism, and excretion are 

built based on physiological knowledge on tissue volumes, 

blood and lymph flows, and metabolic enzyme and transport 

kinetics. Parameters are adopted from literature or in vitro 

assays rather than inferred empirically from data. In a typical 

scenario, a PBPK model is used to simulate a clinical trial, 

where virtual subjects are randomly generated using distri-

butions of physiological parameters. Genetic background 

is taken into account through allele frequencies of gene-en-

coding enzymes and transporters. Mechanistic models cap-

turing fundamental processes underpinning PK are capable 

of substantial extrapolation outside of a particular clinical 

data set. The most frequent application of PBPK is the pre-

diction of DDIs and the confidence in this approach is such 

that regulators accept simulations as a substitute for clinical 

trials and as the basis for label statements.4 Thus, although 

DDIs still cannot be “engineered out” completely, they can be 

predicted and managed effectively through virtual trial simu-

lation using models with sufficient mechanistic detail.

We propose that a QSP model integrating biologics PBPK 

and mechanistic models of immune response can be used 

to inform management of IG in a similar way as PBPK of 

small molecules informs DDI management and regulatory 

interaction. Mechanistic modeling of the immune system 

dates back to the 1970s, and there is a legacy of models re-

flecting the growing understanding of biology. Chen et al.5,6 

published the first QSP model of IG, integrating a mecha-

nistic model of immune response, with two-compartment 

PK. In 2017, we established a QSP IG Consortium to create 

a comprehensive mechanistic model of IG integrated in a 

PBPK context and implemented in software of regulatory 

submission quality.

The IG Simulator7 (Figure 1) integrates literature knowl-

edge with consortium-member data. The mechanistic 

model is composed of two parts representing immune re-

sponse and biologics PBPK. The PBPK is simulated by the 

Simcyp simulator (Certara UK, Sheffield, UK), whereas the 

mechanistic model of the immune system is implemented 

in a bespoke biological process map interface. Both mod-

els are integrated through common variables, which are 

compound concentrations in physiological compartments. 

The QSP model is compiled to one ordinary differential 

equation system, which includes all feedback between 

PBPK and immune response and is submitted to a virtual 

trial simulation with the Simcyp-correlated Monte Carlo al-

gorithm.8 Distributions of physiological parameters in the 

population of interest are used to instantiate the model 

with randomly generated virtual subject parameters and 

subsequently run the simulation with the dosing regimen 

specified in the trial protocol. A population of virtual sub-

jects is simulated, allowing the prediction of between-sub-

ject variability in a clinical trial. In addition to population 

parameters already included in Simcyp, the IG Simulator 

uses human leukocyte antigen (HLA) allele frequencies 

and variability in the immune system as a function of age 

or disease will soon be included. Once the virtual trial sim-

ulation is completed, the time profiles of all model vari-

ables in all individual subjects are available for analysis.

The QSP model used in the IG Simulator has sufficient 

mechanistic detail to integrate diverse inputs, including 

bioinformatics predictions of MHC II binding to anti-

genic peptides, in vitro cell-based assays and clinical 

measurements of compound concentrations, and ADA 

titers. Moreover, a detailed simulation of complex im-

mune system interactions allows for the incorporation of 

important sources of patient variability. This can be done 

through the generation of virtual patients with cell num-

bers following population distributions of immune-sys-

tem baselines corresponding to different age or disease 

groups. Thus, the mechanistic modeling approach ex-

pands rather than replaces T-cell epitope prediction. 

Predicted binding constants and HLA allele frequencies 

are used as parameters of the model, and thus MHC II 

binding is considered as an important factor in the mul-

tifaceted biological process rather than the sole deter-

minant of IG.

An example of a virtual trial simulation with the IG 

Simulator7 is shown in Figure 2. We simulated a clinical trial 

of adalimumab to replicate a study described by Bartelds 

et al.9 Because the time profiles of both the compound and 

ADA are simulated, the virtual subjects can be classified into 

those who do and do not exhibit IG using the same criteria 

that were applied in the clinic. Figure 2 shows PK profiles 

for three groups of subjects and ADA incidence at each time 

point determined by the criteria used in the clinical proto-

col.9 The simulation describes the clinical data well, when 

HLA allele frequencies for a European population are used 

in accordance with subjects participating in the trial. When 

HLA data for a North American population are used, the re-

sults are in lesser concordance with the clinical study (data 

not shown). We also note that the simulation outputs all 

other model variables, such as the dynamics of immune-cell 

populations, which are not routinely measured in clinical 
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trials but may be highlighted for consideration as valuable 

biomarkers. This example virtual trial simulation (Figure 2) 

demonstrates that the IG Simulator is capable of simulating 

clinical population of interest, with accuracy sufficient to in-

form IG management. In a typical IG management scenario, 

the simulation would be used to prioritize compound doses 

Figure 1 Overview of IG Simulator. The quantitative systems pharmacology model includes a mechanistic model of immune 
response and Simcyp Biologics PBPK. The model has sufficient mechanistic granularity to use MHC II binding constants predicted 
by bioinformatics as inputs. The model can use binding constants determined in vitro as well as the results of other in vitro assays, 
such as T-cell proliferation. Population data for virtual clinical trial simulation include frequencies of HLA genes, immune system 
baselines, and physiological parameters in target population. When the model is applied to extrapolation from first-in-human data or 
extrapolation between different clinical populations, clinical data on PK and ADA titers are used. The mechanistic model integrates 
diverse inputs and simulates a virtual trial—a population of individuals subject to a specific dosing regimen. The figure shows the 
example individual time profiles for drug and ADA, which can be used to determine ADA-positive subjects using the same criteria as 
used in clinical trials and regulatory submissions. Individual time profiles of other model variables are available as well, facilitating the 
investigation of biomarkers. The quantitative systems pharmacology model can be expanded in the future to incorporate additional 
assays. The model capable of integrating data from a wide array of experimental approaches will motivate the inclusion of additional 
biomarkers into clinical trials and enable extrapolation from these biomarkers to clinical outcomes. ADA, antidrug antibody; DC, 
dendritic cell; HLA, human leukocyte antigen; IG, immunogenicity; MHC, major histocompatibility; PBPK, physiologically-based 
pharmacokinetic; PK, pharmacokinetics.
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and dosing frequencies, where the impact of ADAs on PK is 

minimal. Although ADA synthesis would not be eliminated, 

the exposure would remain within the therapeutic window. 

For example, Bartelds et al.9 reported that six patients lost 

antibodies to adalimumab after dose escalation. Studies 

where dosing regimen changes were used to overcome im-

munogenicity of anti-tumor necrosis factor therapeutics are 

reviewed elsewhere.10

In conclusion, we propose that an integrated QSP ap-

proach can provide the basis for the model-informed man-

agement of IG. Different target populations and patient 

cohorts can be considered to guide treatment optimiza-

tion in a rational manner. “Virtual-twin” subjects can be 

created using HLA genotype, ex vivo assays, and periph-

eral blood flow cytometry data for actual individual pa-

tients, thus enabling a personalized-medicine approach to 

IG. We believe that the mechanistic, QSP model-informed 

management of IG is a natural extension of the well-es-

tablished PBPK approach and has the potential to also 

become a prominent feature of drug development and 

regulatory science.
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Figure 2 Virtual trial simulation of adalimumab. The IG Simulator was used to simulate clinical trial protocol of Bartelds et al.9 applied 
to a European population. The 500 virtual subjects were dosed 40 mg of adalimumab every 2 weeks. Both adalimumab and ADA 
concentration time profiles were simulated and analyzed using the same criteria as in a clinical trial. The subject was considered 
to be ADA+ if ADA concentration was > 12 AU/mL (AU = 12 ng) on at least one occasion in combination with plasma adalimumab 
levels of < 5 mg/L. The ADA+ subjects were further split into low-titer and high-titer groups, with the high-titer group defined by ADA 
concentration > 100 AU/mL: (a) compound pharmacokinetics; (b) ADA incidence. Simulated time profiles (lines) were analyzed and 
plotted only at the time points where clinical data (diamonds) were collected. The model reproduces clinical data with sufficient 
accuracy to inform IG management through the in silico testing of different dosing regimes in different populations. ADA, antidrug 
antibody; IG, immunogenicity; PK, pharmacokinetics.
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