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Owing to their intrinsic stability against optical feedback
(OF), quantum cascade lasers (QCLs) represent a uniquely
versatile source to further improve self-mixing interfer-
ometry at mid-infrared and terahertz (THz) frequencies.
Here, we show the feasibility of detecting with nanometer
precision, the deeply subwavelength (<λ/6000) mechani-
cal vibrations of a suspended Si3N4 membrane used as the
external element of a THz QCL feedback interferometer.
Besides representing an extension of the applicability of
vibrometric characterization at THz frequencies, our system
can be exploited for the realization of optomechanical appli-
cations, such as dynamical switching between different OF
regimes and a still-lacking THz master-slave configuration.
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The self-mixing (SM) effect describes the interference of the
intracavity electromagnetic field of a laser with its emitted radi-
ation partially reinjected into the laser cavity [1]. Although such
optical feedback (OF) can be detrimental to laser operation [2],
the SM effect can also be exploited for metrological applications
[3] through a technique known as laser-feedback interferometry
(LFI) [4]. This homodyne technique, in which the laser acts
simultaneously as source, mixer, and shot-noise limited detec-
tor, allows the retrieval of information about the external cavity,
composed of the target and the external medium, by moni-
toring the response of the laser to OF. Thanks to the universal
character of the SM phenomenon, its functionality has been
demonstrated from the visible to the microwave range using
laser systems as diverse as gas lasers [3], solid-state lasers [5], and
semiconductor lasers [6]. This has led to the development of a
large number of sensing applications [7] ranging from displace-
ment measurement [8] to material analysis [9], laser emission

spectrometry [10], and coherent imaging [11,12]. Among all
kinds of semiconductor lasers, quantum cascade lasers (QCLs)
allow further simplification of the SM scheme, thanks to their
intrinsic voltage sensitivity to OF. This allows the SM modu-
lation to be measured directly and with high sensitivity [13]
via the voltage variation across the active region with no need
for an external photodetector [14]. Moreover, QCLs exhibit
peculiar ultra-stability to OF [15] due to their small linewidth
enhancement factor [16] (0< |α|< 1) and long photon-to-
carrier lifetime ratio. These unique and versatile characteristics
offer an opportunity for the development of high-performance
LFI schemes operating at mid-infrared and terahertz (THz)
frequencies for coherent imaging [17] and displacement sensing
[18,19]. In fact, despite the relatively long wavelength, nano-
meter target displacements as low as λ/100 have been measured
by adding a fast-moving etalon in the external cavity [20] and
60–70 nm in-plane spatial resolution with both amplitude and
phase contrast through THz scattering-type scanning near-field
optical microscopy [21].

In this Letter, we report a significant improvement of nano-
meter displacement sensing by showing the detection of deeply
subwavelength vibrations (<λ/6000) of a suspended mechani-
cal resonator by employing a 3.34 THz QCL operating in
continuous-wave (CW). The experimental results have been
validated by solving the Lang–Kobayashi (LK) model [22] in the
steady-state regime after calibration of the absolute membrane
position. Furthermore, the measured oscillation amplitudes
are shown to be in agreement with independent measurements
performed using a laser Doppler vibrometer (LDV) operating in
the visible region.

We chose as an external element a Si3N4 trampoline mem-
brane, which is an optimum candidate for interferometric
readout and optomechanical applications [23]. Such mem-
branes have already been used to observe optomechanical
features in an infrared laser diode SM configuration [24]. A
scanning electron microscope (SEM) image of the fabricated
sample is shown in Fig. 1(a). The structure is composed of a
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300 nm thick, 300 µm wide suspended central pad held at each
corner by 10µm wide tethers anchored at the vertices of a 1 mm
side square window. The details of the sample fabrication can
be found elsewhere [24]. The membrane pad dimensions were
chosen in order to increase the level of OF for SM measure-
ments by creating a reflective surface of size comparable to the
focused THz beam spot size (∼ 250 µm). To further increase
the reflectivity, a 10 nm thick gold layer was thermally evapo-
rated over the entire membrane surface to produce an almost
totally reflective target. The sample was directly glued on the top
surface of a piezoelectric ceramic actuator with the fundamental
out-of-plane mechanical resonance at ∼ 100 kHz. The system
composed of the piezo-actuator and membrane sample was
mounted inside a vacuum chamber allowing control of the
environmental pressure. An initial membrane characterization
was performed using a commercial high-spatial-resolution LDV
(Polytech UHF 120).

From the spectrum shown in Fig. 1(b), obtained at atmos-
pheric pressure by applying a flat spectrum voltage excitation to
the piezo-actuator, the fundamental mechanical mode (high-
lighted in the inset) is observed to be well separated from the
higher-order modes. Moreover, with the membrane oscillating
orthogonally to the chip-plane, this particular mode ensures
that the full THz wavefront reflected from the membrane
experiences the same external optical path. This makes the
fundamental vibrational mode particularly suitable for coherent
measurements of membrane vibrations by LFI [24] and, as
such, subsequent measurements here focus on this mode. A
LDV characterization of the membrane fundamental mode as a
function of pressure was performed. The data were analyzed by
modelling the membrane as a one-dimensional driven harmonic
oscillator. Defining A(t) and a(t) as the positions of the mem-
brane trampoline and of the tether clamps with respect to their
common rest positions A= a = 0, respectively, the membrane
equation of motion can be written as

Ä(t)+ γ Ȧ(t)+ω2
m[A(t)− a(t)] = 0, (1)

Fig. 1. (a) SEM image of the Si3N4 membrane. (b) Membrane
mechanical spectrum measured at atmospheric pressure at the mem-
brane center using the LDV. Inset: zoom of the fundamental resonance
and corresponding fit (dashed line) using Eq. (2). (c) ωm/2π , Q, and
Amax as a function of P in logarithmic scale. The dashed curve is a
quadratic fit for the data down to P = 1 mbar, while the dashed line
indicates the saturation effect observed below this pressure.

whereωm is the pressure-dependent membrane resonance angu-
lar frequency, and γ is the membrane damping coefficient. The
oscillation amplitude can be obtained from the imaginary part
of the solution, A(ω), in the frequency domain:

Im[A(ω)] =
γω

(ω2
m −ω

2)
2
+ (γω)2

ω2
ma0, (2)

where a0 ∼ 60 ± 2 pm is the maximum driving oscillation
amplitude.

By fitting the displacement spectra using Eq. (2), we obtain
for each investigated pressure the values of the resonance
frequency ωm/2π , the quality factor Q =ωm/γ , and the
oscillation amplitude at the resonance frequency Amax. As
the environmental pressure decreases, these three quantities
monotonically increase up to a saturation level [see Fig. 1(c)].
The resonance frequency and quality factor change from
ωm/2π ∼ 67.9 kHz and Q ∼ 40± 2, respectively, at atmos-
pheric pressure to ∼ 73.4 kHz and ∼ 200± 10 at pressure
P ∼ 7.3× 10−3 mbar.

A schematic diagram of the experimental apparatus for the
THz LFI measurements is presented in Fig. 2(a). We used a THz
QCL consisting of a 14 µm thick GaAs-AlGaAs active region
with growth details reported in the literature [25]. The device
was fabricated as a single-metal ridge with longitudinal and
transversal dimensions of 1.8 mm and 150 µm, respectively.
The laser was driven in the CW mode with a current equal to
510 mA and was maintained at a temperature of 25 K using a
continuous-flow cryostat. Under these conditions, the QCL
provided stable single-mode emission at 3.34 THz and a large
SM response [13,25]. The THz beam passing through the
polythene window of the cryostat was collimated and focused
(using two f /2 off-axis parabolic reflectors with a diameter of
50.8 mm) onto the trampoline membrane which constituted
the mirror of the external cavity. The vacuum chamber contain-
ing the membrane was fixed to a motorized stage allowing the
external optical cavity length L between the target and the QCL
emission facet to be micrometrically changed. The LFI appa-
ratus was used in two configurations. In the first configuration
[conf. 1 in Fig. 2(a)], the membrane motion was not excited, and
the membrane was moved towards the laser facet in 2 µm long
steps parallel to the beam propagation direction. The QCL SM
voltage VSM was measured by a lock-in amplifier synchronized
to the optical modulation frequency (νmod = 212 Hz) imposed
to the THz beam by a mechanical chopper placed in front of
the vacuum chamber. In the second configuration [conf. 2 in
Fig. 2(a)], the membrane equilibrium position instead was kept
fixed, but the membrane vibrated at the frequency of the piezo
driving excitation which, in turn, was used as the reference of the
lock-in amplifier.

To model the SM voltage signal as a function of the target
position, we used the steady-state solutions of the LK equations
describing the laser under OF [22]. This was done by evaluating
the laser emission frequency under OF, ωF, by numerically
solving the so-called excess phase equation:

ω0 −ωF =
k
τc

√
1+ α2 sin(ωFτext + arctan α), (3)

where ω0 is the laser emission frequency without feedback, τc is
the laser cavity round-trip time, τext = 2L/c is the round-trip
time in the external cavity, α is Henry’s linewidth enhancement
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factor, and k is the OF coupling rate. Using the conventional
three-mirror model in the weak feedback regime, where only
one reflection from the target is considered, k can be written as

k = ε
√

Rext
R (1− R), in which ε, R , and Rext are the coupling-

efficiency factor and the reflectivities of the target and laser
emission facet, respectively. The parameter ωF obtained from
Eq. (3) determines the laser carrier number variation1N from
the threshold carrier number with and without feedback via the
following equation:

1N =−
2k

Gτc
cos(ωFτext), (4)

where G is the modal gain factor. Starting from the initial
external cavity optical length, L0 = 47 cm, 1N was cal-
culated for each value of L using the following best fitting
parameters: τc = 43.8 ps, k = 1.28× 10−2, α = 0.5, and
G = 1.42× 104 s−1. The values of1N are plotted (blue curve)
as a function of the membrane displacement 1L = L0 − L
in Fig. 2(b), together with the experimental values VSM (red
points) obtained with configuration 1. The theoretical values
are in good agreement with the experiment reproducing both
the same shape and typical periodicity (λF /2) of the SM signal.
From a comparison of these curves, we obtained the proportion-
ality coefficient β between the calculated1N and the measured
VSM, found to be 3.1× 10−8 mV. It should be noted that the
calibration factor β depends on the particular value of G , which
was fixed according to common values in THz QCL literature
[26,27]. Nevertheless, our calibration procedure allows us to
correlate experiments and simulations independently of the
value assigned to G .

SM measurements of the membrane oscillation amplitude
were then performed using configuration 2. VSM measured at

Fig. 2. (a) Sketch of the two configurations of the SM apparatus.
(b) Calculated 1N (blue curve), and measured VSM (red points) as a
function of1L using configuration 1.

Fig. 3. (a) Measured VSM as a function of the drive frequency for
different applied voltages at P = 0.5 mbar. Inset: computed (red
dashed line) and experimental (red crosses) VSM spectrum with 1 VRMS

applied to the piezo-actuator. (b) Measured (red squares) and calcu-
lated (dashed line) V max

SM as a function of Amax. Inset: LDV-measured
Amax.

an environmental pressure of P = 0.5 mbar is reported as a
function of the drive frequency and for several RMS drive volt-
ages in Fig. 3(a). Using a Lorentzian spectral line-shape as the
fitting function for the data (valid in the experimentally verified
high-Q limit), the vibration spectra were observed to have the
same resonance frequency ωm/2π ∼ 73.43± 0.01 kHz and
Q ∼ 198± 2, independent of the bias applied to the piezo-
actuator. These quantities agree with those obtained previously
with the LDV. The VSM signal measured in response to the
membrane vibrations can be modelled with Eqs. (3) and (4)
for the steady-state solution of the LK model. In fact, with the
limit 2π/τext�ωm satisfied, the membrane position at each
instant in time can be considered fixed, contributing as a static
external optical path for the LK equations. The time-dependent
variation of carrier number 1N(t) corresponding to a cer-
tain membrane oscillation amplitude can thus be numerically
obtained by inserting into Eqs. (3)–(4) the following expression
for L :

L = L0 + A(ω) cos(ωmt), (5)

where A(ω) is the drive frequency-dependent membrane oscil-
lation amplitude [Eq. (2)] evaluated using the previously fitted
values of γ and ωm. The total carrier number variation corre-
sponding to the membrane vibration at a given drive frequency,
1N(ω), can then be calculated as the peak-to-peak amplitude
of the time-oscillating 1N(t). VSM can then be obtained just
multiplying1N(ω) by the previously retrieved β-factor. In the
inset of Fig. 3(a), the values of VSM resulting from this model
are shown to reproduce well the experimental VSM measured
by applying a drive bias of 1 VRMS spanning a single frequency
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at a time in the range 72–75 kHz. For that drive voltage, both
model and experimental result in a maximum SM signal of
∼ 61± 1 µV obtained for a A= 355± 5 nm. Only a small
deviation between the data and the model was found on the
high-frequency side of the resonance, which we ascribe to a small
degree of mechanical anharmonicity of the tethers’ motion not
being included in the model. Both the theoretical and experi-
mental maximum SM voltages, V max

SM , are shown in Fig. 3(b) as
a function of the membrane maximum oscillation amplitude,
Amax. For the experimental points, the reported values of Amax

are those obtained from the LDV measurements at the same
piezo-actuator drive voltage as the SM measurements, and they
are shown in the inset as a function of the applied bias. From
the main graph, it can be observed that the model matches the
experimental data and confirms a linear relation between V max

SM
and Amax with a slope coefficient of 0.17± 0.01 µV/nm.
This agreement implies that we are able to detect membrane
vibrations with appreciable precision (≤ 10 nm, limited by
the voltage noise of our setup) down to deeply subwavelength
oscillation amplitudes of only a few nanometers. Specifically,
the amplitude corresponding to a SM signal ≥ 3 dB above the
voltage noise is ∼ 15± 5 nm. The high observed SM voltage
sensitivity to displacement results from the high slope of the SM
voltage between the top and the minimum of a fringe in the static
SM signal [see Fig. 2(b)]. In fact, since we were considering dis-
placements Amax

� λ/2, the SM voltage sensitivity is expected
to be proportional to the derivative of the static SM signal. In
our case, the observed sensitivity corresponds to a distance from
the maximum static SM voltage of ∼ 12 µm which, indeed,
falls in the rapidly decreasing side of a fringe. Interestingly, a
sensitivity up to ∼ 0.83± 0.02 µV/nm, in principle, can be
achieved in our system by fixing the membrane equilibrium
position as close as possible to the minimum of the static SM
voltage (corresponding to the maximum slope). In conclusion,
we have experimentally demonstrated the detection of deeply
subwavelength vibrations (<λ/6000) by LFI in the THz fre-
quency range and using as an external element a suspended
Si3N4 membrane. The SM voltage signal arising across the
THz QCL active region in response to nanometer oscillations
of the membrane was reproduced and uniquely determined by
numerically solving the LK model in the steady-state regime.
Thus, our measurement extends the applicability of LFI at THz
frequencies for the vibrometric characterization of a variety of
systems, especially those presenting the optical response at these
frequencies. The mechanical resonator in the LFI apparatus can
also represent a mechanical switch between different feedback
regimes. A two-state system thus can be realized by placing the
membrane near the position where the crossing between the
two regimes arises. Moreover, the proposed LFI system can be
employed for optomechanical applications where the suspended
membrane is driven by radiation pressure; the realization of
an optomechanical system constituted by two different lasers
coupled through the mechanical motion driven by radiation
pressure represents a promising perspective for the realization of
a still-lacking master-slave configuration at THz frequencies.
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