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ARTICLE

Structural puzzles in virology solved with an
overarching icosahedral design principle
Reidun Twarock 1* & Antoni Luque 2*

Viruses have evolved protein containers with a wide spectrum of icosahedral architectures to

protect their genetic material. The geometric constraints defining these container designs,

and their implications for viral evolution, are open problems in virology. The principle of

quasi-equivalence is currently used to predict virus architecture, but improved imaging

techniques have revealed increasing numbers of viral outliers. We show that this theory is a

special case of an overarching design principle for icosahedral, as well as octahedral, archi-

tectures that can be formulated in terms of the Archimedean lattices and their duals. These

surface structures encompass different blueprints for capsids with the same number of

structural proteins, as well as for capsid architectures formed from a combination of minor

and major capsid proteins, and are recurrent within viral lineages. They also apply to other

icosahedral structures in nature, and offer alternative designs for man-made materials and

nanocontainers in bionanotechnology.
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P
olyhedral designs are ubiquitous in nature. They are fun-
damental for our understanding of molecular architectures
in chemistry and physics1, and occur at different length

scales, from marine organisms2 to protein nanocontainers with
different biological functions3,4. Prominent examples are viruses,
the most abundant biological entities on the planet5 and the
causative agents of some of the most devastating diseases known.
Viruses store and protect their genetic material in protein con-
tainers called capsids6, that vary in size and structural complexity.
They range from 20 nm to 800 nm and consist of only a few
dozen to thousands of coat proteins (CPs). The majority of
viruses adopt polyhedral designs with icosahedral symmetry7,8,
that is, their CP positions conform to polyhedral blueprints that
exhibit the characteristic arrangement of the rotational symmetry
axes of an icosahedron (Fig. 1a).

Viruses exhibit this high degree of symmetry as a consequence
of a principle that Crick and Watson termed genetic economy,
namely, the limited capacity in the viral genome to code for the
CPs forming its surrounding capsid9. This favours such sym-
metric architectures, because icosahedral symmetry has 60 dif-
ferent symmetry operations10, reducing the cost of coding for the
capsid by 1/60th, whilst creating a container with sufficient
volume to store the viral genetic material. Caspar and Klug
extended this idea by introducing the principle of quasi-
equivalence11, which explains how proteins can adopt locally
equivalent, or quasiequivalent, positions in a capsid, by repeating
this local configuration across the capsid surface. This allows
larger viruses to form, requiring even smaller relative portions of
their genomic sequences to code for their capsids, thus generating
coding capacity for other viral components that are not present in
smaller viruses and enabling more complex infection scenarios.

These two principles have dominated structural virology over
the last 60 years. The infinite series of icosahedral blueprints
introduced by Caspar and Klug is currently the major tool for the
classification of virus structures12. However, increasing numbers
of virus structures exhibit capsid protein numbers and layouts
that fall outside the CK description, as discussed below for a wide
range of examples. This indicates that there are fundamental
design principles underpinning virus architecture, and implied
geometric constraints on viral evolution, that are still not fully
understood.

To address this, we revisit the construction of icosahedral
architectures using the Archimedean lattices classified by Kepler
in his classical Harmonices Mundi13. With these lattices, we are
able to derive eight families of icosahedral polyhedra (derived
from the lattices and their duals) that explain the outliers to the
current classification scheme and at the same time provide an
overarching design principle that encompasses the current
models of virus architecture in Caspar-Klug theory. Using viruses
from different families, we demonstrate that the icosahedral
designs embodied by the polyhedral families derived here corre-
spond to previously unsuspected capsid layouts in the virosphere
and provide a different perspective on viral evolution. As we
discuss below, this discovery also sheds new light on the many
areas of science where icosahedral structures play an important
role, and also provides designs for applications in
bionanotechnology.

Results
Polyhedral models of icosahedral architecture. Virus structures
are prominent examples of icosahedral symmetry in biology.
Their architectures are currently modelled and classified in terms
of the series of Goldberg polyhedra14—three dimensional solids
with pentagonal and hexagonal faces—that provide a reference
frame for the positions of the capsid proteins (Fig. 1a). In

particular, the polyhedral faces indicate the positions of penta-
gonal and hexagonal protein clusters called pentamers and hex-
amers, respectively. The same polyhedra also provide blueprints
for the atomic positions of the fullerene cages in carbon chem-
istry, in particular the Buckminster fullerene known as the
buckyball1. They also provide blueprints for the structural orga-
nisation of a wide range of both man-made and natural protein
nanocontainers. Their duals, the geodesic polyhedra15, are the
architectural designs of the geodesic domes by Buckminster
Fuller.

Goldberg polyhedra can be constructed from a hexagonal grid
(lattice) by replacing 12 hexagons by pentagons (Fig. 1b), as
required by Euler’s Theorem to generate a closed polyhedral
shape16. The distance D between the pentagons at neighbouring
fivefold vertices is the only degree of freedom in this construction,
and can therefore be used to label the different geometric options
in this infinite series of polyhedra. D can only take on specific
values that are constrained by the underlying hexagonal lattice
geometry. In particular, using the hexagonal coordinates h and k,
which take on any integer values or zero to navigate between
midpoints of neighbouring hexagons in the lattice, one obtains
the following geometric restriction11:

Tðh; kÞ :¼ D2ðh; kÞ=A0 ¼ h2 þ hkþ k2
� �

: ð1Þ
Here, A0 corresponds to the area of the smallest triangle between
any hexagonal midpoints, that is, the case h ¼ 1 and k ¼ 0—or
equivalently, h ¼ 0 and k ¼ 1. A similar formula has been
derived for elongated capsid structures17.

T is called the triangulation number (Fig. 1c) owing to its
geometric interpretation in terms of the icosahedral triangula-
tions obtained by connecting midpoints of neighbouring
pentagons and hexagons, i.e., in terms of the dual (geodesic)
polyhedra. T indicates the numbers of triangular faces, called
facets, in the triangulation that cover a triangular face of the
icosahedron by area. The association of a protein subunit with
each corner of such a triangular facet translates this infinite series
of triangulations into the capsid layouts in quasiequivalence
theory (Fig. 1d). Such blueprints only permit capsid layouts with
60T CPs, organised into 12 pentamers and 10ðT � 1Þ hexamers11.
The condition expressed by Eq. 1 is therefore a geometric
restriction on the possible values of T and the possible CP
numbers in the CK geometries. The initial elements of the series
are T ¼1, 3, 4, and 7, and therefore the number of CPs contained
in small icosahedral capsids are 60, 180, 240, and 420, respectively
(Supplementary Table 1).

However, this is only one way in which an icosahedral
structure can be built from repeats of the same (asymmetric) unit,
and excludes geometries built from proteins of different sizes
(such as a major and minor capsid protein) or capsids built from
a protein in which one or several domains play distinguished
roles. Such capsid layouts must be constructed from lattices in
which every vertex is identical in terms of the lengths, numbers
and relative angles of its protruding edges, but the relative angles
between different edges at the same vertex can vary, reflecting
occupation by different types of proteins or protein domains.
From a geometric point of view, there are only 11 lattices
(Chapter 2 in Grünbaum and Shephard18) that satisfy this
generalised quasi-equivalence principle, which are the Archime-
dean lattices—also known as uniform lattices13,16. Among these
lattices, only four contain a hexagonal sublattice (Fig. 2a). One of
them is the hexagonal lattice itself on which the CK classification
scheme is based. This lattice is labelled ð6; 6; 6Þ according to the
types of regular polygons surrounding each vertex, in this
case three hexagons. However, the hexagonal lattice is only
the simplest grid that enables this construction. Other lattices
containing hexagons at appropriate distances, that is, as a
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hexagonal sublattice, are equally amenable to the CK construc-
tion, but have until now been ignored. These are the trihexagonal
tiling ð3; 6; 3; 6Þ, the snub hexagonal tiling ð34; 6Þ, and the
rhombitrihexagonal tiling ð3; 4; 6; 4Þ (Fig. 2a). These lattices are
also called hexadeltille, snub hextille, and the truncated
hexadeltille lattice, respectively16.

By analogy to Caspar and Klug’s construction, we classify the
icosahedral polyhedra that can be constructed from these tilings
via replacement of 12 hexagons by pentagons (Fig. 2b). Replace-
ment of nearest neighbour hexagons results in each case in an
icosahedrally symmetric Archimedean solid (Fig. 2c) that
corresponds to the start of an infinite series of polyhedra,
constructed by spacing the pentagonal insertions further apart. As
a means to characterise different polyhedral structures in the
series, we again use the hexagonal coordinates h and k, now
indicating steps between hexagonal midpoints in the hexagonal
sublattice, to indicate the possible distances between the
pentagonal insertions. In the three additional lattices, the
midpoints of neighbouring hexagons are more distal than in
the hexagonal lattice. Thus, the area covered by a triangular facet
connecting midpoints of neighbouring hexagons (that is, the case
h ¼ 0 and k ¼ 1, or vice versa) is larger than in the CK
construction by a factor αt ¼ 4=3 � 1:33 for the ð3; 6; 3; 6Þ
lattice, αs ¼ 7=3 � 2:33 for the ð34; 6Þ lattice, and αr ¼ 4=3þ
2=

ffiffiffi

3
p

� 2:49 for the ð3; 4; 6; 3Þ lattice, i.e., by factors correspond-
ing to the relative sizes of the asymmetric lattice units (see
coloured highlights in Fig. 2a). The T-number in the CK
construction can therefore be scaled accordingly for the new
lattices as follows

T jðh; kÞ :¼ αj h
2 þ hkþ k2

� �

¼ αj Tðh; kÞ ; ð2Þ
where j ¼ t; s; r indicates the lattice type used in the construction,
denoting the trihexagonal, the snub hexagonal, and the

rhombitrihexagonal lattice, respectively. In particular, a polyhe-
dron labelled T jðh; kÞ has the same number of pentagons and

hexagons as a Tðh; kÞ Caspar Klug lattice, but the surface area
covered by its faces is larger due to the additional polygons
(triangles, squares) between the hexagons and pentagons. This is
indicated by the scaling factor αj that refers to the gain in surface

area according to the planar lattice from which it is constructed as
illustrated in Fig. 2.

The resulting geometries (Supplementary Tables 2–4) signifi-
cantly widen the spectrum of possible icosahedral viral blueprints.

For example, T tð1; 0Þ ¼ 4=3, T sð1; 0Þ ¼ 7=3 and T rð1; 0Þ ¼
ð4=3þ 2=

ffiffiffi

3
p

Þ are in between the Tð1; 0Þ ¼ 1 and Tð1; 1Þ ¼ 3
CK blueprints in terms of capsid size (Fig. 2d) if their hexagonal
(sub)lattices are assumed to have the same footprint on the capsid
surface, that is, same CP sizes. Additionally, some of these
geometries constitute alternative layouts for similarly-sized CK
geometries, such as T tð1; 1Þ ¼ 4 and T sð1; 1Þ ¼ 7 for Tð2; 0Þ ¼ 4
and Tð2; 1Þ ¼ 7 structures, respectively. In these cases, the
alternative capsid models have the same relative surface areas,
but are predicted to have different numbers and orientations of
hexamers and pentamers, with interstitial spaces between these
capsomers. These alternative structures (and their duals)
correspond to previously unsuspected capsid layouts and offer a
unifying framework for the classification of icosahedral virus
architectures.

Non-quasi-equivalent architectures in the HK97 lineage.
Increasing numbers of capsid architectures are reported with CP
numbers and capsid layouts that are incompatible with the geo-
metric blueprints of CK theory. Viruses with capsids formed from
a combination of a major and minor capsid protein are examples
that are challenging to interpret in the classical CK theory. Here

a b

c d

5

3

T = 3

T = 1 T = 4

T = 7
T = 1

T = 3
T = 4

T = 7

2 2

Fig. 1 Capsid architecture according to Caspar and Klug theory. a Viruses exhibit the characteristic 5-, 3- and 2-fold rotational symmetry axes of icosahedral

symmetry, indicated here with reference to the vertices, edges and faces of an icosahedral frame superimposed on the crystal structure of the T ¼ 1 STNV

shell (figure based on PDB-ID 2BUK). b Construction of an icosahedral polyhedron via replacement of hexagons in a hexagonal lattice by the equivalent of 12

equidistant pentagons (red). Dark grey areas indicate parts of hexagons in the lattice that do not form part of the surface lattice of the final polyhedral shape.

c One of the 20 triangles of the icosahedral frame is shown superimposed on the hexagonal grid for the four smallest polyhedra that can be constructed in

CK theory. These are shown in increasingly lighter shades of blue: Tð1;0Þ ¼ 1, Tð1; 1Þ = 3, Tð2;0Þ ¼ 4 and Tð2; 1Þ ¼ 7. The corresponding polyhedra (right)

have 20 identical triangular faces corresponding to the triangles (left), one of which is shown in each case. d The CP positions are indicated with reference to

the dual polyhedron, that is, the triangulated structure obtained by connecting midpoints of adjacent hexagons and pentagons in the surface lattice. CPs are

positioned in the corners of the triangular faces (shown here as dots), and result in clusters (capsomers) of six (hexamers) and five (pentamers) CPs. The

example shown corresponds to a T ¼ 4 layout, formed from 240 CPs that are organised as 12 pentamers (red) and 30 hexamers
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we provide examples from the HK97 lineage, demonstrating that
such viruses can be rationalised in the Archimedian lattice fra-
mework proposed here.

The Bacillus phage Basilisk, for example, contains 1080 CPs,
combining 540 major capsid proteins (MCPs) and 540 minor
capsid proteins (mCPs)19. Using the relation 60 T for CP
numbers in CK theory, this would correspond to a T-number
of 18, that is excluded by the geometric restriction in CK
theory given by Eq. 1. If one only focuses on the 12 pentamers
(more precisely, 11 pentamers and a putative portal) and 80
hexamers, then its structure would be classified as Tð3; 0Þ ¼ 919.
However, this ignores the 180 intersticial trimers and

misrepresents the relative orientations of the protein clusters as
well as the surface area of the capsid (Fig. 3a). By contrast,
Basilisk’s CP positions are accurately represented by a T tð3; 0Þ ¼
12 structure based on the trihexagonal lattice series in the
framework of the overarching icosahedral design principle. This
classification is also consistent with measurements of Basilisk’s
surface area (1:69 ´ 104 nm2, see Methods), that is comparable to
the surface area of phage SIO-2 (1:70 ´ 104 nm2), which is a
classical T ¼ 12 capsid20. The Basilisk capsid is thus an
icosahedral structure of similar size to that of a CK geometry,
but exhibits a CP number and capsid layout that are not possible
in the CK formalism.

a

b

c

d

T = 1 T = 3 T = 4T
t
 = 4/3 T

t
 = 4T

s
 = 7/3 T

r
 ≈ 2.49

Fig. 2 Design of icosahedral architectures from Archimedean lattices. a The four Archimedean lattices permitting the Caspar-Klug construction (from top

to bottom): the hexagonal ð6;6;6Þ, the trihexagonal ð3; 6; 3;6Þ, the snub hexagonal ð34; 6Þ, and the rhombitrihexagonal ð3;4;6;4Þ lattice. In each case, the

asymmetric unit (repeat unit of the lattice) is highlighted. Its overlap with the hexagonal sublattice used for the construction of the icosahedral polyhedra is

shown in red. Apart from the case of the hexagonal lattice, this also includes a third of a triangular surface (blue), and in addition a triangle or a half square

(both shown in green) for two of the lattices, respectively. b Construction of Archimedean solids via replacement of 12 hexagons by pentagons in analogy

to the Caspar-Klug construction (see also Fig. 1b). c The polyhedral shapes corresponding to the examples shown in b. They each correspond to the

smallest polyhedron in an infinite series of polyhedra for the given lattice type. Folded structures for larger elements in the new series are provided in

Supplementary Fig. 2. d The smallest polyhedral shapes (T
t
, T

s
and T

r
, denoting polyhedra derived from the trihexagonal, snub hexagonal and

rhombitrihexagonal lattices, respectively) are shown organised according to their sizes in context with the Caspar-Klug polyhedra. As surface areas scale

according to Eq. (2) with respect to the Caspar-Klug geometries, the new solutions fall into the size gaps in between polyhedra in the Caspar-Klug series, or

provide alternative layouts for capsids of the same size, as is the case for Tð2;0Þ ¼ T
t
ð1; 1Þ ¼ 4=3Tð1; 1Þ ¼ 4
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Basilisk (Fig. 3a) shares its MCP fold with other bacterio-
phages, archaeal and animal viruses in the HK97-lineage12,21,22.
A reevaluation of other virus structures within this lineage reveals
that these evolutionarily related viruses share the same underlying
icosahedral lattice geometry, i.e., they belong to the same series of
polyhedral designs (in this case, the trihexagonal series of
T t-architectures).

For example, herpes simplex virus type 1 (HSV-1) organises its
MCP (VP5) in hexamers and pentamers with orientations
reminiscent of those in the Basilisk capsid (Fig. 3b). The positions
of these capsomers are consistent with the current classification of
HSV-1 as Tð4; 0Þ ¼ 16. However, this misrepresents the relative
orientations of the hexamers and ignores the secondary network of
trimeric complexes between the capsomers that are formed from
three mCPs (Tr1, Tr2a and Tr2b)23. The classification as a
T tð4; 0Þ ¼ 64=3 structure in the new framework (Supplementary
Table 2), however, accurately reflects both its 960 MCPs and
960 mCPs. The same holds for human cytomegalovirus (HCMV)24

(structure not shown), which is structurally similar to HSV-1.
The mature capsid of phage λ (Fig. 3c) is another example of a

HK97-lineage virus with a trihexagonal icosahedral structure. It is
currently classified as Tð2; 1Þ ¼ 712, but the orientation of the
capsomers exhibits instead the layout of a T tð2; 1Þ ¼ 28=3
structure, because the protruding domains of the MCPs—rather
than additional mCPs—occupy the triangular sublattice. These
positions are also the locations of the reinforcement proteins
gpD25, highlighting the importance of these trimeric positions in
the surface lattice (Fig. 3c). Alternatively, Halorubrum sodomense
tailed virus 2 (HSTV-2), another member of the HK97-lineage,
has been classified as Tð2; 1Þ ¼ 7. However, its capsid contains
gpD-like trimers that occupy intersticial positions between
capsomers, which is consistent with the trihexagonal structure
T tð2; 1Þ ¼ 28=3 (see Fig. 8 in Pietilä et al.26). This implies an
increase in capsid volume (and, consequently, genome size) by a

factor of α
3=2
t � 1:54 with respect to a classical Tð2; 1Þ capsid.

This prediction is consistent with the empirical observation that
HSTV-2 has a genome that is ~1:4� 1:7 larger than that of T ¼
7 tailed phages26, further corroborating its classification as a
T tð2; 1Þ ¼ 28=3 capsid in our framework. Another example is the
thermophilic bacteriophage P23-45, which is currently classed as
a supersized T ¼ 7 capsid architecture27.

In summary, these examples suggest that the classification
scheme for virus architecture introduced here highlights struc-
tural features shared by evolutionarily related viruses, and thus
lends itself as a characteristic of viral lineages.

Alternative capsid layouts with identical stoichiometry. There
are many examples of quasiequivalent viral capsids that are

formed from the same number of CPs, but exhibit different CP
positions and capsomers. CK-theory does not distinguish between
them. However, we demonstrate here based on the example of
different T ¼ 3 geometries, that the Archimedean lattices and
their duals—called Laves lattices—provide a means to
address this.

In CK theory, hexagonal surface lattices and their duals,
corresponding to the triangular lattice (3, 3, 3), are used
interchangably. The smallest icosahedral polyhedron derived
from a triangular lattice is the icosahedron, made of 20 triangles.
The next largest is formed from 60 triangles, and provides a
blueprint for a classical T ¼ 3 structure. Using the convention of
CK theory that polyhedral faces must represent groups of
proteins that correspond, by number, to the rotational symmetry
of the tile (e.g., triangles representing three proteins etc.), capsid
layouts can be associated with polyhedral structures. Pariacoto
virus (PAV; Fig. 4a), with its strong interaction between the three
chains forming the triangular units, is an example of this type of
TDð1; 1Þ surface architecture.

The duals of the other Archimedean lattices (trihexagonal,
snub hexagonal, rhombitrihexagonal) present alternative surface
architectures to those in CK theory in terms of rhomb, floret, and
kite tiles, respectively (cf. Supplementary Table 5). Strictly
applying the CK rule that the symmetry of a tile must be
correlated with the number of proteins represented by the tile,
singles out the dual trihexagonal lattices (TD

t ), i.e. the rhomb
tilings with tiles representing clusters of two proteins (CP
dimers). Rhomb tilings provide alternative layouts to the CK
surface lattices, describing capsids with the same protein
stoichiometry but different CP organisation. Bacteriophage MS2
(Fig. 4b), a virus assembled from 90 CP dimers, is an example of a
T ¼ 3 rhomb tiling (TD

t ð1; 1Þ; Supplementary Table 5). Note that
whilst the protein stoichiometry in this case coincides with the
CK framework, corresponding to the 180 proteins expected for a
T ¼ 3 structure, the identification as a TD

t ð1; 1Þ geometry
provides a more accurate account of CP positions and their
relative orientations in the capsid surface.

Non-quasi-equivalent and higher order rhomb tilings.
Extending the CK convention to allow rhombs to represent more
than two CPs, as long as their positions on the tile respect the
symmetry of the tile, higher numbers of proteins are also con-
ceivable geometrically. This could be achieved, for example, by
combining two dimers. The protein stoichiometry for such cap-
sids would be 120 Tðh; kÞ, and the first elements of the series
would contain 120, 360 and 480 proteins. Picobirnavirus repre-
sents an example of the first element of this series (Supplementary
Fig. 3a). This virus forms rhombus-like tiles made up of two
protein dimers in parallel orientation, and contains 120 proteins
in total28. This structure has been traditionally described as a
forbidden T ¼ 2 number in the CK framework, but it fits natu-
rally into the new framework as a higher order rhomb tiling. The
next elements of this series predict the existence of the forbidden
numbers T ¼ 6 (360 proteins) and 8 (480 proteins). Following
this pattern, it is logical to think about the possibility of rhombus-
like tiles representing three protein dimers, which would also
satisfy the required twofold symmetry. The protein stoichiometry
for these capsids would be 180Tðh; kÞ, and the three smallest
geometries of this type would contain 180, 540 and 720 proteins.
An example of the first element of this series is Zika virus
(Supplementary Fig. 3b) in the Flaviviridae family. In particular,
each rhomb tile in its capsid represents six elongated proteins
(three dimers in parallel respecting the twofold symmetry of the
tile), so that the 30 tiles represent 180 proteins in total. In pio-
neering work in 2002, the Rossmann lab and collaborators

a b c

Fig. 3 Viruses within a viral lineage adopting the same icosahedral series.

Examples of viruses in the HK97 lineage, demonstrating that different

members conform to the same family of icosahedral polyhedra: a Basilisk

(T
t
ð3;0Þ), b HSV-1 (T

t
ð4;0Þ), c phage λ (T

t
ð2; 1Þ). The building blocks of

their polyhedral surface lattices are shown in red (pentagons), blue

(hexagons), and green (triangles) superimposed on figures adapted from

(a)19, (b)23 and (c)25
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realised that the three E monomers in each icosahedral asym-
metric unit of Dengue virus29 do not have quasiequivalent sym-
metric environments in the external, icosahedral scaffold formed
from the 90 glycoprotein E dimers. Our approach based on the
duals of the Archimedean lattices accommodates such non-
quasiequivalent capsid structures.

Our framework thus extends the predictions of quasiequiva-
lence theory by a more detailed understanding of capsid
geometry, distinguishing between capsid architectures with
different types of capsid protein organisation and interfaces
given the same numbers of capsid proteins. This is important for
a better understanding of the biophysical properties of viral
capsids, such as their stability, and their roles in viral life cycles,
e.g. during virion assembly and disassembly, and reveals
geometric constraints on viral evolution.

Discussion
These examples demonstrate that the overarching design princi-
ple for icosahedral architectures has been widely explored by
nature, revealing an unsuspected spectrum of icosahedral capsid
designs in the virosphere. This discovery opens up fundamental
questions in virology.

The capsid architectures in CK-theory are the simplest possible
icosahedral designs, realised by one type of CP that takes on
different quasiequivalent positions in the capsid surface. The
geometries described here, on the other hand, also include capsid
layouts with two or more inequivalent geometric positions that
are occupied either by a distinguished CP domain, or by a mix-
ture of different CP types, e.g., MCP and mCP. Therefore, some
of these capsid architectures incur a higher coding cost in term of
genome length. The fact that nature realises these more compli-
cated blueprints suggests that they must confer a selective
advantage that is coupled to function. Such layouts may allow
viruses to undergo conformational changes in their capsid
structures30, for example, through asymmetric components that
brake the overall capsid symmetry31, that enable more efficient
genome release, or confer advantageous mechanical properties in
terms of stability, stiffness and elasticity32,33. The mechanisms
and pathways of capsid assembly are also likely to be different
from the quasiequivalent capsid architectures in CK theory. For
the latter, it is well understood how quasiequivalent conforma-
tions are defined via the tentacular interactions between CPs
proposed by Harrison34 based on the concept of tentacles
introduced by Caspar35. The roles of viral genomes in the
assembly of quasiequivalent capsid geometries are manifest in the
packaging signal mediated assembly mechanism36–40. It is not
clear, however, if the same principles apply to the more complex
scenarios of the capsid architectures described here. Simulations
of capsid assembly from triangular units reveal geometries that
are akin to blueprints contained in two of the new series41. These
simulations demonstrate that scaffold proteins are required for

the formation of these viral geometries, suggesting that additional
components may be required for the assembly pathways asso-
ciated with some of the viral blueprints introduced here. More-
over, the enhanced spectrum of viral designs unveiled here
provides a different perspective on how viruses may have bridged
the size gaps in their evolution of increasingly larger and complex
capsid structures during evolutionary timescales.

Note that we have strictly adhered to the CK convention of
representing capsid organisation by an edge-to-edge tiling in
which the symmetry of every tile represents the numbers of
proteins covered by this tile. We discuss here two ways in which
predictive results can be achieved by relaxing any one of these
conditions.

The first case involves the extension to non-edge-to-edge til-
ings. The protein counts for T t capsid architectures in Supple-
mentary Table 2 are based on the relative sizes of the hexagonal
and triangular faces of the lattice. The footprints of protein units
occupying the hexagonal and pentagonal faces must be three
times larger than those corresponding to the triangular faces, and
such architectures are therefore either constructed from two types
of proteins (an MCP and an mCP, with footprints in a ratio of
1:3), or a distinguished domain of the MCP occupies the smaller
footprints of the triangular positions, taking on the role of the
mCP. However, if a gyrated version of the trihexagonal lattice is
used instead, in which the triangular face is rescaled such that its
surface area is 3/5 of that of the pentagonal face (Fig. 5a), then a
capsid blueprint is obtained in which all CP footprints are
identical in size. An example of a virus following such a non-
edge-to-edge tiling18 is Pseudomonas phage phi642. Its inner
capsid is a pseudo T ¼ 2 structure formed from 120 CPs, which is
a CP number that is disallowed in CK theory, but rather follows
the layout of a gyrated T tð1; 0Þ lattice (Fig. 5b). The total number
of CPs in such capsids corresponds to the sum of the protein
counts indicated for MCP and mCP in Supplementary Table 2,
i.e. to nMCP

p þ nmCP
p .

The second case involves relaxing the symmetry condition on
tiles. In the Results section, we have strictly adhered to the CK
convention that the CP number represented by a tile must cor-
respond to its rotational symmetry. By relaxing this requirement,
kite-like tilings (based on the rhombitrihexagonal dual lattice)
and floret-like tilings (based on the snub hexagonal dual lattice)
can also be accommodated. Tobacco ringspot virus, a pseudo
T ¼ 3 capsid composed of 60 protomers that are each made of
three similar-sized but nonidentical jelly roll beta barrels43, offers
an example of a TD

r ð1; 0Þ tiling in which each kite-like tile
represents the three domains of a protomer (Fig. 5d). As the three
domains are not identical (cf. Fig. 2b & c in Johnson and
Chandrasekar43), a triangle would not be an appropriate geo-
metric description for this three-domain architecture. By contrast,
we propose that a rhombitrihexagonal dual tiling is an adequate
model. This hypothesis can be tested via its implications for
the radius of the particle (cf. the equivalent argument for phage
Basilisk and HSTV-2 in the Results section). In particular, the
radius RT of Tobacco ringspot virus should be rescaled with
respect to that of other members of the single jelly roll lineage
such as Pariacoto virus (Fig. 4a), a TDð1; 1Þ geometry with radius
RP , according to their respective lattice geometries as follows (see
Supplementary Material for details):

RT

R
¼

ffiffiffiffiffi

αr

3

r

; ð3Þ

with αr as in Eq. 2. The average radii reported on the ViPER data
base for each virus (RT ¼ 15:4 nm based on PDB 1A6C, and
RP ¼ 17:2 nm based on PDB 1F8V, respectively)12 imply a ratio
of � 0:90. This is within 1% of the value of � 0:91 consistent
with Tobacco ringspot virus being a TD

r ð1; 0Þ architecture, but

a b

Fig. 4 Capsid protein interfaces are constrained by icosahedral geometry.

The classification of icosahedral designs distinguishes between capsid

layouts of viruses formed from the same number of proteins. Examples of a

triangle and rhomb tiling are shown: a Pariacoto virus (TDð1; 1Þ); b MS2

(TD

t
ð1; 1Þ). Tiles are shown superimposed on figures adapted from the ViPER

data base (Pariacoto virus: PDB-id 1f8v64; MS2: PDB-id 2ms265)
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differs from the value
ffiffiffiffiffiffiffiffi

1=3
p

� 0:58 expected if it was the same
lattice type as Pariacoto virus.

Following Caspar and Klug’s approach, we have used surface
lattices in the Results section to indicate protein positions in the
capsid surface. However, we note that when viewed at different
radial levels, different types of lattice models may apply44,
revealing distinct aspects of capsid geometry. This is illustrated
for bacteriophage P22. This virus is classified as a Tð2; 1Þ ¼ 7
Caspar-Klug geometry based on a hexagonal surface lattice.
However, the organisation of its protruding structural features
rather follows a trihexagonal lattice structure (Fig. 5c), consistent
with the other architectures in the HK97 family discussed above.
It is difficult to predict the additional lattices that can occur at
different radial levels, unless their structures are coupled to the
lattices describing the organisation of the capsid core discussed
here. Such coupling could be modelled via affine extended sym-
metry groups45–47 or 3D tilings48, but this is beyond the scope of
this paper. Interestingly, for the example of P22 the triangular
positions correspond precisely to the trimer interactions between
capsomers (cf. Fig. 5d in Thuman-Commike et al.49), suggesting
that tiles may also have an interpretation in terms of interactions
between capsomers. This had been observed previously in the
context of Viral Tiling Theory for the cancer-causing Polyoma-
and Papillomaviruses45,50,51.

An intriguing observation is the lack of viral capsid examples
adopting the regular rhombitrihexagonal and snub hexagonal
lattices. One explanation could be that the sampling of possible
viral structures is still rather limiting compared to the diversity of
the virosphere5. There could also be physical explanations for the
absence of such lattices. For example, the rhombitrihexagonal
lattice requires a square tile, which may not occur in capsids as
perhaps this may result in high mechanical stress, making such
capsids less competitive. This is a phenomenon observed pre-
viously when comparing computational models for different viral
architectures32,52,53. Some of these less thermodynamically
favourable capsids, however, have been observed among mutant
viruses in vitro, like the snub cube capsid with octahedral sym-
metry formed by 24 capsomers in papilloma virus, instead of the
regular capsid with icosahedral symmetry51,52,54. Thus, it is
possible that some of the absent lattices could be observed in
the future as byproducts of in vivo or in vitro assembly of viruses
and their mutants.

These lattices might also be of interest in nanotechnology and
biomedicine, and provide inspiration for the construction of
novel man-made icosahedral architectures across different length

scales. This may include architectures akin to Buckminster Fuller
Domes55, as well as protein containers in bionanotechnology and
medicine, where they are used for a diverse range of applications,
including vaccination, gene/drug delivery, phage display, imaging,
energy and data storage56,57. In particular, icosahedral protein
nanostructures assembled from pentamers and trimers (Figs. 1b
and 3a in Bale et al.58) correspond to the smallest element in the
trihexagonal series, and nanocontainers organised according to
the duals of the Archimedean snub cube, i.e. the dual of the sunb
hexagonal lattice, have also recently been reported59. These par-
ticles can be constructed akin to the icosahedral particles in Fig. 1
above, by superimposing the surface of an octahedron onto the
different Archimedean lattice types; details of their surface
architectures are given in the Supplementary Material. It is pos-
sible that larger structures in our icosahedral series, and their
octahedral couterparts, may also be constructed from similar
protein building blocks.

The polyhedral layouts describing the quasiequivalent capsid
structures in CK-theory also occur in other areas of science, for
example, as blueprints for the atomic positions in the fullerenes in
carbon chemistry60. Similarly, the families of icosahedral poly-
hedra classified here can be applied to other chemical, physical
and biological systems, for example, fullereneynes in chemistry61,
bound states of wave interacting particles in physics62, and the
iron storing encapsulin in biology4, that all show the hallmarks of
the T t architectures. The conceptual framework for the classifi-
cation of icosahedral and octahedral polyhedral layouts presented
here is therefore of interest for a wide range of scientific dis-
ciplines beyond virology.

Methods
The construction of the polyhedral models and their duals is described below.

Construction of polyhedral designs. Consider two lines intersecting at an angle of
60° at the centre of one of the hexagons in the hexagonal (sub)lattice of a given
Archimedean lattice. Counting steps between midpoints of adjacent hexagons
along these lines via the integer coordinates h and k, then ðh; kÞ characterises the
positions of other hexagons in the (sub)lattice with respect to the original one, i.e.,
ð0; 0Þ. Using the line connecting the midpoints of these hexagons as the edge of an
equilateral triangle of an icosahedral face (Supplementary Fig. 1), the position of
the remainder of that surface is uniquely determined, and ðh; kÞ thus defines a
planar embedding of an icosahedral surface into the Archimedean lattice (see
examples in Fig. 2). The corresponding polyhedral shape in three dimensions is an
icosahedron, obtained via identification of edges of the planar embedding. The
numbers of pentagonal, hexagonal, triangular and square faces in the Archimedean
lattice overlapping with this icosahedral surface for different values of h and k are
provided in Supplementary Tables 1–4 for the hexagonal, trihexagonal, snub

a b c d

Fig. 5 More general applications of the Archimedean lattice models in virology. a Rescaling of the triangular faces, with respect to the hexagonal ones,

results in a gyrated version of the trihexagonal lattice in which proteins occupying different types of faces have identical footprints in the capsid surface.

b The inner capsid of Pseudomonas phage phi6, a pseudo T ¼ 2 structure formed from 120 chains, is an example of a gyrated T
t
ð1;0Þ lattice architecture.

Its symmetry equivalent chains, shown in blue and green respectively based on RCSB PDB 4BTQ (ref. 42), follow the layout of a surface architecture in

which the surface areas of the triangular and pentagonal shapes occur in a ratio 3:5 (magenta), reflecting occupation by chains with comparable footprints

on the capsid surface. c The kite tiling for Tobacco ringspot virus T
D

r
ð1;0Þ

� �

, with tiles shown superimposed on a figure adapted from the ViPER data base

(Tobacco ringspot virus: PDB-id 1a6c43). d A T
t
ð2; 1Þ lattice, shown superimposed on a surface representation in rainbow colouring of RCSB PDB 2XYY66,

captures the outermost features of bacteriophage P22, with timers indicating the positions of the crevasses between the radially most distal features of the

capsomers. Triangles also mark the positions of the trimer interactions between capsomers at a lower radial level
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hexagonal and rhombitrihexagonal lattice, respectively. In particular, an icosahe-
dral face given by ðh; kÞ ¼ ð1; 0Þ contains either no additional face (hexagonal
case), one triangle (trihexagonal case), four triangles (snub hexagonal case), or one
triangle and a square (rhombitrihexagonal case), that each form the start of an
infinite series of polyhedra.

Construction of the dual lattices. For each polyhedron in the above classification,
we construct a dual polyhedron. For this, vertices are positioned at the centres of
the polyhedral faces, and vertices associated with adjacent faces connected by
straight lines. Since Archimedean lattices have a single type of vertex environment,
these dual polyhedra each have a single type of face that corresponds to the
fundamental domain of a Laves lattice. These faces are triangles, rhombs, florets
and kites for the hexagonal, trihexagonal, snub hexagonal and rhombitrihexagonal
lattice, respectively. Using again the planar embedding of an icosahedral surface
into the associated Archimedean lattice, we determine the numbers of each such
face for polyhedra characterised by h and k as above; their numbers are listed in
Supplementary Table 5.

Measurement of capsid surfaces. All surface measurements were carried out
with UCSF Chimera63.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding

authors upon reasonable request. A reporting summary for this Article is available as a

Supplementary Information file.
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