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Improved GPU Near Neighbours Performance for Multi-Agent Simulations

Robert Chisholma, Steve Maddocka, Paul Richmonda

aDepartment of Computer Science, The University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP, UK

Abstract

Complex systems simulations are well suited to the SIMT paradigm of GPUs, enabling millions of actors to be processed
in fractions of a second. At the core of many such simulations, fixed radius near neighbours (FRRN) search provides
the actors with spatial awareness of their neighbours. The FRNN search process is frequently the limiting factor
of performance, due to the disproportionate level of scattered memory reads demanded by the query stage, leading to
FRNN search runtimes exceeding that of simulation logic. In this paper, we propose and evaluate two novel optimisations
(Strips and Proportional Bin Width) for improving the performance of uniform spatially partitioned FRNN searches
and apply them in combination to demonstrate the impact on the performance of multi-agent simulations. The two
approaches aim to reduce latency in search and reduce the amount of data considered (i.e. more efficient searching),
respectively. When the two optimisations are combined, the peak obtained speedups observed in a benchmark model
are 1.27x and 1.34x in two and three dimensional implementations, respectively. Due to additional non FRNN search
computation, the peak speedup obtained when applied to complex system simulations within FLAMEGPU is 1.21x.

Highlights

• We propose two optimisations to FRNN search for complex system simulations, one reducing latency in search and
one reducing the amount of data considered. The optimisations can also be combined.

• These optimisations have been applied to a standalone benchmark model, in both two and three dimensions, and
to three different models within FLAMEGPU.

• The peak speedup for FRNN search for the combined optimisation applied to a range of models varies between
1.21x and 1.34x.

Keywords: GPU, CUDA, Parallel algorithms, Complex systems.

1. Introduction

Fixed Radius Near Neighbours (FRNN) search is cent-
ral to many complex systems simulations, from molecular
dynamics to crowd modelling. In these systems, the simu-
lated actors often interact with their local neighbours, e.g.
particles, people or vehicles, which might require aware-
ness of the locations, velocities and/or directions of all
neighbouring actors within a specific radius. FRNN search
is used to perform this query across data points within a
fixed radius of the target location. Within complex sys-
tems simulations on Graphics Processing Units (GPUs)
the query occurs in parallel, allowing every entity to sur-
vey their neighbours simultaneously.

The technique of Uniform Spatial Partitioning (USP) is
most commonly used to provide efficient FRNN searches
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{r.chisholm,p.richmond,s.maddock}@sheffield.ac.uk
(Paul Richmond)

on GPU hardware. We can consider two stages to the
FRNN search process, construction and query. The USP
data structure is constructed using the optimised GPU
primitive operations sort and scan. The query stage is
then possible with minimal branch divergence, which is
optimal for the cohesive thread execution within vector
units of Single Instruction Multiple Threads (SIMT) GPU
architectures.

Despite USP being a highly appropriate and well adap-
ted technique, the FRNN search is still typically one of the
most expensive operations of simulation, often requiring
more processing time than any compute bound model lo-
gic. Like many GPU algorithms, the query stage of FRNN
search is bounded by latency, where maximal hardware
utilisation is not achieved by either compute operations
or memory transfers. This has led researchers to seek out
techniques to improve the speed at which FRNN queries
can be executed [1, 2, 3, 4].

Actors within Multi-Agent Systems (MAS), such as
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crowd modelling, are often influenced by neighbours from
a greater distance than those observed in models such as
Smoothed-Particle Hydrodynamics (SPH) [5]. Addition-
ally, high density actor populations lead to more neigh-
bours within each radial neighbourhood and thus greater
numbers of memory transactions. Hence MAS perform-
ance is especially impacted by the cost of FRNN search.

This paper presents two independent techniques ap-
plicable to FRNN queries on GPUs using the USP data
structure. We refer to these as Strips and Proportional
Bin Width. Strips reduces the cost of bin accesses during
the FRNN query and the Proportional Bin Width tech-
nique reduces redundant memory accesses within FRNN
queries. These two optimisations can also be combined to
enable the benefits of both techniques simultaneously.

In combination, these two techniques reduce latency
within the query stage of FRNN search by optimising code
performance and reducing redundant data accesses via the
adjustment of bin widths. These optimisations are im-
plementation agnostic, suitable for application to a broad
range of USP problems. Hoetzlein briefly considered the
trade-off of adjusting bin widths in his earlier research [3].
However, we take this further, performing both a theoret-
ical assessment of the impact of adjusting bin widths and
demonstrating the effects in practice.

Our results assess the performance according to the
metrics of population size and density in a benchmark
model representative of a broader class of physical (e.g.
SPH, MAS) simulations in both two and three dimensions.
The tested configurations show improvements across a wide
collection of actor densities and distributions, as is likely to
be found within complex system simulation domains. To
demonstrate this wide applicability, the optimisation has
been applied to three models within FLAMEGPU: Boids,
a 3D flocking model; Pedestrian, a 2D crowd model; Ker-
atinocyte, a 3D cellular biological model, representative of
skin tissue. The results demonstrate that the technique is
beneficial to the performance of FRNN search across actor
distributions, densities and even between 2D and 3D mod-
els.

The remainder of this paper is organised as follows:
Section 2 provides an overview of available techniques for
performing FRNN searches, the technique of USP and
prior techniques for its optimisation; Section 3.1 describes
the theory and an example implementation of the Strips
technique, for the reduction of compute within USP ac-
cesses; Section 3.2 describes the theory and an example
implementation of the Proportional Bin Width technique,
for the reduction of redundant memory accesses within
FRNN search; Section 4 details how the technique has
been implemented for experimentation; Section 5 explains
the benchmark models that have been used for evaluation;
Section 6 discusses the results obtained when comparing
performance before and after the optimisations have been
applied; Finally, Section 7 presents the concluding remarks
and directions for further research.

2. Near Neighbours on GPU

FRNN search is primarily used by complex systems
simulations to allow spatially located actors to survey their
neighbours. This process provides awareness of the envir-
onment to the underlying model, which is capable of using
the neighbour data to inform the behaviour of each actor.
This process is typically repeated once per timestep al-
lowing each actor, e.g. a particle, to evaluate the forces
affecting their motion. FRNN search should not be con-
fused with the technique of ‘nearest neighbour’, which is
concerned with finding a single result closest to the search
origin. This benefits from different performance consid-
erations when compared with FRNN searches, which, for
example, may return as many as 80 results per query when
applied to SPH [5].

There are many techniques capable of managing spa-
tial data [6], primarily utilising hashing [7, 8], trees [9, 10]
and Voronoi diagrams [11, 12]. However, these data struc-
tures target a range of processes from nearest neighbour
to intersection testing. As such they are not applicable or
optimised to provide general FRNN search. Furthermore,
transferring these data structures from serial implement-
ations to the highly parallel SIMT architecture of GPUs
requires consideration of an additional set of optimisations
and techniques to fit within the data parallel programming
model.

The naive approach to FRNN search is brute force eval-
uation of pairwise interactions. However, this becomes
unsustainable with performance quickly declining as the
number of actors increases. Whilst hierarchical spatial
data structures such as kd-trees can be accelerated on
GPUs, and have been used for N-Body simulations [13],
they are more suited for tasks requiring greater precision
of data selection, such as collision testing and ray-tracing,
which are concerned with the single nearest neighbour [14].

2.1. Uniform Spatial Partitioning
Spatial partitioning has become the standard for GPU

FRNN search. There are now many software frameworks
which provide implementations of spatial partitioning for
either general complex simulations or for simulation within
a specific domain, e.g. FLAMEGPU [15] (Multi-Agent
Simulation), fluids3 [16] (SPH), LAMMPS [17] (Molecular
Dynamics) & AMBER [18, 19] (Molecular Dynamics).

Under GPU USP the known environment is sub-divided
into a uniform grid of bins, with each bin being given a con-
secutive identifier (such that in 2 dimensions i = pYdX+pX,
where p is the grid position in the corresponding axis and
d is the grid’s dimensions). The location of stored data is
clamped to fall within the known environment bounds. As
the environment has been subdivided into a regular grid of
bins, this allows the location’s containing bin to be identi-
fied. All of the data to be stored in the USP data structure
is then sorted and stored in order of their respective bin
identifiers.
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Figure 1: Visual representation of an environment and how its data
is stored and accessed under GPU uniform spatial partitioning. The
PBM acts as an index to each bin’s portion of the neighbour data
array.

So that neighbour data within a specific bin can be
accessed efficiently, a Partition Boundary Matrix (PBM)
is constructed. This structure provides an index to the
start of each bin’s data within the neighbour data ar-
ray. When accessing the USP data structure to perform a
FRNN query, a grid of bins encompassing the radial neigh-
bourhood must be accessed. Accessing the contents of a
bin therefore requires reading two values from the PBM,
so that the memory range encompassed by the bin’s data
can be identified.

Figure 1 presents a two-dimensional example of the
data structures used. Due to the compact nature of the
data structure and the SIMT architecture of GPUs, if the
containing bin of a single actor’s data changes, the en-
tire data structure must be reconstructed. However, the
process for constructing both the neighbour data array
and PBM is already highly data-parallel, utilising widely
available parallel primitives such as sort and scan. When
implemented with atomic counting sort, this produces the
PBM as a by-product of the neighbour data array sort
[3]. The time complexity of construction is reduced to
constant-time [20, 21].

To access data located within the radial neighbourhood
of a position, the position’s containing environment bin is
identified and all neighbour data stored within the bins of
the inclusive Moore neighbourhood are then iterated. As
shown in Figure 1, only those with a position inside the
radial neighbourhood are considered by the simulation. In
two dimensions this means that neighbour data within a
spatial area 2.86x larger than required (2D neighbourhood
area: πR2, 2D Moore neighbourhood area: (3R)2) are ac-
cessed. In three dimensions this increases to 6.45x (3D
neighbourhood volume: 4

3
πR3, 3D Moore neighbourhood

volume: (3R)3). Thus, in both 2D and 3D environments
the majority of memory accesses can be assumed to be

redundant.

2.2. Related Research
Research regarding the USP data structure has primar-

ily considered improvements to the query. This can be
considered as a result of the relatively low cost of con-
struction in most applications, with respect to the query
time. Other data structures such as ‘neighbourhood grid’
and Verlet lists have been proposed and used, however,
the USP data structure remains most performant for GPU
hardware.

Goswami et al were able to improve the performance
of GPU FRNN queries during SPH on GPUs [1]. They
adjusted the indexing of the bins, which the environment
is subdivided into, so that they are indexed according to a
Z-order space-filling curve (also known as a Morton code).
The space-filling curve maps multi-dimensional data into a
single dimension whilst preserving greater spatial locality
than regular linear indexing. This creates power-of-two
aligned square grids of bins, with contiguous Z-indices,
such that bins containing neighbour data are stored in a
more spatially coherent order. This additional locality in-
tends to ensure that more neighbourhoods consist of con-
tiguous blocks of memory, such that surplus data in cache
lines is more likely to be required in subsequent requests,
reducing additional latency caused by cache evictions.

Similarly, the AMBER GPU molecular dynamics toolkit,
as described by Salomon-Ferrer et al [19], uses particle
sorting within bins according to a 4x4x4 Hilbert space-
filling curve in order to calculate the forces between mo-
lecules during simulation. In addition to possible benefits
of spatial locality, this allows them to extend the neigh-
bourhood cut off, reducing the quantity of redundant ac-
cesses to neighbourhood data. Their research does not
address the implementation or performance impact of this
optimisation independently. Subdividing bins into a fur-
ther 64 sub-bins may only be viable for densities where the
sub-bin occupancy remains close to 1.

Hongyu et al optimised the reconstruction of the data
structure by developing a novel sorting technique that takes
advantage of the knowledge that particles can only move
to neighbouring bins, utilising a prefix sum of the changes
to each bin’s capacity [4]. They were able to improve
performance in a small SPH simulation of 8192 particles
within a 163 grid. However, overall performance was equal
to that of their initial unoptimised reconstruction when
applied to larger simulations. Section 5 shows how in lar-
ger simulations the construction time is a small fraction
of that required for the FRNN query. As such, optimisa-
tion efforts targeting the query process are likely to have
a greater overall impact.

Previously, Hoetzlein replaced Radix sort with (atomic)
counting sort [3] within the construction of the USP data
structure. This significantly simplified the construction
of Green’s original implementation [22] by reducing the
number of construction kernel launches from 12 to 1. This
optimisation greatly improved the performance by around
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1.5-8x (for various population sizes). More recent GPU ar-
chitectures have improved the performance of atomic op-
erations at a hardware level [23], which has likely further
improved the technique.

Verlet lists have also been used as a potential optimisa-
tion, allowing a list of neighbours within the radial search
area to be stored per actor [24]. However, this technique
relies on an additional step on top of USP and FRNN
search to produce the data-structure [25]. Other construc-
tion algorithms have also been proposed [26]. Further-
more, the primary value of verlet lists lies in reducing the
need to reperform the neighbour list construction, only
expiring a neighbour list when the central actor moves
a set distance. Therefore, the cost of using verlet lists
is highly dependent on the frequency of list reconstruc-
tions required. Additionally, storage of per-agent neigh-
bour lists will inflate memory requirements, significantly
in models with the most populous neighbourhoods. This
limits the applicability of verlet lists to systems of both
low entropy and scale [27].

Joselli et al described a novel data structure they called
neighbourhood grid, inspired by USP [28]. Their data
structure, designed for SPH, instead assigns each particle
to a unique bin, rather than allowing multiple particles to
share each bin. This binning system instead creates an ap-
proximate spatial neighbourhood which can be queried in
constant time. This approximate method has been repor-
ted to improve performance up to 9x over exact methods
based on USP, by ensuring neighbourhoods are a fixed 26
particles (the Moore neighbourhood). However, they are
not as generally applicable or accurate as FRNN search,
due to the fixed neighbourhood volumes.

The research in this section has demonstrated an op-
portunity for improved query performance for a more gen-
eral case of FRNN search, through improving accesses to
bins and reduction of message accesses.

3. Innovations

This paper presents two independent techniques ap-
plicable to FRNN queries on GPUs using the USP data
structure. We refer to these as Strips and Proportional
Bin Width. Strips reduces the cost of bin accesses during
the FRNN query and the Proportional Bin Width tech-
nique reduces redundant memory accesses within FRNN
queries. These two optimisations can also be combined
to enable the benefits of both techniques simultaneously.
Section 3.1 focuses on Strips. Section 3.2 focuses on Pro-
portional Bin Width. Section 3.3 focuses on the combined
technique.

3.1. Strips
The Strips optimisation targets redundant bin changes,

removing constant time operations which contribute to
latency during the query’s GPU kernel’s execution. In 2
dimensions, the Moore neighbourhood of a query’s origin’s

containing bin consists of a 3x3 block of bins. These nine
bins exist as three strips of three bins, where each strip’s
storage exists contiguously in memory. In 3 dimensions,
the 27 bin Moore neighbourhood, is formed of nine strips
of three bins. Within a strip, only the first bin’s start in-
dex and the last bin’s end index need to be loaded from
the PBM to identify the range within the neighbour data
array that contains the neighbour data from each of the
strip’s bins. This optimisation only affects how bins are
accessed, leaving the data structure described in Section 2
unchanged.

In the example shown in Figure 1, each row of the
Moore neighbourhood would become a strip, i.e. bins 1-3,
5-7 and 9-11 would be treated as strips.

The SIMT architecture of GPUs avoids divergence between
threads in each synchronous thread group (warp). There-
fore it is assumed that when threads within the same warp
are accessing different bins, which will most often have dif-
fering sizes, all threads within the warp must wait for the
thread accessing the largest bin to complete before con-
tinuing to the next bin. By merging contiguous bins the
Strips optimisation reduces the number of these implicit
synchronisation points.

Additionally, the use of Strips can only reduce the total
difference between threads with the least and most mes-
sages read per warp, hence reducing the quantity and dur-
ation of idle threads. It is not possible for the total differ-
ence to increase under this optimisation.
Algorithm 1 Pseudo-code showing the FRNN search’s
query algorithm before optimisation for a two dimensional
environment.
vector2i absoluteBin = getBinPosition(origin)
loop -1<=relativeBin.x<=1:

loop -1<=relativeBin.y<=1:
selectedBin = absoluteBin + relativeBin
if selectedBin is valid:

hash = binToHash(selectedBin)
loop i in range(PBM[hash],PBM[hash + 1]):

handle(neighbourData[i])

Algorithm 2 Pseudo-code showing the Strips optimisa-
tion applied to the query operation for a two dimensional
environment.
vector2i absoluteBin = getBinPosition(origin)
loop -1<=relativeStrip <=1:

startBin = absoluteBin + vector2i(-1, relativeStrip)
endBin = absoluteBin + vector2i(1, relativeStrip)
startBin = clampToValid(startBin)
endBin = clampToValid(endBin)
startHash = binToHash(startBin)
endHash = binToHash(endBin)
loop i in range(PBM[startHash],PBM[endHash + 1]):

handle(neighbourData[i])

This optimisation essentially removes two bin changes
from every central strip and one from every boundary
strip. This occurs three times per neighbourhood in two
dimensions and nine times in three dimensions. Therefore
the optimisation provides a near constant time speed up
through removal of code, related to the problem dimen-
sionality and number of simultaneous threads. Addition-
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Figure 2: Visual representation of how different bin widths require
different search areas to cover the whole radial neighbourhood.

ally, the removal of the bin switches, as discussed above, is
likely to reduce branch divergence, whereby threads within
the same warp are operating on differently sized bins and
hence would change bins at different times. Algorithm 1
shows psuedo-code for the original FRNN search’s query
technique prior to optimisation and Algorithm 2 after the
Strips optimisation has been applied, removing one of the
loops and introducing an additional bounds check.

3.2. Proportional Bin Widths
Standard implementations of USP subdivide the en-

vironment into bins with a width equal to that of the ra-
dial search radius. This decision ensures that all radial
neighbours will be guaranteed to be found in the same or
surrounding bins of the query’s origin. This is referred
to as the Moore neighbourhood. The implication of this
decision is that many surplus messages outside of the ra-
dial neighbourhood must be accessed. In 2D the Moore
neighbourhood accessed is 2.86x that of the radial neigh-
bourhood. In 3D this becomes 6.45x.

By adjusting the width of the bins relative to the neigh-
bourhood radius, the number of bins that must be accessed
(to ensure the entire radial neighbourhood is covered) and
the volume of individual bins change. Thus the total (and
surplus) area of the environment accessed also changes.
Figure 2 provides an example of how alternate propor-
tional bin widths change these values.

Hoetzlein [3] mentioned a similar optimisation in his
work, however, he did not suggest an optimal proportion,
only considering the trade-off between bin volume and bins
per query. Our calculations give a wider consideration of
the theoretical impact of adjusting the proportional bin
widths.

The min (ag) and max (aG) grid areas of access under
any proportional bin width in 2 dimensions can be calcu-
lated using equations 1 & 2, where R is the chosen search
radius and W the absolute bin width.

ag =
⌈2R

W

⌉2

W2 (1)

aG =
(⌈2R

W

⌉

+ 1
)2

W2 (2)

Proportional Bin Width 1 0.7 0.5
Min Grid Area (ag) 4 4.41 4
Max Grid Area (aG) 9 7.94 6.25
Average Grid Area (aa) 9 4.84 6.25
Bin Count Max (

(⌈

2R
W

⌉

+ 1
)2

) 9 16 26
Strip Count Max (

⌈

2R
W

⌉

+ 1) 3 4 5
Max Surplus Mult. ( aG

ar
) 2.86 2.50 1.99

Average Surplus Mult. ( aa

ar
) 2.86 1.54 1.99

Table 1: This table provides an example of the variability by chan-
ging the bin width as a proportion of the search radius of 1 (with a
corresponding radial search area of 3.14) in 2D. These values can be
calculated using Equations 1 to 4.

By additionally calculating the proportion within the
min grid area (p) and max grid area (p′), in a 1 dimen-
sional implementation, Equation 4 can be used to calculate
the average grid area access (aa).

p =
2R −

⌊

2R
W

⌋

W

W

p′ = 1 − pm

(3)

aa = p2ag + 2pp′
√

ag

√
aG + p′2aG (4)

Dividing by the radial neighbourhood area (ar) then
provides the surplus multiplier, which denotes the search
grid’s area relative to the radial neighbourhood area. This
represents the level of redundant memory access where
data is uniformly distributed.

ar = πR
2 (5)

Table 1 provides a demonstration of the above equa-
tions 1-5 applied to several differing proportional bin widths.
Furthermore, these equations can be extended to 3 di-
mensions or more, as required, as they are constructed
from the 1-dimensional mathematics surrounding the ra-
dial area (2R) divided by the bin width (W).

Some bin widths lead to different bin counts dependent
on the query origin’s position within its own bin (see Fig-
ure 3, where the query origin can lead to either a square
or rectangular search grid). Due to the SIMT architecture
of the GPU, all 32 threads of each warp will step through
the maximum number of bins any individual thread within
the warp requires, although this may lead to some threads
remaining idle through later bins. Similarly, it is expected
that threads processing surplus messages (which do not
require handling by the model), will incur a runtime cost
similar to that of the desired messages which are likely to
incur additional compute.

Some combinations of proportional bin width and query
origin do permit for corners of Moore neighbourhoods to
be skipped, as they don’t intersect with the radial neigh-
bourhood (See Figure 4). Analysis suggests that in most
cases the additional compute necessary to detect and skip
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Figure 3: Visual representation of how under some bin widths the
query origin affects the size of the required search area to cover the
whole radial neighbourhood. R denotes the neighbourhood radius.

R

R

R

R

Figure 4: Visual representation of how, under some bin widths and
search origins, corner bins do not always need to be accessed. R

denotes the search radius.

the few redundant corner bins would incur a prohibitive
runtime cost, outweighing any performance savings.

Section 3.1 demonstrated that there is a cost to indi-
vidual bin accesses. The Strips technique is about optim-
ising the trade-off between redundant area accessed and
total bins accessed. The removal of W2 from equations
1 & 2, to calculate min (ag) and max (aG) area can be
used to calculate the number of bins. Similarly, taking
the square root of these values provides the number of
Strips, following the optimisation from Section 3.1.

A further consideration of increasing the number of
bins is that this leads to a larger partition boundary mat-
rix. This both requires more memory for storage and in-
creases construction time. These impacts are considered
further in Sections 5 and 6.
Algorithm 3 Pseudo-code showing the Proportional Bin
Width optimisation applied to the query operation for a
two dimensional environment.
vector2i binMin = getBinPosition(origin - radius)
vector2i binMax = getBinPosition(origin + radius)
loop binMin.x<=selectedBin.x<=binMax.x:

loop binMin.y<=selectedBin.y<=binMax.y:
hash = binToHash(selectedBin)
loop i in range(PBM[hash],PBM[hash + 1]):

handle(neighbourData[i])

Algorithm 3 demonstrates how the Proportional Bin
Width optimisation may be applied by altering the selec-
tion of bins iterated, in contrast to that of Algorithm 1.

It can be seen that in the 2D example the nested loop
changes from iterating a 3x3 Moore neighbourhood to an
NxM Moore neighbourhood. The exact values of N and M
are dependent on the values returned by getBinPosition(),
which clamps the continuous space coordinates to within
the environment bounds and then returns the containing
discrete bin coordinates.

3.3. Combined Technique
The two optimisation techniques described in sections

3.1 and 3.2 can be combined, allowing the Strips optimisa-
tion to reduce the impact of bin changes under the Propor-
tional Bin Width’s optimisation. This is important, as the
act of decreasing the proportional bin width decreases the
volume of bins, hence most often increasing the number of
bins to be accessed.
Algorithm 4 Pseudo-code showing the combined optim-
isation applied to the query operation for a two dimen-
sional environment.
vector2i binMin = getBinPosition(origin - radius)
vector2i binMax = getBinPosition(origin + radius)
loop binMin.y<=strip <=binMax.y:

startBin = vector2i(binMin.x, strip)
endBin = vector2i(binMax.x, strip)
startHash = binToHash(startBin)
endHash = binToHash(endBin)
loop i in range(PBM[startHash],PBM[endHash + 1]):

handle(neighbourData[i])

Algorithm 4, demonstrates how Algorithms 2 and 3 can
be combined to utilise the benefits of each optimisation
simultaneously during the query operation. The nested
loop over selectedBin from Algorithm 3 has been replaced
by the strip loop and validation from Algorithm 2

4. Implementation

To demonstrate the impact of the optimisation, it is
first applied to a small standalone implementation which
enables greater fidelity for analysis. Second, it is applied
to FLAMEGPU to demonstrate how the optimisations ap-
ply to existing multi-agent simulations. The remainder of
this section details the implementation of the standalone
version, providing further context to figure 1 (available
online1).

4.1. Construction
Only the Proportional Bin Width (and combined) op-

timisations impact construction. Their impact is limited
to affecting the scale of the environment’s subdivision, sub-
sequently increasing (or decreasing) the memory footprint
of the Partition Boundary Matrix (PBM).

Figure 1 highlights how the PBM consists of a single
unsigned integer array, with a length one greater than the
number of environmental bins (Nbins +1). Each entry into

1https://github.com/Robadob/sp-2018-08
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the array, except for the final entry, identifies the first in-
dex of the corresponding environmental bin’s messages in
the neighbour data array. The final element of the array
denotes the total number of messages. The layout of the
PBM allows the bounds of an environmental bin’s data
in the neighbour data array to be identified by accessing
both the index of the desired bin and the subsequent index
within the PBM.

4.1.1. Algorithm
First, an array of equal length to the neighbour data

array is created. In this array, each (spatially located)
message from the neighbour data array has its contain-
ing environmental bin’s index stored. Equation 6 can be
used to transform a spatial coordinate located within the
environment to its corresponding environmental bin’s co-
ordinate (gridPos). This can then be transformed to the
bin’s 1-dimensional index using either equation 7 for a 2D
environment, or equation 8 for a 3D environment.

gridPos =
⌊

gridWidth
envPos

envWidth

⌋

(6)

gridId2D = (gridPosy ∗ gridWidthx) + gridPosx (7)
gridId3D = (gridPosz ∗ gridWidthy ∗ gridWidthx)

+ gridId2D

(8)

Figure 5 illustrates how the PBM is constructed from
the neighbour data and neighbour bin index arrays. The
neighbour bin indices must be used to calculate the offset
of each bin’s storage. This can be achieved by first pro-
ducing a histogram representing the number of messages
within each bin. Both implementations utilise atomic op-
erations to produce this histogram, as proposed by Hoet-
zlein [3]. The histogram is then passed to a primitive scan
using the exclusive sum operator. This functionality is
available within libraries such as CUB [29]. For the PBM
to be produced correctly, the PBM must have a length one
greater than the total number of bins, so that the final
value in the PBM denotes the total number of neighbour
data.

Finally, the neighbour data array is sorted, so that
neighbour data are stored in order of their environmental

1 0 1121Bin Size 
Histogram

Prefix Sum

10 22 4 5 6PBM


1


3


5


4


3


0
Neighbour
Data Array

Bin Index Identification

0 1 3 3 4 5Neighbour Bin
Index Array

Histogram Generation

Figure 5: The arrays used to generate a PBM.

bin indices. This can be achieved using a primitive pair
sort, such as that found within CUB [29], and a kernel to
subsequently reorder the neighbour data.

4.2. Query
Whilst the neighbour data from a single bin can be

identified with two accesses to the PBM, to perform a
query a contiguous block of bins must be accessed. This
contiguous block of bins must include all bins which may
intersect the search area. The number of bins accessed
can be calculated using equation 9. When PBW = 1.0, a
3x3(x3) block of bins must be accessed, and when PBW =
0.5, a 5x5(x5) block of bins must be accessed.

bins = (1 + 2
⌈ 1

PBW

⌉

)Dims (9)

4.2.1. Algorithm
The FRNN search’s query algorithm can be described

using the psuedocode in algorithm 5, which combines the
earlier algorithms 2 and 3. Each GPU thread operates in-
dependently, concerned with its own unique FRNN query.
In this two dimensional example we loop over relativeStrip

which represents the Y axis, the rows of the block of bins.
In three dimensions this would be a nested loop over the
Y and Z axes. The absolute bin coordinate (absoluteBin) is
then combined with relativeStrip and offset positively and
negatively in the X axis by RAD. This provides the start and
end coordinates of the current strip of bins to be accessed.
These values must be clamped within a valid range and
transformed into 1-dimensional bin indices (using equa-
tions 7 or 8). After this, they can be used to access the
PBM to identify the range of elements within the storage
array that must be accessed.
Algorithm 5 Pseudo-code showing the FRNN search al-
gorithm before optimisation for a two dimensional envir-
onment.
vector2i absoluteBin = getBinPosition(origin)
uint RAD = ceil(1.0/PBW)
loop -RAD<=relativeStrip <=RAD:

startBin = absoluteBin + vector2i(-RAD, relativeStrip)
endBin = absoluteBin + vector2i(RAD, relativeStrip)
startBin = clampToValid(startBin)
endBin = clampToValid(endBin)
startHash = binToHash(startBin)
endHash = binToHash(endBin)
loop i in range(PBM[startHash],PBM[endHash + 1]):

handle(neighbourData[i])

This algorithm accesses all messages within potentially
intersecting bins. The locations of messages must addi-
tionally be compared to only handle those which lie within
the radial area of the search’s origin.

FLAMEGPU’s algorithm for handling bin iteration is
implemented in a different way. The query state is tracked
and updated each time a message is retrieved. This im-
plementation abstracts the behaviour from users, allow-
ing them to access FRNN queries within their model logic
using a single while loop. Despite these differences, the
actual order of message access remains consistent.
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To ensure maximal performance of FRNN search quer-
ies, it is necessary to limit the kernel’s block size to 64
threads. This maximises hardware utilisation, whilst re-
ducing the number of threads remaining idle, where mes-
sage distributions are not uniform (hence leading to an
unbalanced workload). The optimisation is visible in the
NVIDIA-distributed CUDA particles example2, however,
details of this technique do not seem to appear in general
literature pertaining to FRNN search.

5. Experimental Configuration

The experiments have been designed to demonstrate
six important characteristics of this research:

• Experiment 1: FRNN Search Query - That FRNN
search’s query is an expensive operation within a
range of existing multi-agent simulation models.

• Experiment 2: Strips - That the strips optimisation
provides a constant time speedup to the query oper-
ation with respect to neighbourhood size (density).

• Experiment 3: Proportional Bin Width - That the
Proportional Bin Width optimisation (Section 3.2)
in combination with the Strips optimisation provides
further improvements to the query operation’s per-
formance by reducing surplus message accesses.

• Experiment 4: Construction - That the cost of USP
construction is low relative to performing queries,
thus supporting our focus on optimising queries.

• Experiment 5: Population Scaling - That the optim-
isations presented do not harm the linear scaling of
query operations with respect to increasing popula-
tion size.

• Experiment 6: Model Testing - That the optimisa-
tions presented retain their benefits when applied to
existing multi-agent simulations within FLAMEGPU.

Within these experiments, construction refers to the
construction of the USP data structure, which involves
sorting messages and generating an index to the start of
each bin’s storage (PBM). Whereas, the query stage refers
to the neighbourhood search performed by each actor in
parallel, this includes any model specific logic that occurs
per neighbour accessed.

The experimental implementation3 follows the gener-
alised case observed in many frameworks and examples,
e.g. FLAMEGPU [15] and the NVIDIA CUDA particles
sample [22]4. The targeting of the general case ensures

2The CUDA particles example is included as a sample alongside
installation of the CUDA toolkit.

3https://github.com/Robadob/sp-2018-08
4The CUDA particles sample code is available on installation of

the CUDA toolkit.

optimisations are more widely applicable, whilst still re-
maining relevant when applied to real models.

The Circles model [30](explained in Section 5.1) has
been used to evaluate the impact of the optimisations
presented in Sections 3.1 and 3.2 on the performance of
FRNN search. The Circles model allows parameters that
can affect performance scaling, such as population size and
population density, to be controlled. The presented optim-
isations have been evaluated in both two and three dimen-
sions.

Additionally, FLAMEGPU has been modified5 so that
the optimisations presented within this paper can be ap-
plied to a range of different models in experiments 1 and 6.
The following models from FLAMEGPU have been used:

Boids (Partitioning) - this provides an implementa-
tion of Reynolds flocking model [31], which provides an
example of emergent behaviour represented by independ-
ently operating birds in a 3D environment.

Pedestrian (LOD) - this provides an implementation
of a random walk pedestrian model. Collision avoidance
between pedestrians is handled via an implementation of
the social forces model in a 2D environment, as described
by Helbing and Molnar [32]. The particular environment
has a low density of pedestrians.

Keratinocyte - this provides a cellular biological model
representative of Keratinocyte cells, which are the predom-
inant cell found on the surface layer of the skin. This
model utilises two instances of the USP data structure,
which both operate in a 3D environment. The Keratino-
cyte model was modified slightly to decrease the resolution
of the force USP. This both allowed the model to support
a higher agent population and improved performance 2x,
without affecting the model’s operation.6

5.1. Circles Model
The Circles model is an extension of that proposed by

Chisholm et al [30] as a means for benchmarking FRNN
search using a simple particle model analogue, typical of
those seen in cellular biology and multi-agent simulation
benchmarking. The extension modifies the force calcula-
tion to utilise the sine function as a means of smooth-
ing. The addition of smoothing reduces the applied forces
about the equilibrium position, such that the particle jit-
ter about the equilibrium position from the initial model
is eliminated. Additionally this has made it possible to
merge the attraction and repulsion parameters.

The new force calculation formula takes the form Fi j =

sin(−2π( di j

r
))F, where di j is the scalar distance between

5https://github.com/Robadob/FLAMEGPU (Changes are present in
the branch titled ‘PBW’)

6The original force resolution structure had around 400 bins per
actor, most of which would therefore remain unused. This was re-
duced to around 1 bin per actor. It is possible that greater reduc-
tions would further improve performance, however, that is outside
the scope of this paper.
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(a) Uniform Random Initialisation State

(b) Circles End State

Figure 6: An area from the visualisation of the state of the Circles
model. The spheres represent point based actors. The grid lines
show the subdivision of the environment into bins. (a) The start state
under uniform random initialisation whilst executing in 2-dimensions
with a Moore neighbourhood volume average of 37. (b) The end state
whereby the model has converged to a steady state with a Moore
neighbourhood volume average of 41.

source particle i and neighbour particle j, r is the interac-
tion radius and F is the unified force dampening argument.
Fi j is subsequently multiplied by the normalised direction
vector from i to j. As with the original model, Fi j is cal-
culated for all neighbour particles with the sum of the
resulting value providing the final offset that is applied to
the source particle.

The particles (the actors) within this model move with
each time step. Initially they are uniform randomly dis-
tributed, as shown in Figure 6a. During runtime they
move to create clusters of particles arranged in circles
in two dimensions (Figure 6b) and spheres in three di-
mensions. This has the effect of creating hotspots within
the environment where bins contain many particles and
dead zones where bins contain few or no particles. This
structured grouping can be observed in complex systems
such as pedestrian models, where a bottleneck in the en-
vironment creates a non-uniform distribution within bins.
These clusters also lead to the Moore neighbourhood volumes
more closely matching the radial neighbourhood volumes.

The uniform random initialisation, shown in Figure 6a,
utilises the CUDA device function curand_uniform to posi-
tion neighbours within the environment bounds, essen-
tially producing a noisy distribution with roughly equal
numbers of actors per bin. To ensure consistency when us-

ing uniform random initialisation, the same seed value was
used to initialise comparative benchmarks between builds.
However, the same performance trends have been observed
across multiple seed values.

Figure 6b shows a visualisation of an area from the
steady state at the convergence of a two-dimensional con-
figuration. In three dimensions the arrangement of particles
would form hollow spheres instead of the rings shown in
the figure. Parameters are managed so that they can
be controlled independently. As the density parameter
is increased, the number of particles per grid square and
ring increases, and the environment dimensions decrease.
Changes to the actor population size simply affect the en-
vironment dimensions, so as to not change the density.
During results collection visualisations were not used to
avoid any impact to performance. Each configuration has
been executed for 200 iterations. Visual testing showed
that with a unified force dampening argument of 0.05 this
number of iterations was required to consistently progress
through the model to reach the steady state.

Uniform random initialisation has been used for the ex-
periments as this provides an average of the workloads seen
in many complex systems with mobile entities. Due to the
diversity in distributions seen within complex systems, se-
lecting a particular sparse/dense distribution model (such
as Perlin noise) has been avoided, favouring the Circles
model [30] to represent the behaviours and distributions
found within complex systems, as it moves actors through
many of these spatial distributions during execution.

6. Results

Benchmarks of a USP implementation, before and after
the application of the optimisations presented in Sections
3.1 and 3.2, were collected using the Circles model presen-
ted in Section 5. Data in this section was collected using
an NVIDIA Titan-X (Pascal) in TCC mode with CUDA
9.1 on Windows 10. Additionally, GPU boost was disabled
using nvidia-smi to limit clock and memory speeds to their
stock values (1417MHz and 5005MHz, respectively).

The following sections correspond to the experiments
outlined in Section 5.

6.1. Experiment 1: FRNN Search Query
To evaluate the cost of FRNN search’s query opera-

tion when applied to a variety of models, FLAMEGPU
has been extended to output the average runtimes of all
agent functions. This enables the proportion of the query
as a result of the total model runtime to be assessed. To
most accurately reflect processes, timings include all oper-
ations (e.g. memory copies) which occur around the agent
function’s kernel launch. One timing is then returned per
agent function. These have then been summed according
to message input (query), message output (construction)
and not relevant (not included in table 2, which is why
percentages do not add to 100).
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Within Table 2, it is clear that FRNN search domin-
ates the runtime, requiring over 50% of the execution in
all instances (52%-91%). In contrast, the construction of
the USP data structure occupies 29% and 33% in two in-
stances, and also occupies as little as 9% under the Boids
model. The Pedestrian and Keratinocyte proportions do
not sum to 100% due to additional agent functions occupy-
ing runtime.

6.2. Experiment 2: Strips
To assess the impact of the Strips optimisation on the

performance of the query operation, the Circles model was
executed using both the original FRNN search implement-
ation and an implementation with the Strips optimisation.
With an agent population of 1 million in 2D (Figure 7a),
query time increases linearly with agent density. Through-
out, the queries under the Strips optimisation perform a
stable 1-1.2ms faster than that without the optimisation.
A similar pattern is visible in 3D (Figure 7b). Here the
Strips optimisation performs a stable 2.3-3.5ms faster than
that without the optimisation. This roughly three-fold in-
crease is in line with the reduction in bin changes, which
reduces from 9 to 3 in 2D and 27 to 9 in 3D, reductions
of 6 and 18, respectively. Due to the stable speed up, the
proportional speedup decreases significantly as the radial
neighbourhood size increases. Of note, the implementa-
tion tested (detailed in Section 4) switches bins using a
nested loop, with one for loop per dimension and a central
loop to iterate messages within each bin. For the Strips op-
timisation, the x axis’s for loop is removed (see Algorithms
1 and 2).

6.3. Experiment 3: Proportional Bin Width
Experiment 2 was repeated using the Strips implement-

ation, which has a proportional bin width of 1.0, and the
proportional bin widths (0.7, 2

3
, 0.5, 0.4). These were se-

lected based on an extended version of Table 1, as their
properties had the lowest combined maximum strip count
and surplus multipliers.

In 2D (Figure 8a), the successful proportional bin width
found is 0.5. By reducing the surplus to 1.99x (equation
and details available in Section 3.2), and only increasing
the number of strips by one, it is able to improve on
the performance of the original Strips implementation’s
query operation. This improvement provides a roughly
stable 15% speed up over the original Strips implementa-
tion throughout all densities tested.

Model Query % Construction %
Boids 91% 9%
Pedestrian 52% 33%
Keratinocyte 65% 29%

Table 2: The runtime proportion of FRNN search and USP con-
struction under 3 models within FLAMEGPU, when executed in
their default configuration for 10,000 iterations.
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Figure 7: The performance of the query operations during execution
of the Circles model with 1 million actors across a range of densities
for both the original implementation and the Strips optimisation in
(a) 2D and (b) 3D.

The remaining three proportional bin widths tested,
0.7, 2

3
and 0.4, have worse performance than the original

Strips implementation (proportional bin width of 1.0).
As expected, whilst a proportional bin width of 0.7

should have an average surplus of 1.54x (relative to the
original’s 2.87x), its performance is likely that of its max-
imum surplus of 2.50x coupled with the additional strip,
due to the divergence caused by alternate search origins
having varying numbers of bins to search. The propor-
tional bin width of 2

3
has an average surplus of 2.26x with

no additional bin changes. Its lack of performance suggests
that floating point precision limitations may have removed
the primary benefit of 2

3
being a factor of 2 (thus adding

redundant bin changes). The proportional bin width of
0.4 also harmed performance, however, the runtime was
much closer to that of the original Strips implementation.
0.4 is calculated to have average and maximum surpluses
of 1.54x and 1.83x, respectively. However this comes at
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Figure 8: The performance of the query operation during execution
of the Circles model with 1 million actors, with the Strips optimisa-
tion applied in combination with a selected range of proportional bin
widths, in (a) 2D and (b) 3D.

the cost of 5 strips rather than 3.
In 3D (Figure 8b), as seen in 2D, the proportional bin

width 0.5 produces the best result, achieving a 27% speed
up over the original implementation at the highest density.

When compared with the original implementation, the
Strips optimised implementation with a proportional bin
width of 0.5 (Figure 9) allows the query operation to ex-
ecute 27% faster at the highest density in 2D. This in-
creases to 34% in 3D. Similarly, the graph demonstrates
how the combination of Strips and a proportional bin width
of 0.5 exceeds the improvement of both optimisations in
isolation.

6.4. Experiment 4: Construction
The construction execution time relative to the query

operation times from the previous experiment (Figure 9)
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Figure 9: An extension of figure 7, to compare the performance of
the query operation for the original, and the combined Strips and 0.5
proportional bin width optimised implementations during execution
of the Circles model with 1 million actors across a selected range of
proportional bin widths in (a) 2D and (b) 3D.

are shown in Figure 10. These demonstrate the small im-
pact changes to construction time have versus query oper-
ation runtime. Construction accounts for 3% or less of the
combined construction and query runtimes, reducing fur-
ther as density and dimensionality increase. Regardless,
by comparing times between Figures 9 & 10, it is shown
that construction time is reduced slightly by the propor-
tional bin width of 0.5. Due to the increased number of
bins (4x in 2D, 8x in 3D), contention is reduced which
appears to benefit the underlying sorting algorithm.

6.5. Experiment 5: Population Scaling
Figure 11 demonstrates how the query time of both

the original and optimised FRNN search algorithms scales
linearly as population size increases (O(n)). As discussed
in section 3.2, the optimisations applied affect the number
of bins accessed and the environmental scale of each bin.
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Figure 10: A comparison of the construction time and query opera-
tion time of the original and the combined Strips and 0.5 proportional
bin width optimised implementations during execution of the Circles
model with 1 million actors across a selected range of proportional
bin widths in (a) 2D and (b) 3D.

These two variables are constant with respect to a scaling
population.

The jagged performance seen in Figure 11b is a con-
sequence of the environment dimensions, locked to a mul-
tiple of bin width, (and consequently population density)
not scaling as smoothly as the population size.

3,000,000 actors is adequate to fully utilise the com-
putational capacity of the GPU used, such that the linear
performance trend can be expected to continue until the
GPU’s memory capacity becomes a limiting factor [2]. In
2D the optimised version performs 1.23-1.33x faster. In
3D it is 1.18-1.22x faster.

6.6. Experiment 6: Model Testing
Three example models found within FLAMEGPU, in-

troduced in section 5, have been utilised to demonstrate
the benefit of the optimisation in practice. This applica-
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Figure 11: Comparisons of the performance of the original and the
combined Strips and 0.5 proportional bin width optimised imple-
mentations during execution of the Circles model across a range of
actor population sizes in (a) 2D with radial neighbourhood volumes
of ∼60 and (b) 3D with radial neighbourhood volumes of ∼100.
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tion to differing models aims to highlight how differences
between their application of FRNN search (e.g. actor dens-
ity, 2D vs 3D) affect the optimisation.

The results in Table 3 show that the combined optim-
isation with a proportional bin width of 0.5 has allowed
the query operation within the Boids model to operate
1.11x faster than the original’s runtime. When combined
with construction, which sees a slight increase, the overall
runtime executes 1.15x faster than prior to optimisation.
The Keratinocyte model sees a greater speedup of 1.32x
for the query operations’s runtime, reduced to 1.21x of the
overall runtime. This greater speedup for the Keratinocyte
model is likely to be as a consequence of the lower grid
resolution applied to the model. The Keratinocyte model
has several additional layers unaffected by FRNN search,
reducing the proportional impact to the overall runtime.

Similarly, the only 2D model tested, Pedestrians, ex-
ecuted its query 1.03x faster than that of the original. This
persisted to an overall speedup of 1.03x when compared
with the original. Although the significance of this result is
low, earlier results demonstrate that this can be attributed
to the low density of actors within the model’s structured
environment.

7. Conclusions

This paper has presented two optimisations (Strips and
Proportional Bin Width) to the USP data structure for
providing FRNN searches. These optimisations can be
applied individually or in tandem to improve the perform-
ance of queries to the data structure, at the relatively small
cost of constructing a larger USP.

The results have shown that the Strips optimisation’s
performance is consistently faster than or equal to that of
the original implementation of the query operation, which
lacks the optimisations presented in this paper. The spee-
dup was a constant 1-1.2ms per simulation step in 2D and
2.3-3.5ms in 3D across all densities with a population size
of 1 million. When applied to low density simulations such
as with ∼52 neighbours in 2D, this produces a 1.22x spee-
dup, due to the high number of bin changes (27, which
Strips optimisation reduces to 9) relative to individual
message accesses (∼52). In line with the theory behind the
optimisation, the speedup appears almost constant, relat-
ive to the number of dimensions, both due to the removal
of redundant code, and its subsequent impact of reducing
idle threads due to branching.

The combined optimisation of Strips and Proportional
Bin Width can further improve performance in all but the
cases of lowest density. The peak improvements measured
were 15% and 27% in 2D and 3D, respectively. The res-
ults show how the combined optimisation scales to provide
more benefit to both higher density agent populations and
models with more compute demand per message processed.
These improvements are due to the impact of reducing
surplus message reads and thus idle threads within each
warp. Our analysis and testing showed that the bin width

ratio of 0.5x radius offers the best balance between surplus
neighbour access reduction and total bin accesses.

This combined approach consistently outperforms the
individual optimisations. Results showed the combined
approach’s execution to be as significant as 1.27x and 1.34x
faster in 2D and 3D, respectively, when applied to the
Circles benchmark model.

MAS utilise FRNN search in a wide variety of ways,
with differing fidelity, actor distributions and dimension-
ality on top of each model’s unique logic. These variables
all impact the performance of FRNN search, often as a sec-
ondary consequence of the underlying GPU architecture.
By demonstrating the performance improvements across
3 different models within the MAS simulation framework
FLAMEGPU, we have shown how despite these differences
the FRNN query executed as much as 1.32x faster. How-
ever, due to additional model logic, independent of the
optimisation, the impact to overall runtime in this best
case is reduced to a 1.21x speed up.

Due to the trade-off between surplus message reads and
total bins accessed, it is imperative that the Strips op-
timisation is used alongside the Proportional Bin Width
optimisation. Application of the Strips optimisation re-
duces the total bin access to

√
n in 2D, and 3

√
n
2 in 3D.

This has a significant impact under the Proportional Bin
Width optimisation. For example, in the case of a 0.5 pro-
portional bin width the 2D Moore neighbourhood search
grid expands from 3x3 to 5x5.

The results within this paper are confined to single
GPU implementations. These are capable of representing
models of millions of actors, more than necessary for many
models whereby actors represent human populations. Yet
there are models which can benefit from even greater pop-
ulations. Current USP implementations can be trans-
parently moved to either multi-GPU or paged off device
memory platforms via the use of unified memory. How-
ever, maximising multi-GPU performance may require a
manual approach tuned to optimally partition data ac-
cording to a model’s specific actor distribution patterns
and environment.

This research has demonstrated a means for reducing
the data accessed during FRNN search’s query operation
by decreasing the need to access messages outside of the
radial neighbourhood. However, even after the Propor-
tional Bin Width optimisation has been applied, 50% of
accessed messages still remain redundant in a uniform dis-
tribution. Our future research will explore how reduc-
tions can be made to redundant memory accesses. Fur-
thermore, specific applications of FRNN could be further
improved by reducing the scope of message accesses, such
as in pedestrian simulations, where a pedestrian may only
have awareness of obstacles within their field of vision.
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Query Time (s) Construction Time (s) Total Execution Time (s)
Model Actors Original Optimised Speedup Orig. Opt. Speedup Orig. Opt. Speedup
Boids 262144 746.52 646.56 1.15x 5.10 7.02 0.73x 752.04 654.00 1.15x
Pedestrian 16384 1.01 0.98 1.03x 0.65 0.66 0.98x 2.25 2.18 1.03x

Keratinocyte 25000-
41789

5.80 4.38 1.32x 0.94 1.87 0.50x 8.14 6.70 1.21x

Table 3: The runtime of 3 models within FLAMEGPU before and after the combined optimisation has been applied with a proportional bin
width of 0.5, when executed for 10,000 iterations.
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