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ABSTRACT The demand for regular monitoring of the marine environment and ocean exploration is rapidly 

increasing, yet the limited bandwidth and slow propagation speed of acoustic signals leads to low data 

throughput for underwater networks used for such purposes. This study describes a novel approach to medium 

access control that engenders efficient use of an acoustic channel. ALOHA-Q is a medium access protocol 

designed for terrestrial radio sensor networks and reinforcement learning is incorporated into the protocol to 

provide efficient channel access. In principle, it potentially offers opportunities for underwater network 

design, due to its adaptive capability and its responsiveness to environmental changes. However, preliminary 

work has shown that the achievable channel utilisation is much lower in underwater environments compared 

with the terrestrial environment. Three improvements are proposed in this paper to address key limitations 

and establish a new protocol (UW-ALOHA-Q). The new protocol includes asynchronous operation to 

eliminate the challenges associated with time synchronisation under water, offer an increase in channel 

utilisation through a reduction in the number of slots per frame, and achieve collision free scheduling by 

incorporating a new random back-off scheme. Simulations demonstrate that UW-ALOHA-Q provides 

considerable benefits in terms of achievable channel utilisation, particularly when used in large scale 

distributed networks. 

INDEX TERMS MAC Protocol, Medium Access Control, Reinforcement Learning, Underwater Acoustic 

Networks 

I. INTRODUCTION 

The Earth’s surface comprises 71% water [1] and the market 

value of coastal resources is estimated to be 3 trillion USD 

per year [2], with our oceans contributing 1.5 trillion USD 

annually in value-added to the global economy [3]. It is 

therefore unsurprising that the marine environment is central 

to a vast diversity of industries and areas of scientific 

importance. Examples of underwater applications include 

disaster detection far off coast, underwater security 

surveillance, as well as environmental and ecosystem data 

gathering. However, most of the ocean has not been explored 

since ocean exploration is significantly hampered by the 

inherently hostile and harsh environment for both people and 

equipment. To deal with the challenges of the underwater 

environment, wire free communication is necessary in order 

to monitor the oceans more effectively, remotely, and 

potentially in real time. 

Wireless Sensor Networks (WSNs) using radio technology 

are used for monitoring purposes in many applications in the 

terrestrial environment. However, this technology cannot be 

directly applied to the underwater environment since radio 

signals are heavily absorbed by water. Acoustic signals are 

the most viable means of communicating underwater, but 

technologies for underwater acoustic communications are 

complex and demand sophisticated signal processing, hence 

underwater devices tend to be bulky and expensive [4]. 

Moreover, the slower propagation speed (≈ 1500 m/s) of 

acoustic signals in water compared to radio signals in the air 

(≈ 3 × 108 m/s) leads to poor channel utilisation in 

underwater networks, and the limited and distance dependent 
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bandwidth brings about low fundamental capacity based on 

Shannon’s channel capacity theory [5]. 
To address these problems limiting the efficient use of 

acoustic networks for underwater monitoring, we describe a 

novel reinforcement learning based Medium Access Control 

(MAC) protocol, UW-ALOHA-Q. The merits of UW-

ALOHA-Q lie in providing a low complexity approach 

through reinforcement learning to achieve high channel 

utilisation in distributed networks where centralized 

scheduling is not feasible and distributed scheduling 

introduces significant signalling overheads and complexity. 

ALOHA-Q was designed for WSNs in the terrestrial 

environment and uses reinforcement learning as a technique 

whereby nodes learn through trial-and-error interactions 

with the environment [6]. The underwater environment 

continuously changes and hence underwater networks need 

to be capable of adapting to such time varying changes. 

Reinforcement learning based protocols are able to 

inherently adapt to these environmental changes through the 

learning process. Therefore, the objective of this study is to 

transform the design of an established reinforcement 

learning based protocol (ALOHA-Q) into one suitable for 

the underwater environment (UW-ALOHA-Q). 

Specific contributions of this paper include: 

 Transformation of ALOHA-Q (developed for 

terrestrial networks) to a new protocol for 

underwater acoustic networks (UW-ALOHA-Q) 

through three improvements: asynchronous 

operation; optimisation of the number of slots in a 

frame; incorporation of a new back-off scheme. 

 Design of the new protocol for asynchronous and 

self-organised distributed underwater networks, 

achieving collision free scheduling and high 

channel utilisation alongside low overheads. 

 Investigation of the baseline channel utilisation of 

the new protocol for different network sizes and 

topologies through a simulation. 

A preliminary paper was presented at the IEEE International 

Conference on Computing, Electronics and Communication 

Engineering (iCCECE’ 2018) which received a best paper 

award [7]. 

Section II of this paper provides a summary of the related 

literature. Section III details the ALOHA-Q protocol and 

provides a summary of the preliminary paper [7]. Section IV 

describes the transformation processes underpinning the 

development of UW-ALOHA-Q from ALOHA-Q. Section 

V presents simulation results showing key performance 

characteristics of UW-ALOHA-Q under various network 

configurations. 

 
II. PREVIOUS WORK 

The MAC layer is responsible for organising the access of 

each node to their shared transmission medium. The general 

objective of the MAC layer is to minimise collisions and 

overheads in the channel through a suitable protocol. The 

operation of the MAC layer also has an impact on achievable 

Quality of Service (QoS) including latency, energy efficiency, 

network scalability, and adaptability. Therefore, the MAC 

layer can play a key role in underwater acoustic networks in 

maximising channel utilisation, both in the presence of a 

limited bandwidth and slow propagation speed. 

MAC protocols can be generally categorised as centralised or 

distributed. Centralised MAC protocols can achieve good 

channel utilisation through collision-free scheduling, but 

require infrastructure to provide a coordinating node and time 

synchronisation. Typical examples of centralised MAC 

protocols include Time Division Multiple Access (TDMA) 

and polling based protocols. Distributed MAC protocols do 

not require such infrastructure, however, significant additional 

overheads are incurred for distributed scheduling, or to 

otherwise incorporate techniques such as handshaking or 

carrier sensing whenever a sender initiates transmission in 

order to help reduce the probability of collision. Examples of 

these include Carrier Sense Multiple Access (CSMA) [8] and 

Multiple Access with Collision Avoidance (MACA) [9]. 

Recently, reinforcement learning schemes have been applied 

to MAC protocols in WSNs for terrestrial networks and the 

results are promising [10-16]. ALOHA-Q [13] is a 

reinforcement learning based protocol designed to be used in 

Low Rate - Personal Area Networks (LR-PANs). The protocol 

is based on framed slotted ALOHA [17] which is a distributed 

protocol employing time synchronisation to reduce data 

packet collisions. Due to its low complexity and lack of 

infrastructure requirements, framed slotted ALOHA is used as 

a fundamental system for many different types of network. For 

example, it is a primary protocol in Radio Frequency 

Identification (RFID) tag systems [18] and has also been 

considered for use in Machine to Machine (M2M) networks 

[19]. 

In framed slotted ALOHA, all nodes are synchronised into 

time frames and slots across the network. Each node must 

deliver a data packet within a defined slot period. Since there 

is no means of coordinating the times in which data packets 

are transmitted by nodes, collisions occur regularly leading to 

an unreliable service. ALOHA-Q takes the advantages of 

framed slotted ALOHA which are simplicity and low 

overheads. However, ALOHA-Q avoids collisions through a 

reinforcement learning process as nodes in the network can 

determine which slots to transmit in to avoid collisions. As a 

consequence, the ALOHA-Q protocol approaches centralised 

style scheduling without the need for any form of central 

controller and achieves a nearly identical level of channel 

utilisation [13] as that of a centralised scheme in steady-state 

conditions. ALOHA-Q is discussed further in section III. 

While reinforcement learning based MAC protocols have 

been researched extensively for terrestrial networks, there has, 

however, been very little research into underwater 

reinforcement learning based protocols. Most of these are for 

routing [20-24] and only one protocol has been found for the 

MAC layer [25] which uses a reinforcement learning approach 
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to extend the lifetime of underwater acoustic wireless sensor 

networks. The study was proposed in 2013 and the aim of the 

proposed protocol is to extend the lifetime of a network. It is a 

distributed protocol based on slotted CSMA with time 

synchronisation. Nodes learn optimal decisions for three 

aspects of the next data packet transmission: the next relay 

node, the sub-channel to sense, and the level of transmission 

power to use. The protocol requires periodic control message 

exchange for neighbour discovery which can lead to high 

overheads and thereby a decrease in channel utilisation due to 

the slow propagation speed. In addition, multi-channel 

communication is used in the design, which is not optimal for 

underwater acoustic networks since the channel bandwidth is 

so limited, especially over longer distances. Moreover, the 

protocol uses carrier sensing and exponential random back-off 

which can deteriorate channel utilisation. Carrier sensing, in 

particular, potentially requires long guard bands due to the 

long propagation delay, otherwise it is ineffective underwater. 

III. ALOHA-Q 

ALOHA-Q is a reinforcement based MAC protocol designed 

for WSNs in the terrestrial environment. All nodes in an 

ALOHA-Q network are time synchronized. Table I gives 

typical parameters related to the slot and frame structures of 

ALOHA-Q as used in the terrestrial environment [13] and Fig. 

1 illustrates an example of a packet flow between a generating 

node and a sink.  

 
TABLE I 

TYPICAL ALOHA-Q PARAMETERS FOR TERRESTRIAL USE 

Parameter Value 

Duration of a data packet of 1044 bits (Tdp) 4.176 ms 

Duration of an acknowledgement packet of 20 bits (Tap) 0.08 ms 

Duration of a guard time of 36 bits (Tg) 0.144 ms 

Duration of a slot (Ts) 4.4 ms 

Distance between a generating node and a sink node 12.9 m 

Tx/Rx data rate (rtr) 250,000 bps 

The number of generating nodes (N) 50 nodes 

Propagation speed (vtr) 3 • 108 m/s 

Propagation delay (τp) negligible 

 

FIGURE 1.  Packet flow between a generating node and a sink node 

 

For the terrestrial environment, the propagation speed of 3 × 

108 m/s is used for the radio signals and a 250,000 bps data 

rate is used reflecting IEEE 802.15.4 LR-WPANs [26]. One 

slot is sufficient to accommodate a data packet, an 

acknowledgement packet, and a guard time. After sending the 

data packet, if the generating node does not receive an 

acknowledgement from the sink node before the guard time 

ends (i.e. a stop and wait acknowledgement policy), the 

transmission is assumed to have failed and a retransmission 

must be initiated. 

A. REINFORCEMENT LEARNING 

Reinforcement learning enables agents to learn an optimal 

action through trial-and-error interactions in a dynamic 

environment, with future actions determined by prior 

experience [9]. This established artificial intelligence strategy 

has recently been applied to MAC layer protocols for 

terrestrial networks and shows promising results [10-16]. 

Stateless Q-learning [27] is used in the ALOHA-Q protocol, 

in which each node uses the Q-learning scheme to select one 

slot in a frame to send one data packet at the start of each 

frame. All nodes have their own Q-table which contains 

individual Q-values for each slot in a frame. Equation (1) is 

used to determine how Q-values are updated: 

Qt+1(i,k) = Qt(i,k) + a (r – Qt(i,k))                (1) 

where the ith node has sent a data packet in the kth slot in a 

frame. Qt is the Q-value at time t, t is a time epoch, a is the 

learning rate, and r is the reward. A standard implementation 

of ALOHA-Q uses a = 0.1 and r = 1 if the transmission is 

successful, otherwise, r = -1. 

Fig. 2 illustrates a simple example of how the Q-values of each 

frame in the Q-table might become updated. Since all Q-

values in the Q-table are initially zero in this example, a node 

randomly selects a slot in the next frame for data packet 

transmission. If the node receives a positive acknowledgement 

before the guard time ends, meaning the transmission was 

successful, the Q-value for the first slot in the Q-table becomes 

updated to 0.1 as shown through the application of (1). Thus, 

after one frame, the Q-table has Q-values of 0.1/ 0/ 0/ 0 and 

the first slot has the highest Q-value in the node’s Q-table. 

 

FIGURE 2.  An example of Q-table in a single node when one frame 
comprises four slots 

 

At the start of the second frame, the node transmits a data 

packet in the first slot, since the Q-value of the slot has the 

highest value (i.e. 0.1) in the node’s Q-table. If the node does 

not receive an acknowledgement packet before the guard time 

ends, the node assumes that the transmission has failed and the 

Q-value for the first slot in the Q-table is updated to -0.01. 
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Therefore, after the second frame, the Q-values of the Q-table 

are -0.01/ 0/ 0/ 0. 

At the beginning of the third frame, the node selects a slot 

number randomly since the 2nd, 3rd, and 4th slots all have the 

same highest Q-value of zero. By repeating this trial-and-error 

learning, and as long as there are sufficient slots in a frame, it 

can be shown that individual nodes are able to find distinct 

slots to transmit in, and thereby avoid collisions with other 

nodes in the same network. 

Importantly, each node operates independently of each other 

as each node only refers to its own Q-table to determine the 

transmission order in a frame. ALOHA-Q does not need any 

periodic message exchange for neighbor discovery nor any 

control message exchange for scheduling. These 

characteristics of low overheads and high simplicity are highly 

significant and unique to ALOHA-Q because existing 

distributed protocols require each node to have information 

about its neighbors or to reserve a channel before every 

transmission to avoid collisions. 

B. LIMITATIONS OF ALOHA-Q FOR UNDERWATER 
ACOUSTIC NETWORKS 

It is expected that a reinforcement learning based protocol can 

offer underwater networks the capability of adapting through 

constantly interacting with the time-varying underwater 

conditions. Therefore, it is of interest to explore the possibility 

that ALOHA-Q can be used for underwater networks. An 

initial simulation based study has been undertaken in [7], 

comprising 50 generating nodes in a single-hop ring topology 

with one sink node located centrally. All nodes are considered 

to be within interfering range. The packet inter-arrival time is 

exponentially distributed and a collision-based error model is 

used for reception in the simulation. The purpose of the initial 

simulation is to compare the performance of ALOHA-Q in 

both terrestrial and underwater environments. Table II shows 

the simulation parameters used for ALOHA-Q in the 

underwater environment. The same simulation parameters for 

the previous study [13] are used in this section and only two 

notable parameters for the underwater network have been 

changed for fair comparison: the propagation speed of 1500 

m/s is used for acoustic signals under water and the use of a 

state of the art underwater modem which is currently on the 

market with a data rate of 62,500 bps [28] is considered. 

 
TABLE II 

TYPICAL ALOHA-Q PARAMETERS FOR UNDERWATER USE 

Parameter Value 

Duration of a data packet of 1044 bits (Tdp) 16.704 ms 

Duration of an acknowledgement packet of 20 bits (Tap) 0.32 ms 

Duration of a guard time of 36 bits (Tg) 0.576 ms 

Duration of a slot (Ts) 34.8 ms 

Distance between a generating node and a sink node 12.9 m 

Tx/Rx data rate (ruw) 62,500 bps 

The number of nodes (N) 50 nodes 

Propagation speed (vuw) 1500 m/s 

Propagation delay (τp) 8.6 ms 

Not all parameters are realistic for a practical underwater 

deployment, but it is important to keep the network topology 

parameters unchanged for the comparison to be useful. 

Beyond this initial comparison, realistic parameters are used 

for underwater network simulations in section V. 

The result of this simulation shows that ALOHA-Q can be 

operated in the underwater environment but that the protocol 

only achieves a channel utilisation of 0.48 Erlangs, much 

lower than the 0.95 Erlangs achieved by the same protocol 

within a terrestrial environment [7]. The unit of Erlang 

corresponds to the fractional proportion of time during which 

data traffic is usefully received. 1 Erlang therefore 

corresponds to the fundamental capacity of the channel. The 

slow propagation speed of acoustic signals is the primary 

cause for low channel utilization. Equation (2) shows the 

calculation for the duration of a slot (Ts) which is proportional 

to the propagation delay (τp). During the propagation of the 

data and acknowledgement packets, the channel remains in an 

idle state which consequently causes a decrease in achievable 

channel utilisation. 

Ts = (Tdp + Tap + Tg) + 2 × τp                      (2) 

Therefore, conclusions from the initial simulations [7] show 
that although ALOHA-Q can be operated in an underwater 
environment, it is constrained by low channel utilisation due 
to the slow propagation speed of acoustic signal underwater. 

IV. UW-ALOHA-Q 

To transform ALOHA-Q for the underwater environment, we 

consider three improvements to the protocol: asynchronous 

operation, optimisation of the number of slots per frame, and 

a new random back-off scheme. Each improvement is 

discussed in this section. 

A. ASYNCHRONOUS OPERATION 

Generally, terrestrial networks can be time synchronised based 

on use of a global time reference, thereby reducing the 

probability of collision in contention based schemes by 

shortening the vulnerable period. For example, ALOHA-Q 

also uses time synchronisation in the terrestrial environment 

and achieves collision free scheduling through reinforcement 

learning, but for the same topology and parameters, it shows a 

decrease in channel utilisation without time synchronisation 

from 0.95 Erlangs to 0.64 Erlangs [13]. However, the reliance 

on time synchronisation in the underwater environment is 

costly and complex since GPS is not available [29]. 

Consequently, as a first step we consider asynchronous 

implementation of ALOHA-Q for underwater networks. It 

would be expected that collisions will occur in the absence of 

time synchronisation, since transmissions from nodes will 

arrive at a receiver at random times. However, utilising the idle 

time caused by the propagation delay (τp), reinforcement 

learning can still achieve collision free reception in the same 

way as described in section III in the underwater environment. 

Fig. 3 compares the difference in reception patterns of data 

packets at a sink node with ALOHA-Q in the two different 
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environments. In the terrestrial environment, packet 

receptions are time synchronised and the propagation delay is 

negligible, so that the data packets from different generating 

nodes arrive close to each other at the sink and only small 

guard bands are required. Channel utilisation is high under this 

condition; however, if asynchronous operation is applied, a 

significant number of collisions occur because data packets 

will then overlap with each other at the receiver due to the 

short slot duration. In the underwater environment, however, 

the length of a slot needs to be much greater for stop and wait 

ALOHA-Q, to accommodate the long propagation delays. The 

long propagation delay results in a long idle time at the sink 

node such that the channel utilisation becomes lower, but the 

idle time tends to be sufficient to avoid overlapping reception, 

so the protocol is less prone to experiencing collisions. 

 

FIGURE 3.  Reception of data packets at a sink node in the terrestrial 
and underwater environments. 

 

Even if packets overlap at the receiver, reinforcement learning 

can achieve collision free operation using the idle time without 

relying on synchronisation in the underwater environment as 

shown in Fig. 4. 

 

FIGURE 4.  How reinforcement learning removes collisions in the 
underwater environment in the absence of time synchronisation (The 
acknowledgment processes are omitted in Figs. 4, 5 and 6 for the 
purpose of simplicity.)  

 

The four nodes (N1~N4) have to choose a slot number from 

slot1, slot2, slot3 or slot4 for their data packet transmissions in 

each frame. The nodes are not synchronised, so the frame start 

time for each node is different. In the first frame, N1 randomly 

chooses slot2 and transmits a data packet in the slot, N2 in 

slot1, N3 in slot3, and N4 in slot2. At the sink node, packets 

from N1 and N2 overlap with each other and collide in the first 

frame transmission process. Therefore, the two nodes do not 

receive acknowledgements from the sink node. As a result, the 

Q-values of the slots in the Q-table are negatively reinforced 

so the two nodes change slot numbers for the next 

transmission: N1 chooses slot1 and N2 chooses slot2. The new 

order no longer results in overlapping data packets at the 

receiver from N1 and N2. Whereas N3 and N4 continue to use 

the same slot numbers they used for their first transmissions 

since they successfully received acknowledgements. 

By repeating the learning cycle, the four nodes can learn which 

slot number they need to use and finally all four packets can 

arrive at the sink node without interfering with reception from 

other nodes in the network: this status is called convergence. 

Convergence only applies in a relatively static environment. 

In practical underwater scenarios, what is required is effective 

adaptation of transmission timing in response to changing 

conditions to retain higher utilisation than can be achieved 

without reinforcement learning. Though, the scope of this 

paper is understanding the baseline capability and 

fundamental behavior of UW-ALOHA-Q, convergence and 

conditions where network convergence are considered as 

discussed in section V. 

The slots allow collisions to be avoided despite the absence of 

time synchronisation through reinforcement learning due to 

the long propagation delay (τp) and consequently long slot 

duration (Ts). However, despite the reduction in collisions, the 

achievable channel utilisation remains low. 

B. OPTIMISATION OF THE NUMBER OF SLOTS 

Building on the benefits of asynchronous operation, it then 

becomes feasible to explore the possibility of increasing 

channel utilisation by reducing the number of slots per frame. 

This concept is depicted in Fig. 5 which shows an example of 

how collision free reception can be obtained when only two 

slots are used to support four generating nodes in a frame. 

 

FIGURE 5.  Reduced number of slots per frame and increased channel 
utilisation 

 

By comparing Figs. 4 and 5, it is clear that channel utilisation 

can be improved simply by reducing the number of slots in a 

frame. In time synchronised networks such as ALOHA-Q, if a 

smaller number of slots is used than the number of interfering 

nodes, collisions occur since all transmitting nodes cannot 
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obtain a dedicated slot to send their packets reliably. However, 

in the absence of time synchronisation, reducing the number 

of slots is feasible since there is space to accommodate 

multiple packets within a single frame in the underwater 

environment, due to the long propagation delay and given 

different frame start times. 

C. UNIFORM RANDOM BACK-OFF SCHEME 

Incorporation of the first two improvements provides the 

potential for high channel utilisation to be achieved 

underwater. However, using a reduced number of slots per 

frame, a possibility arises that the network cannot converge 

due to the randomly inherited frame start time which cannot 

be changed. A new time-based random back-off scheme is 

proposed to address this problem and allow convergence to be 

achieved. 

Traditionally, in wireless communication networks, when a 

transmission fails, a node does not send the retransmission 

immediately, but delays it in order to avoid a potential 

collision. This delay is called back-off and the delayed time is 

often calculated as a number of slots. As an example, the back-

off algorithm in the IEEE 802.11 Wireless Local Area 

Networks (WLANs) standard [30] delays retransmissions 

based on the number of slots in a contention window with an 

exponential increase in the window size in response to 

successive failures. 

However, if the same slot based strategy is applied to 

ALOHA-Q with the two proposed improvements in the 

underwater environment, the possibility of non-convergence 

continues to exist since some nodes cannot find a distinct slot 

from the reduced number of slots per frame having the fixed 

frame start time. Therefore, we propose a new back-off 

scheme called uniform random back-off. This scheme 

operates independently from the slot learning process 

(described in section A) and provides a chance for nodes to 

adapt their frame start times. Using this scheme, for every 

collision, nodes randomly delay the next frame start time 

according to a uniform distribution. By repeated trial-and-

error learning, all nodes can discover an appropriate frame 

start time and slot to use in successive frames. Operation of 

the proposed uniform random back-off scheme is illustrated in 

Fig. 6 in which one slot is used in a frame for two generating 

nodes in the network. 

 

FIGURE 6.  Uniform random back-off scheme for UW-ALOHA-Q when 
one slot per frame is used for two generating nodes 

Inclusion of this scheme leads to collision free scheduling and 

permits convergence in UW-ALOHA-Q underwater acoustic 

networks under the assumption that any environmental 

changes are covered by the guard duration (Tg). Therefore, an 

appropriate guard duration needs to be chosen for a particular 

environment to accommodate for changes in propagation 

delay arising from node movement in the water. 

In summary, the proposed UW-ALOHA-Q scheme can 

achieve high channel utilisation with low costs and overheads 

without the need of time synchronisation and any centralised 

controller in the underwater environment. The following 

simulations demonstrate the behaviour of UW-ALOHA-Q 

with different network configurations and serve to validate the 

envisaged channel utilisation capacity of the protocol. 

V. SIMULATIONS 

Simulations have been carried out to understand the baseline 

channel utilisation of UW-ALOHA-Q. Identical 

configurations and parameters to those described earlier in 

section III. B are used and simulations are carried out for 

different network topologies, comprising 25 and 50 nodes, as 

well as with propagation distances varying from 100 m to 

1000 m. 

A. PARAMETERS AND PERFORMANCE MEASURE 

Channel utilisation (U) is evaluated as fractional amount of 

time in which data traffic is successfully received at the sink 

node and is calculated by (3), 

 𝑈 = 𝑅 × 𝑇𝑑𝑝𝑀𝑒𝑠𝑎𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛                             (3) 

where, R is the number of data packets successfully received 

at the sink node over the period of interest which is the 

measurement duration from network convergence frame to the 

end of a simulation. 

We define two parameters for simulation analysis: 

 Scvg: the number of slots per frame which can permit 

convergence to be achieved for a certain size of a 

network 

 Index B: the ratio between ‘the duration of a single 

frame excluding acknowledgement packets and 

guard times’ and ‘the total duration of data packets in 

a frame generated from all nodes in a network’ 
As described in (4), this ratio represents the overheads of a 

system to total capacity of frame related to the data carrying 

capacity of the frame: 

 𝐵 = 𝑆 × (2 × τ𝑝 + 𝑇𝑑𝑝) 𝑁 × 𝑇𝑑𝑝                            (4) 

where, S is the number of slots per frame. The potential range 

of S considered in this paper is 0 < S ≤ N. 
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B. THE TRADEOFF BETWEEN CHANNEL UTILISATION 
AND CONVERGENCE AS A FUNCTION OF THE 
NUMBER OF SLOTS PER FRAME 

The number of slots per frame is a key parameter of UW-

ALOHA-Q since the selection of the number of slots 

significantly impacts upon the achievable channel utilisation 

and the end to end delay performance of UW-ALOHA-Q 

networks. An excessive number of slots in the frame will lead 

to poor channel utilisation, whereas insufficient slots in a 

frame will not provide a sufficient duration for the transmitting 

nodes to find collision free space. Therefore, this section 

provides simulation results of channel utilisation according to 

the number of slots per frame and highlights a tradeoff 

between channel utilisation and the probability of 

convergence. 

Table III shows the simulated channel utilisation of UW-

ALOHA-Q when the number of slots per frame varies, for a 

network comprising 25 generating nodes equally spaced 

around a 100 m radius ring topology with a central receiver. 

The simulations include the first two improvements and 

exclude the uniform random back-off scheme in order to 

particularly understand the impact of changing the number of 

slots per frame. For each value of the number of slots per 

frame, 100 simulations are carried out and one simulation 

comprises 5000 frames to ensure sufficient time to converge. 

Convergence is considered to have occurred when all 

generating nodes send packets using the same distinct slot for 

800 consecutive frames. 

 
TABLE III 

TRADE-OFF BETWEEN CHANNEL UTILISATION AND THE CHANCE OF 

CONVERGENCE ACCORDING TO THE NUMBER OF SLOTS PER FRAME 

Number 

of slots 

in a 

frame 

(S) 

Index 

ratio 

B 

The number of 

simulations where 

the network 

converges 

Average 

channel 

utilisation 

(Erlangs) 

4 1.44 1 0.44 

5 1.80 28 0.46 

6 2.16 63 0.42 

7 2.51 80 0.36 

8 2.87 97 0.34 

 

During the simulations, each of the 25 nodes uses 

reinforcement learning to find a distinct slot in a frame which 

does not interfere with the transmission of any of its neighbors. 

Increasing the number of slots up to 8 per frame increases the 

flexibility in the selection of any particular slot and it is, 

therefore easier for the network to converge through the 

learning process of each node, despite a relatively low channel 

utilisation of 0.34 Erlangs. However, as shown in the results, 

a trade-off is observed when the number of slots is lowered 

from 8 to 5, with the highest average of channel utilisation is 

achieved at 0.46 Erlangs but with convergence occurring less 

frequently: the UW-ALOHA-Q network converges 28 times 

out of 100 simulation trials. Therefore, it is observed that UW-

ALOHA-Q shows a trade-off between average channel 

utilisation and the chance of convergence as the number of 

slots varies. 

As stated earlier, these simulations do not include the new 

back off scheme. As shown in Table III, the network fails to 

converge on 3 occasions out of 100 trials when 8 slots per 

frame is used. This low probability of convergence failure can 

be overcome by the uniform random back-off scheme by 

finding the appropriate frame start time, and thereby allowing 

the UW-ALOHA-Q protocol to converge every time.  

Table IV compares simulation results with and without the 

uniform random back-off scheme. Applying the scheme, 

nodes which cannot find a distinct slot are able to adjust their 

frame start time. Consequently, all nodes can find an 

appropriate frame start time and a distinct slot so that 

simulation results shows that the network converges 100 times 

out of 100 trials. However, during this process, the scheme 

disturbs nodes which already find their own distinct slot and 

thus triggers additional learning processes. Therefore, overall 

network convergence takes more frames (i.e. more trial-and-

error learning processes) than UW-ALOHA-Q without the 

back-off scheme. 

 
TABLE IV 

SIMULATION RESULTS WHEN UNIFORM RANDOM BACK-OFF IS USED 

Number 

of slots in 

a frame 

(S) 

Uniform 

random 

back-off 

scheme 

The number 

of simulations 

where the 

network 

converges 

Average 

channel 

utilisation 

(Erlangs) 

Average 

number of 

frames used 

for network 

converge 

(frames) 

8 Not used  97 0.34 20.04 

8 Used 100 0.35 158.51 

 

Simulations have also been carried out for different sizes of 

networks, using 25 and 50 nodes, as well as with different 

propagation distances varying from 100 m to 1000 m. An 

identical tradeoff is observed for all variables under a 

condition that the index ratio (B) is greater than 1.5. This also 

implies that the highest average channel utilisation of UW-

ALOHA-Q is achievable under a condition of the index ratio 

equal to 1.5. However, this paper focuses on validating the 

baseline channel utilisation of UW-ALOHAQ, therefore, 

simulation results of this paper demonstrate UW-ALOHA-Q 

in case when the network reliably converges, rather than when 

the highest average channel utilisation is achieved. 

C. CHANNEL UTILISATION AS A FUNCTION OF 
NETWORK SIZE 

In terms of network deployment, the size of a network and the 

number of nodes in the network are determined by the 

requirements of individual applications. Therefore, it is 

necessary to predict the channel utilisation of UW-ALOHA-Q 

across a range of different size networks in order to define the 

baseline performance which UW-ALOHA-Q can provide for 

a range of different applications. Fig. 7 illustrates the 

simulated channel utilisation of UW-ALOHA-Q following 

convergence in a ring topology where the network size varies 
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from 100 m to 1000 m radius with 25 nodes. Identical 

configurations to those in the earlier section B are used for the 

simulations, but the uniform random back-off scheme is 

applied for network convergence. 

These results present the detailed UW-ALOHA-Q behavior 

based on the index ratio (B). The main observation is that 

network convergence is achievable when the index ratio (B) is 

greater than 2.6 as Fig. 7 specifies. The number of slots per 

frame for network convergence (Scvg) varies from 1 to 8 as 

the network size decreases. In the larger networks, such as 

those with a 900 m and 1000 m radius, the propagation delay 

primarily accounts for one slot as referred to by (2). During 

the propagation delay, the channel is idle and the amount of 

idle time in one slot is sufficient for 25 nodes to find a distinct 

time period for transmission. Therefore, the network can 

converge and achieve collision free scheduling when the 

number of slots per frame is 1. However, the amount of 

available time in one slot for 25 nodes in an 800 m network is 

insufficient, therefore, adding one more slot in a frame is 

necessary so that the network achieves convergence when the 

number of slots per frame equals 2. Adding one more slot in a 

frame, however, causes a decrease in channel utilisation due 

to redundant idle time. We term this change in channel 

utilisation as ‘the effect of a slot’. 

 

FIGURE 7.  Channel utilisation of UW-ALOHA-Q networks for a 25 node 
ring topology at a variable network sizes when network converges 
(Scvg) 

 

Once a network has converged, all nodes use the same number 

of slots and timing in a frame. Therefore, a centralised data 

transmission pattern is formed and this pattern is repeated as 

long as convergence is maintained. Based on this, the 

theoretical channel utilization under network convergence can 

be determined by considering the proportion of time available 

for data transmission in just a single frame, as given by (5): 

 𝑈𝑐𝑣𝑔 = 𝑁 × 𝑇𝑑𝑝𝑆𝑐𝑣𝑔 × 𝑇𝑠                             (5) 

Fig. 7 shows a comparison of the theoretical channel 

utilization (based up on the frame parameters and calculation 

using (5)) with the simulation results for the purpose of 

validation. It can be seen that a very close match is obtained. 

Fig. 8 illustrates simulation results of channel utilisation of 

UW-ALOHA-Q using 50 nodes and shows a similar trend to 

the channel utilisation results obtained when 25 nodes are 

used. The number of slots for network convergence (Scvg) 

varies from 2 to 17 as the network size decreases and is 

achieved when the index ratio is larger than 3.0. ‘The effect of 
a slot’ is moderated in the network with 50 nodes compared to 
the network with 25 nodes, because a greater number of data 

packets compensates for the inefficient use of time in a frame. 

For a comparative analysis, simulation results of framed 

slotted ALOHA and ALOHA-Q are also shown in Fig. 8 when 

50 slots per frame and the number of slots for network 

convergence (Scvg) are used. UW-ALOHA-Q achieves a 

much higher channel utilisation compared to ALOHA-Q when 

the number of slots per frame is equal to the number of nodes 

(i.e. 50). This improvement is greater in larger networks, for 

example, a 2.8 fold increase in a 100 m size network and a 

24.6 fold increase in 900 m and 1000 m size networks. This 

result demonstrates the great benefits of UW-ALOHA-Q 

particularly in large networks where most underwater acoustic 

networks struggle due to the increasing propagation delay in 

the acoustic channel. Compared with framed slotted ALOHA, 

UW-ALOHA-Q shows lower channel utilisation. However, 

framed slotted ALOHA cannot guarantee collision free 

communication and requires time synchronisation. When 

framed slotted ALOHA is simulated using the number of slots 

for network convergence (Scvg), most cases show almost zero 

channel utilisation. 

 

FIGURE 8.  Channel utilisation with a 50 node ring topology and 
variable network size 

C. END TO END DELAY 

Most importantly, one of the outstanding benefits of UW-

ALOHA-Q is that the network achieves maximum channel 

utilisation when the number of slots for network convergence 

(Scvg) is used whereas ALOHA-Q and framed slotted 
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ALOHA achieves maximum channel utilisation when the 

number of slots per frame is equal to the number of nodes as 

Fig. 9 shows. 

 

FIGURE 9.  The number of slot per frame used for UW-ALOHA-Q, 
ALOHA-Q and framed slotted ALOHA in different sizes of network 

 

In any size of networks, one node of ALOHA-Q (and framed 

slotted ALOHA) needs to wait for a much longer time for the 

next transmission than UW-ALOHA-Q and this becomes 

more serious in the underwater environment. In a 1000 m 

network, a slot duration is 1.35 seconds calculated by (2). UW-

ALOHA-Q uses only one slot to accommodate 25 nodes in a 

frame to achieve network convergence, so the frame duration 

is 1.35 seconds. However, ALOHA-Q needs 25 slots in a 

frame, hence the frame duration becomes 33.75 seconds. 

Using the reduced number of slots per frame, UW-ALOHA-

Q can provide the significantly lower end to end delay than 

ALOHA-Q as shown in Table V. The table shows the average 

end to end delay and channel utilisation of 100 simulation 

trials for each result. 

 
TABLE V 

END TO END DELAY OF UW-ALOHA-Q AND ALOHA-Q IN A 100 M AND 

1000 M NETWORK WHEN 25 NODES ARE DEPLOYED 

 

 

 

Protocol 

Number 

of slots in 

a frame 

(S) 

 

 

Network 

size (m) 

The average 

end to end 

delay of 

successfully 

delivered data 

packets 

(seconds) 

 

The 

average 

channel 

utilisation 

(Erlangs) 

UW-ALOHA-Q 8 100   243 0.35 
ALOHA-Q 25 100   758 0.11 

UW-ALOHA-Q 1 1000   271 0.31 
ALOHA-Q 25 1000 6787 0.01 

 

When 50 nodes are deployed, this benefit of UW-ALOHA-Q 

is magnified as shown in Table IV. UW-ALOHA-Q uses 2 

slots in a frame for a 1000 m size network, so the frame 

duration becomes 2.7 seconds, whilst ALOHA-Q needs 50 

slots in a frame which has 67.55 seconds duration. 

TABLE VI 

END TO END DELAY OF UW-ALOHA-Q AND ALOHA-Q IN A 100 M AND 

1000 M NETWORK WHEN 50 NODES ARE DEPLOYED 

 

 

 

Protocol 

Number 

of slots in 

a frame 

(S) 

 

 

Network 

size (m) 

The average 

end to end 

delay of 

successfully 

delivered data 

packets 

(seconds) 

 

The 

average 

channel 

utilisation 

(Erlangs) 

UW-ALOHA-Q 17 100      540 0.31 
ALOHA-Q 50 100    1516 0.11 

UW-ALOHA-Q 2 1000     555 0.30 
ALOHA-Q 50 1000 13576 0.01 

 

Through reducing the number of slots per frame, UW-

ALOHA-Q improves channel utilisation and decreases the end 

to end delay. Notably, greater benefits can be obtained in 

larger networks using a greater number of nodes in a network. 

This results demonstrate that UW-ALOHA-Q becomes more 

efficient in large scale networks where high propagation delay 

and high collision probability exist. 

D. NETWORK CONVERGENCE 

As tables V and VI show, standard ALOHA-Q using 25 and 

50 slots per frame (i.e. S = N) exhibits low channel utilisation 

due to the propagation delay. However, the protocol achieves 

network convergence in a short time since the slots allow the 

network to converge easier. 

It is useful to see a clearer picture of how the channel 

utilisation varies over time, to better understand the impact of 

the network being able to converge. Fig. 10 shows the channel 

utilisation as a function of time of UW-ALOHA-Q 

with/without the uniform back-off scheme and compared with 

ALOHA-Q in a 200 m network where 25 nodes are deployed. 

Three asterisk marks in Fig. 10 indicate the times at which the 

network converges. Channel utilisation is measured using (3) 

from the first frame at the end of every frame. 

 

FIGURE 10.  Channel utilisation as a function of time of ALOHA-Q 
using 25 slots per frame and UW-ALOHA-Q using 4 slots per frame 
(Scvg) in a 200 m network when 25 nodes are deployed. 
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Applying two improvements on top of ALOHA-Q (i.e. UW-

ALOHA-Q without the uniform random back-off scheme), 

most simulation result shows fast (77% converge within 34 

frames) convergence so that the network reaches the 

maximum channel utilisation rapidly. However, there is a 

small possibility that the network cannot converge due to the 

randomly inherited frame start time which cannot be changed. 

In that case, the network never converges hence the channel 

utilisation remains low. It is because there is a high instance of 

collisions in the channel and these collisions are not avoidable 

using the fixed frame start time. The back-off scheme solves 

this problem. 

UW-ALOHA-Q using 4 slots per frame (Scvg) needs more 

frames to converge since the uniform back-off scheme 

disturbs nodes which achieves convergence and consequently 

triggers multiple additional learning processes. However, 

applying the scheme, the protocol can provide network 

convergence and collision free scheduling. The channel 

utilisation of UW-ALOHA-Q using 4 slots per frame in Fig. 

10 fluctuates when the simulation starts which shows that 

nodes are learning the optimised frame start time and a distinct 

slot number through trial-and-error learning processes. Once 

the network converges, the result shows an increasing channel 

utilisation due to collision free scheduling. 

It is important to note that UW-ALOHA-Q achieves much 

higher channel utilisation than standard ALOHA-Q when it 

converges, and its channel utilisation performance remains 

superior to ALOHA-Q even in a situation where it does not 

converge. This implies that UW-ALOHA-Q can obtain higher 

channel utilisation in the time-varying environment: if 

environmental changes occurs the channel utilisation and the 

end to end delay performance fluctuate temporarily but the 

scheme is capable of adapting and maintaining a good level of 

performance overall. 

Please note that each graph in Fig. 10 shows typical examples 

of four individual results rather than the average of multiple 

simulation trials. The time at which convergence occurs varies 

and Table VII shows the results of 100 simulation trials. 

 
TABLE VII 

THE RANGE OF NUMBER OF FRAMES USED FOR NETWORK CONVERGENCE 

 

 

Protocol 

Number 

of slots in 

a frame 

(S) 

Min number 

of frames 

used for 

network 

convergence 

(frames) 

Max number 

of frames 

used for 

network 

convergence 

(frames) 

The average 

number of 

frames used 

for network 

convergence 

(frames) 

UW-ALOHA-Q 4 25 1811 400 
ALOHA-Q 25 21     60   43 

 

This paper focuses on the network performance following 

convergence where collision free scheduling is achieved. 

Collisions occur during the initial learning process, but this 

period of time is very small with respect to the period over 

which such a network would be operational. The achievable 

channel utilization following convergence is therefore an 

important metric and we do not consider performance metrics 

during the learning process, such as collision ratio. 

E. RANDOM TOPOLOGY 

Let’s now look at a more practical underwater topology for 

environmental monitoring where the position of each sensor 

node is dictated by the location at which data must be gathered. 

Nodes tend to be deployed in a random topology rather than 

in a well aligned ring topology and this feature of underwater 

applications necessitates UW-ALOHA-Q simulations in a 

random topology to determine whether the protocol can 

function in the topology. 

For simulations of a random topology, generating nodes are 

located randomly within a circle of each network size. 

Simulation results show that UW-ALOHA-Q achieves 

convergence using the identical number of slots per frame 

described in section C. This is the most interesting benefit of 

UW-ALOHA-Q since the protocol can provide the identical 

baseline performance in the random topology. Fig. 11 shows 

channel utilisation of UW-ALOHA-Q when 25 nodes are 

deployed in different sizes of networks. 

 

FIGURE 11.  Channel utilisation of UW-ALOHA-Q network converges 
(Scvg) in the two different topologies using 25 nodes 

 

A successful data packet transmission is determined by an 

acknowledgement packet if it is delivered before the guard 

time ends. Therefore, UW-ALOHA-Q operates identically 

irrespective of whether the nodes are equally spaced or not. 

Nodes conduct ordinary trial-and-error learning and can find 
an appropriate frame start time and a slot number for data 

transmission in a random topology. A random topology in a 

circle is simulated, but in principle the random topology in a 

spherical area also can achieve the identical performance. 
ALOHA-Q also achieves convergence and the same channel 

utilisation in a random topology as it does in a ring topology 

as Table VIII shows. 
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TABLE VIII 

END TO END DELAY OF UW-ALOHA-Q AND ALOHA-Q IN A 100 M AND 

1000M RANDOM TOPOLOGY WHEN 25 NODES ARE DEPLOYED 

 

 

 

Protocol 

Number 

of slots in 

a frame 

(S) 

 

 

Network 

size (m) 

The average 

end to end 

delay of 

successfully 

delivered data 

packets 

(seconds) 

 

The average 

channel 

utilisation 

(Erlangs) 

UW-ALOHA-Q 8 100  243 0.35 
ALOHA-Q 25 100  758 0.11 

UW-ALOHA-Q 1 1000  271 0.31 
ALOHA-Q 25 1000 6788 0.01 

 
Fig. 12 shows the real time channel utilisation of ALOHA-Q 

and UW-ALOHA-Q in the random topology. This shows four 

individual results rather than the average value and the similar 

trend is shown as same as the UW-ALOHA-Q in a ring 

topology.  

 

FIGURE 12.  Real time channel utilisation of ALOHA-Q using 25 slots 
per frame and UW-ALOHA-Q using 4 slots per frame (Scvg) in a 200 m 
network when 25 nodes are deployed. 

 

The results demonstrate that UW-ALOHA-Q is robust and 

tolerant to randomness in a network implying that UW-

ALOHA-Q can potentially incorporate random-moving nodes 

in the operation of underwater acoustic networks. 

VI. CONCLUSION 

In this paper, we have proposed a reinforcement learning 

based MAC protocol for underwater acoustic sensor networks, 

namely UW-ALOHA-Q. ALOHA-Q is designed for the 

terrestrial environment and this paper has transformed the 

protocol to UW-ALOHA-Q for use in underwater acoustic 

networks. Three improvements are proposed for UW-

ALOHA-Q: asynchronous operation, reduction in the number 

of slots per frame, and a uniform random back-off scheme. 

End to End learning is achieved by the interaction using 

acknowledgement packet reception between a sink node and 

generating node. UW-ALOHA-Q takes the benefits of 

ALOHA-Q which are low complexity and low overheads to 

achieve collision free high channel utilisation for distributed 

networks where centralised scheduling is not feasible and 

distributed scheduling introduces significant signaling 

overheads and complexity. Practically, H/W computation for 

UW-ALOHA-Q requires minimum integer values of Q-

learning and little storage for Q-values of one frame. Moreover, 

UW-ALOHA-Q significantly improves performance for use 

in underwater networks without the need for time 

synchronisation. A comprehensive simulation study shows 

that UW-ALOHA-Q has considerable potential for use in 

practical random and large scale underwater applications. For 

the example scenario considered, UW-ALOHA-Q achieves 

up to a 24.6 times improvement in channel utilization with 

much lower end to end delay than ALOHA-Q in a 1000m 

radius underwater network. 
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