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Abstract: At the initial design stage of a grid structure, shape optimisation is an effective way to find 

the optimal structural form. However, most of the shape optimisation methods do not take into 

consideration the imperfections, thus the actual buckling load capacity of the optimised structure is 

usually low. In this paper, an improved shape optimisation method is proposed, one that is considering 

the effect of structural imperfection sensitivity. In this method, the bending strain energy ratio is taken 

as a constraint, and when the total strain energy decreases, yet there is a certain proportion of bending 

strain energy in the structure. Consequently, the resulted shape is not sensitive to the initial geometry 

imperfection, and therefore, an efficient structure with higher buckling load capacity and low 

imperfection sensitivity is obtained. In order to evaluate the redundancy performance of the optimised 

structure, an index called structural overall redundancy, based on damage model is proposed herein. 

The damage model is simulated by removing a key rod of the structure. The results demonstrate that 

the overall redundancy of the structure obtained by the proposed method is higher than that obtained by 

the traditional method, thus an optimal design of a grid structure is obtained. 

 

Keywords: space grid structure; shape optimisation; imperfection sensitivity; bending strain energy; 

redundancy 

1. Introduction  

In recent years, grid structures have become popular structural typologies thanks to their splendid visual 

effects and the capacity to cover large spaces with an uninterrupted span, see Fig. 1 [1]. They are widely 

used in a variety of building types, such as exhibition pavilions, stadiums, assembly halls and protective 

shelters [2]. People often marvel at the lightness of the structure and the fluidity of the lines. However, 

why are grid structures inherently beautiful? According to Malek and Willians [3], the aesthetics come 

with their superior structural efficiency since fewer materials are needed to resist such high loads. 

However, it is not an easy task for engineers to determinate the final optimal shape that respects 

architectural requirements and is structurally efficient at the same time. For this reason, the architectural 

aspects should always be treated together with the structural ones in the initial design phase of a grid 

structure.  

For this reason, shape optimisation based on the structural performance is usually employed to the 

form-finding of grid shell structures. After years of research, many form-finding techniques have been 

developed such as the force density method, dynamic relaxation, updated reference strategy, and the 

particle-spring system method. Feng et al. [4],[5] studied the shape optimisation of cable-braced free-
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form grid structures with the aim of reducing structural strain energy. Structural shape optimisation was 

realised by adjusting the generatrix and directrix rather than optimising the whole surface, as shown in 

Fig. 2, which improved the optimisation efficiency and resulted high engineering practical value. 

Winslow [6] proposed a novel algorithm to simulate the entire optimisation process of grid structures 

based on a traditional genetic algorithm (GA).  

At a wider scope, Hawdon-Earl and Tsavdaridis [7] developed a standard and robust methodology 

for RC shell design for a complex site shape. The methodology uses Oasys GSA and Abaqus which 

allow both form-finding analysis and dimensioning to be conducted. The roof of Akrotiri, an 

archaeological site in Santorini island, Greece, was designed by this method and proved its applicability. 

Bochenek [8] studied the optimization of structures against instability, and the nonlinear behaviour of 

designed elements is considered.	According to his research, different optimization designs can be 

obtained by including nonlinear structural behavior in the representation of optimization problems 

compared with traditional methods.Cui and Yan [9],[10] proposed many advanced structural morphosis 

techniques, such as the extended evolutionary structural optimisation method and the height adjusting 

method. With these methods, different architectural forms were obtained by changing different kinds of 

design parameters such as constraints or space conditions according to the designer's needs. All of the 

architectural form achieved by the above two methods can keep the structure in a mostly uniform axial-

stress state and with the bending moment controlled. The shortcoming of the methods is that they did 

not consider the effect of the geometry imperfection on structural mechanical performance. Maggie et 

al. [11],[12] proposed a two-stage optimisation algorithm based on GA. Then, Kociecki and Adeli [13] 

extended the algorithm to shape optimization of the structures, which was performed simultaneously 

with size and topology optimization, and a free-form surface grid roof (Ottawa Railway Station) was 

studied by using the algorithm that resulted in a lightweight structure. Ding et al. [14] presented a node-

shifting method for shape optimisation of reticulated spatial structures to enhance their stiffness. With 

the constraint of volume, jagged surfaces were automatically smoothed during the volume adjustment 

process, thus no extra smoothing procedure is required. The method was suitable for many types of 

single-layer grid structures including those with cantilevered parts. Liu et al. [15] proposed a modified 

double-control form-finding (MDFF) method for suspendomes considering the construction process 

and the friction of cable–strut joints. The incremental equilibrium equation is built to include geometric 

nonlinearity based on the total Lagrangian increment formulation. The results showed that the proposed 

method can provide more accurate nodal coordinates and cable forces of the initial geometry state. The 

nonlinear analysis and the optimum design of cable domes are studied by Yuan et al [16]. They 

considered two optimal variables, including prestress level and cross stress, respectively. The numerical 

results showed the accuracy and validity of the nonlinear analysis model and the optimum algorithms, 

which also indicated that their work is very useful for understanding the behaviour of cable domes. 

It is well known that geometrical imperfection may cause a significant reduction in the buckling 

load capacity of shell structures. The optimisation for the buckling load capacity of shell structures has 

been investigated by Rritinger [17], Ohsaki [18], and Ohuchi [19]. Ohsaki [20] summarized the existing 

methods of design sensitivity analysis and optimization of elastic conservative finite-dimensional 

systems with respect to nonlinear buckling behavior and presented a new optimization results of flexible 

truss. It is worth to note that the buckling load capacity of the single-layer grid structure is also greatly 

influenced by the initial geometric imperfection. Sometimes even a small geometric imperfection can 

lead to a significant reduction in buckling load capacity. 



In general, during shape optimisation of a single-layer grid structure, the structural total strain 

energy is usually set as the objective function. Rational structural shapes with high buckling load 

capacity are obtained by minimising the total strain energy. After the optimisation, the axial strain 

energy is dominated and there is little bending strain energy in the structure. Since the structure is 

dominated by axial compression, the imperfection sensitivity is gradually enhanced. However, if the 

structure is dominated by bending strain energy, the structure will be insensitive to geometric 

imperfection. In this case, the total strain energy will be large and the buckling load capacity of the 

structure will not be too high. Consequently, it is important to understand how to determine the 

relationship between the total strain energy and the bending strain energy. In the method proposed in 

this paper, while reducing the total strain energy, a certain proportion of bending strain energy in the 

structure is ensured. With this way, a rational shape with higher buckling load capacity and lower 

imperfection sensitivity can be obtained.  

In the literature, researchers have tried to minimise the influence of the geometrical imperfection 

on the buckling load of the single-layer grid structure. However, the subject of the presented work is to 

demonstrate how to find a better shape of a single-layer grid structure which has both higher buckling 

load capacity and lower imperfection sensitivity. This can be achieved by adding the ratio of bending 

strain energy as another constraint based on the traditional shape optimisation method, in order to 

control the bending strain energy of a grid structure and reduce the structural imperfection sensitivity. 

In addition, with respect to the obtained shape based on the improved optimisation scheme, the 

structural redundancy performance is investigated.  

2. Method of shape optimisation 

2.1. Definition of imperfection sensitivity 

The imperfection sensitivity is expressed as follows. 
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P is the buckling load of the structure considering initial geometric imperfection; 

i
P  is the 

buckling load of intact structure; the larger  the greater influence of initial geometric imperfection 

on the buckling load of the structure and the more sensitive the structure is. In this paper, the 

imperfection was implemented according to the first-order eigenvalue buckling mode and the maximum 

value is 1/300 of the structural span, which meets the requirements of technical specification for space 

frame structures [21]. 

2.2. Traditional method of shape optimisation 

The traditional method of shape optimisation, which minimises the total strain energy, can be expressed 

as follows.  
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Where C is the total strain energy, K is the stiffness matrix, U is the nodal displacement vector, z is the 

nodal z-coordinate. B is the short span of the structure,  is the maximum nodal displacement and 

max
is the maximum stress of the tubes.  

After the optimisation, the buckling load capacity of the intact structure obtained by traditional method 

will become very high, but once the initial geometric imperfection is applied, the buckling load capacity 

of the structure will decrease significantly. The optimised structure is extremely sensitive to initial 

geometric imperfection; therefore, the consequence is that the actual buckling load capacity of the 

optimised is not high. The reason for this is that the traditional optimisation method does not consider 

the influence of initial geometrical imperfection and then the effectiveness of this method is greatly 

reduced. Finally, the traditional method cannot obtain the structural shape with high buckling load 

capacity once the initial geometric imperfection is applied. 

2.3. Improved method of shape optimisation 

In order to consider the influence of structural imperfection sensitivity in the process of shape 

optimisation, the bending strain energy ratio is proposed and set as another constraint in the improved 

method. In this paper, the bending strain energy ratio is defined as
2
/R C C= , where C is the total strain 

energy; C2 is the bending strain energy that is expressed in equation (3).  
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Where Kb is the bending stiffness matrix; Uz is the out-of-plane nodal displacement vector. The 

difference between total strain energy and bending strain energy is the axial strain energy, while the 

torsional strain energy is neglected.   

Taking the bending strain energy ratio as another constraint in the improved method, the bending strain 

energy inside the structure can be well controlled. It is ensured that the bending strain energy will not 

be too small while the total strain energy decreases. By this way, it can not only effectively improve the 

structural buckling load, but also reduce the sensitivity of the structure to the initial geometric 

imperfection, so as to obtain a better structural shape than the traditional optimisation method. However, 

in the improved method, the bending strain energy ratio have to be obtained by the designer’s experience.	

In this paper, the traditional method of shape optimisation is implemented through the OptiStruct solver 

in HyperWorks software. It can be used to solve efficiently optimisation problems with millions of 

design variables or constraints. Nevertheless, the shortcoming of the software is that it cannot consider 

the bending strain energy. Therefore, the improved method is realised in the programming language 

MATLAB. The program of total strain energy and bending strain energy of the structure are compiled 

in MATLAB, and the genetic algorithm (GA) is chosen as the optimisation algorithm. The MATLAB 

GA toolbox was used and the objective function is the total strain energy which representing the fitness; 

the constraint are the maximum nodal displacement, the maximum stress of the tubes and the bending 

strain energy ratio. In this paper, the population type is double vector, the population size is 200, roulette 

is chosen as the selection method, the crossover fraction is 0.8, the stall generations is set to 50 and the 



max generations is 1000. The initial range is changed due to the specified issues, and other parameters 

keep the default values. 

3. Case studies of shape optimisation 

3.1. Case 1--- a geodesic dome  

A geodesic dome is a hemispherical lattice-shell based on a geodesic polyhedron, originally invented 

by R. Buckminster Fuller in 1954 [22], have been used for a wide range of purposes including temporary 

exposition structures and housing. The dome is very light but can withstand heavy loads. In order to 

reduce time consumption, this paper selects a part of the dome with the span of 5m and the height of 

1m, as shown in Fig. 3(a). The rod is the steel pipe of 70 3× , and the elastic modulus is
5

2.0 10 MPa× . 

The concentrated load is applied on each node as uniformly distributed load, including the rod weight, 

the finishing materials and the live load of 500 N/m
2
. The surrounding supports are hinged and the z-

direction coordinates of the internal nodes are set as design variables, as shown in Fig. 3(b).  

3.1.1 Results of traditional method 

Firstly, the traditional method is used to optimise the shape based on HyperWorks' Optistruct solver 

without considering the effects of structural initial geometry imperfection. As shown in Table. 1, after 

40 iterations, the shape with the smallest total strain energy, was obtained which was generally 

considered to be the best structural form. A structural form is extracted every 5 iterations to study the 

variation of the buckling load capacity of various structural forms in the optimisation process with or 

without considering the initial geometric imperfection, and so as their changes in imperfection 

sensitivity. The comparison results of various typical structural forms are shown in the Table. 1. It can 

be seen that as the optimisation proceeds, the total strain energy and the bending strain energy ratio are 

both reduced, their variation curves are shown in Fig. 4 and Fig. 5. Finally, the axial strain energy is 

dominated in the structure, which will inevitably lead to an increase of the structural imperfection 

sensitivity. Fig. 6 indicates that as the optimisation proceeds the imperfection sensitivity of the structure 

increases, and the final structural form has the highest imperfection sensitivity. In this case, with regards 

to the structural buckling load capacity, the final shape has the highest buckling load capacity when 

does not consider the imperfection sensitivity; it has increased 9.8% compared to the initial shape. 

However, it cannot be ignored that the effect of geometric imperfection on its buckling load capacity is 

also gradually increasing, which has increased to 25.3%. Fig. 7 shows the variation of structural 

buckling load capacity during optimisation. It can be clearly seen that the buckling load capacity of the 

intact structure is always increasing and the final shape has the highest buckling load capacity. 

Nevertheless, once the geometric imperfection is considered, the buckling load capacity decreased 

significantly and the optimum shape with highest buckling load capacity appeared in the middle steps 

instead of the final step. In this case study, it is the 20
th

 step in which the structural shape with the 

highest buckling load capacity appeared. Then, a preliminary conclusion can be drawn, such that the 

buckling load capacity of the intact structure is very high without considering the initial geometric 

imperfection. However, its imperfection sensitivity is also very high, which will lead to a significant 

decrease in the buckling load capacity when imperfection is applied. Therefore, it is impossible to obtain 

the best structural form using the traditional method. 

According to the research conducted by the authors of this paper, the optimised structure has high 

imperfection sensitivity as the bending strain energy found inside the structure is too small after the 



optimisation. In order to prevent this from happening, the solution is to adjust the ratio of bending strain 

energy inside the structure so as to reduce the imperfection sensitivity while ensuring the increase of 

structural buckling load capacity. 

3.1.2 Results of the improved method  

In the previous section, it was preliminary concluded, that if the internal bending strain energy of the 

structure is too small, it will lead to an increased imperfection sensitivity of the structure, which will 

eventually lead to a significant drop in the structural buckling load capacity. If the total strain energy of 

the structure is then reduced while ensuring that the internal bending strain energy of the structure does 

not become too small, a structural form with low imperfection sensitivity could be potentially obtained. 

Based on this approach, an improved shape optimisation method is proposed. 

The improved method is implemented by MATLAB programming. The genetic algorithm (GA) is 

applied as an optimisation algorithm; z-coordinates of the internal nodes are chosen as design variables 

and the bending strain energy ratio is set as the constraint. It is worth noting that the bending strain 

energy ratio is obtained based on designer’s experience. After the optimisation, five different shapes 

according to different constraints are obtained, as shown in Table 2. Model 1 is the initial shape and 

model 2 is obtained by the traditional method that does not consider the imperfection. Model 3-6 are 

achieved by the improved method considering the effect of imperfection.  

It can be seen from Table 2 that the structure obtained by the traditional method has a lowest bending 

strain energy ratio of 0.0049, which is the basis for the changing of bending strain energy ratio in model 

3-6. Model 3-6 are the results after increasing the ratio of bending strain energy. Evidently, when the 

bending strain energy ratio is increased, the imperfection sensitivity of the structure decreases 

significantly. Therefore, the structural buckling load capacity only slightly decreases when the initial 

imperfection is applied. It should be noted that with the increase of bending strain energy ratio, the total 

strain energy is also increased to some extent. As a result, the buckling load capacity of the intact 

structure of model 3-6 is not as high as that of model 2. However, it is worth noting that due to the low 

imperfection sensitivity, the buckling load capacity of model 3-5 after considering the geometric 

imperfection is higher than that of model 2, which illustrates the effectiveness of the improved 

optimisation method. Therefore, with the improved method, a better shape with higher buckling load 

capacity and lower imperfection sensitivity is achieved. In model 6, since the bending strain energy 

ratio increased too much and so does the total strain energy. Consequently, the buckling load capacity 

of the intact structure becomes very low. Although the imperfection sensitivity is very low, it is still 

impossible to obtain a structural form with a higher buckling load capacity after applying the geometric 

imperfection. It indicates that the selection of bending strain energy ratio is very important. However, 

at present, the value of bending strain energy ratio has to be determined depending on the designer’s 

experience. 

Fig. 8 shows the load-displacement curves of different models. Model 2 which is obtained by the 

traditional method has higher buckling load capacity when does not consider the geometric imperfection, 

as shown in Fig. 8(a). However, once the initial geometric imperfection is applied, the buckling load 

capacity of model 2 is no longer the highest. It is model 3 which has the highest buckling load capacity 

because of its low imperfection sensitivity and the relatively high buckling load capacity of its intact 

structure. Fig. 9 is the iterative curve of model 3. The total strain energy decreases rapidly in early stage. 

Then there are some fluctuations, and it tends to be stable in the later period of optimisation.  



3.2. Case 2--- a free-form single-layer grid structure   

In the previous section, a geodesic dome that belongs to the traditional analytical surface grid structure 

was studied. In this section, in order to verify the applicability of the improved method, a triangular 

free-form single-layer grid structure with four edges articulated is examined. As shown in Fig. 10, the 

initial shape is defined as a free-form surface of 21m in span and 2.5m in height (the rise). The structural 

parameters are the same as the geodesic dome described in the previous section. The location of nodes 

9-17 and nodes 77-85 is shown in Fig. 10a.  

3.2.1 Results of HyperWorks 

Using the Optistruct solver, the optimised shape with minimum total strain energy is obtained after 33 

iterations. Fig. 11 shows the z-coordinate movements by the optimisations of nodes 9-17. The cross-

section has been arched upward, the structure is mainly subjected to axial force, and the total strain 

energy has become very small. The variation of structural strain energy in optimisation process is shown 

in Fig. 12. It can be seen that as optimisation proceeds, the structural strain energy decreases rapidly. 

The total strain energy, axial strain energy, and bending strain energy are reduced to 40%, 47%, and 1% 

of the initial structure, respectively. Among them, the bending strain energy decreases the fastest. Finally, 

the axial strain energy is dominant in the structure.   

Considering both geometric and material nonlinearity, the full-process analysis of all of 33 models 

are completed. The variation of buckling load capacity of the structure during the process of 

optimisation is obtained, as shown in Fig. 13. Combining with Table 3, the buckling load capacity of 

the intact structure has been greatly improved when the optimisation is terminated at step 33, which is 

about three times of the initial structure. At the same time, according to the consistent mode 

imperfection method, the least order mode of eigenvalue buckling mode is taken as the corresponding 

imperfection distribution mode, and the buckling load capacity of the structure is decreased after the 

initial geometric imperfection is applied. It should be noted that when the initial geometric imperfection 

is considered, the structural form with the highest buckling load capacity does not appear in the final 

step but the 7
th

 step in this case study. The structural buckling load capacity of step 7 is 1.48 times the 

33 step and 1.6 times of the initial state when the imperfection is applied. It suggests that the traditional 

optimisation method cannot obtain the structural form with high buckling load capacity after the initial 

geometric imperfection is applied. 

Fig. 14 shows the variation of structural imperfection sensitivity along with the iterations. It can 

be seen that as the optimisation proceeds, the structural imperfection sensitivity increases significantly. 

In the later stage of optimisation, the imperfection sensitivity is obviously greater than that in the early 

stage of optimisation, reaching more than 60%. Therefore, when the initial geometric imperfection is 

applied, the structural buckling load capacity decreased by 60%, which critically affects the 

optimisation effect and reduces the effectiveness of traditional optimisation method.  

3.2.2 Results of MATLAB 

With the improved method, six different shapes of the free-form grid structure according to different 



constraints are obtained. The contrast of shapes is shown in Fig. 15, and model 1 is the initial shape that 

is represented by the dotted line, model 2 is the shape obtained through the traditional method, model 

3-7 are shapes obtained by the improved method. The comparison of the result data is shown in Table 

4. 

Comparing the above seven models, the maximum buckling load capacity of the intact structure 

occurs in model 2, but its imperfection sensitivity has reached to 51.6%, which indicates that the 

structural shape obtained by the traditional method is especially sensitive to geometrical imperfection. 

In model 3, the value of bending strain energy ratio is doubled, and the total strain energy of the structure 

remains the same. As the bending strain energy ratio increased, the imperfection sensitivity and 

buckling load capacity of the intact structure is decreased. However, the buckling load capacity 

considering the imperfection in model 3 is still lower than in model 2, which suggests that the value of 

bending strain energy ratio in model 3 is not reasonable. In model 4, the value of bending strain energy 

ratio is expanded by 1.6 times, and the total strain energy is expanded appropriately. In this case, the 

buckling load capacity of the intact structure is decreased again and the imperfection sensitivity has 

fallen by 48.9%. On the other hand, the buckling load capacity considering the imperfection in model 

4 is 7% higher than that in model 2, which suggests that the structural shape in model 4 is better than 

that in model 2. 

In model 5, the bending strain energy ratio is expanded by three times. As shown in Table 4, the 

imperfection sensitivity and the buckling load capacity of the intact structure continues to decrease and 

an ideal structural shape occurs. The buckling load capacity considering imperfection in model 5 is 17% 

higher than that in model 2. With the increase of total strain energy and bending strain energy ratio of 

the structure, an optimum structural shape with higher buckling load capacity and lower imperfect 

sensitivity is obtained in model 6 when the imperfection is considered. In this case, the imperfection 

sensitivity has reduced to 6% significantly, and the buckling load capacity considering imperfection is 

48% higher than that in model 2. 

As the bending strain energy continues to increase, the total strain energy will increase at the same 

time. The consequence is that the buckling load capacity of the intact structure will continue to decrease.  

For this example, the suitable bending strain energy ratio is 0.03 and the total strain energy is 

374.98J. It is known from table 4, that the buckling load capacity of intact structure tends to increase 

along with the decrease of total strain energy, while the imperfection sensitivity will be decreased along 

with the increase of the bending strain energy ratio. 

Load-displacement curves of different models are shown in Fig. 16. Obviously, if the initial 

imperfection is not applied, the buckling load capacity of each model is much higher than that of the 

model 1 and the buckling load capacity of model 2 is the highest. However, once the imperfection is 

considered, as shown in Fig. 16(b), the buckling load capacity of model 2 is no longer the highest; the 

highest buckling load capacity occurs in model 6 with 1.48 times higher than that of model 2. 

The coordinate changes of nodes 77-85 in each model are shown in Fig. 17. Compared with the 

initial shape, all of the models are upward convex. This is due to the decrease in structural strain energy 

resulting in a change in the shape of the structure. Being upward convex is to make the structure 

dominated by the axial force. On the other hand, the left side of model 6 is similar to the initial shape; 

only on the right side, the convex, is more obvious. That is because the bending strain energy ratio is 

limited and the amplitude of the convex of the structure is constrained accordingly. Fig. 18 is the 

iterative curve of model 6. It shows that in the early stage of the optimisation, the total strain energy 

decreases rapidly. In the middle process, there are some fluctuations, and in the later period of 



optimisation, it tends to be stable. Finally, after 237 iterations, the optimisation terminates and an ideal 

shape is obtained.  

4. Redundancy evaluation of the optimised structure 

4.1. Overall redundancy of the structure 

The need for structural safety under a variety of loading and accident conditions has focused attention 

on redundancy, ductility, and reliability of structural systems. From this point of view, in order to 

evaluate the redundancy performance of the optimised structure obtained by the improved method, an 

overall structural redundancy index Re based on damage model is proposed in this paper.  

The overall structural redundancy is defined as: 
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Where 
da
P is the ultimate strength of the damaged structure, 

per
P  is the ultimate strength of the 

undamaged structure. In this paper, the damaged structure is simulated by removing a key member in a 

single-layer grid structure. Moreover, the key member is determined according to the structural 

component redundancy. 

4.2. Component redundancy 

According to Pandey [23], for a given structure and loading, the generalised redundancy is directly 

proportional to the insensitivity of structural elements, or inversely proportional to their response 

sensitivity under consideration.  
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On the bases of Pandey’s study, the structural component redundancy was defined based on the 

sensitivity of structural strain response to the cross-sectional area of the rods.  

Therefore, the structural component redundancy can be defined as: 
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In the space grid structure, due to the large number of the elements, the weighted average method is 

used to define the structural component redundancy. 

Therefore, the redundancy of element i in grid structure can be defined as: 
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Where 
j
V  is the volume of element j,

ji
S is the strain energy response sensitivity of the jth element for 

the cross-sectional area of the element i. For beam elements, 
ji
S is the maximum of bending strain 

energy, tensile strain energy, and shear strain energy, that is to say max( / )
e i
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S A= . Moreover, ne is 



the number of elements in grid structure; V is the total volume of the structure.   

 

The derivation process is described in detail below. For elastic structures, after considering the design 

variables, the equilibrium equation can be expressed as  

 ( ) ( ) ( )
i i i

K U F=       (8) 

Where
i
 is the cross-section area of the ith element.  

The nodal displacement sensitivity depending on the element area A is obtained by deriving A on both 

sides of the upper formula, which can be expressed as 
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Generally, the external load acting on the structure has nothing to do with the section area of the element, 

so the upper formula can be changed to 
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In the formula, the integral stiffness matrix K  of the structure is integrated from the element stiffness 

matrix
e

i
k . Moreover, the displacement sensitivity of the structural stiffness matrix can be written as 
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Then, according to the relationship between elemental strain and nodal displacement
e e

j j
Bu= . The 

elemental strain sensitivity can be written as  

 / ( / ) ( / )
e i e i i e

j j j
A B u A B A u= +   (12) 

Where /
i

B A  is the sensitivity of strain matrix to the cross-section area; /
e i

j
u A is the sensitivity of 

the nodal displacement of node j to the cross-section area in the local coordinate system.   

Since the strain matrix is independent of the elemental cross-section area, the upper formula can be 

rewritten to  

 / ( / )
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Where / ( / )
e i e i

j j j
u A R U A= can obtain from formula (10). Finally, the maximum of bending strain 

energy, tensile strain energy and shear strain energy in formula (13) is chosen as the strain energy 

response sensitivity of the jth element. Then take it into formula (7) to get the component redundancy 

of element i in the grid structure. Both the component redundancy and the overall structural redundancy 

are obtained using the MATLAB code.  

4.3. Verification of the redundancy evaluation method  

The key of redundancy analysis method provided in this paper is how to determine the key rods. In this 

paper, the key member is determined according to the structural component redundancy, which was 

proposed by Pandey [23]. In addition, it is illustrated that the structura1elements with low redundancies 



are the key components of the structure by Hua [24]. In order to verify the correctness of the author's 

program, a 24-member dome used by Hua [24] was taken as an example in this paper, as shown in 

Fig.19. Structural parameters of the 24-member dome used in this paper are the same as in the literature. 

The redundancy of components under vertical load was shown in Table 5. It can be seen that the result 

obtained by the author is very similar with that in the literature. The error does not exceed 5%, which 

indicates that the redundancy evaluation method used in this paper is correct and feasible. 

4.4. Redundancy evaluation of single-layer grid structure 

In order to evaluate the overall redundancy performance of the structure, the free-form single-layer grid 

structure in the previous section is chosen as the computational model. Firstly, the key rods that will be 

removed later should be determined. According to the definition of component redundancy, the 

component redundancy of all the rods in model 2 and Model 6 are calculated, respectively. Then, the 

rods with less redundancy are chosen as the key rods, which will be removed when calculating overall 

redundancy of the structure, and then the overall redundancy of model 2 and model 6 are calculated, 

respectively. 

In this paper, the first 10 rods with less component redundancy in model 6 are chosen as the structural 

key rods, as shown in Fig. 20. The location of the key rods is shown in Fig. 21 and the thickness of the 

lines indicate the magnitude of the component redundancy. For better comparison, the rods with the 

same number in model 2 will also be removed. Therefore, 10 groups as shown in Table 6 are obtained. 

As seen from the table, the first 10 rods with less redundancy in model 6 also have a relatively small 

component redundancy in Model 2. It is worth noting that only one key rod is removed from each group. 

By comparing the overall redundancy of these 10 groups, it can be concluded that the overall 

redundancy of model 6 is relatively high after the removal of the key rod, with only one exception. It 

suggests that the improved shape optimisation method can get a better shape which with high overall 

redundancy. 

5 Conclusions 

The resulted structure obtained by the traditional optimisition method is very sensitive to initial 

geometric imperfections due to the lower bending strain energy in the structure. Consequently, the 

actual buckling load capacity is low after the application of the initial imperfection. An improved 

optimisation method which takes the bending strain energy ratio as the constraint is presented in this 

paper. With this method, the total strain energy can be reduced while ensuring that the bending strain 

energy inside the structure does not become too small. 

Two cases including an analytical surface grid structure and a free-form surface grid structure have been 

studied and the results indicate that the proposed method can effectively eliminate the adverse effects 

caused by the initial imperfection. With the improved method, a better structural shape with improved 

buckling load capacity and lower imperfection sensitivity is obtained. Then, the feasibility of the 

method is proved. 

Furthermore, in order to evaluate the structural redundancy performance, an index called overall 

redundancy of the structure based on the damage model is proposed in this paper. The results show that 

the overall redundancy of the structure obtained by the improved method is higher than that obtained 

by the traditional method, which indicates that the improved method can obtain an efficient grid 

structure. 
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TABLES 

	

Table 1 Comparison of results obtained by the traditional method 

Step 

Buckling load Pu  (N)  Imperfection 

sensitivity 

 (%) 

Total strain 

energy C (J) 

Bending strain 

energy ratio R 

 

Total mass 

(kg) 

Intact 

structure 

Considering 

imperfection 

0 2324.76 1864.36 19.804 291.59 0.00587 834.73 

5 2426.96 1967.99 18.911 265.56 0.00567 840.90 

10 2428.75 1882.90 22.475 247.36 0.00453 846.17 

15 2434.08 1870.02 23.173 231.66 0.00444 850.63 

20 2451.08 2282.94 6.860 217.94 0.00398 856.30 

25 2460.51 1879.01 23.633 206.31 0.00393 861.56 

30 2472.45 1887.56 23.656 196.01 0.00377 867.03 

35 2523.91 2193.99 13.072 187.36 0.00362 872.40 

40 2532.36 1891.33 25.314 181.77 0.00306 877.46 

	

Table 2 Comparison of results obtained by the improved method 

Model 

number 

Buckling load Pu (N) Imperfection 

sensitivity 

(%) 

Total strain 

energy C (J) 

Bending strain 

energy ratio R 

Total mass 

(kg) Intact structure 
Considering 

imperfection 

1 2324.76 1864.36 19.804 291.59 0.0058 834.73 

2 2516.46 1999.36 20.549 184.03 0.0049 875.64 

3 2409.59 2305.84 4.306 190.07 0.0067 871.49 

4 2256.45 2281.37 1.104 199.98 0.0112 868.14 



5 2323.07 2170.99 6.547 204.97 0.0132 867.13 

6 1932.09 1857.48 3.862 206.11 0.0161 870.68 

	

Table 3 Data comparison of typical iterative step results 

Step 

Buckling load Pu (N) Imperfection 

sensitivity 

(%) 

Total strain 

energy C(J) 

Bending strain 

energy C2(J) 

Bending strain 

energy ratio R 

Total mass 

(kg) 
Intact 

structure 

Considering 

imperfection 

0 4140.69 4520.6 9.17 953.65 170.28 0.179 7448.57 

2 5300.22 5522.7 4.19 712.96 66.47 0.093 7451.18 

7 9024.34 7287.01 19.25 515.30 14.30 0.028 7450.88 

8 9314.41 7191.03 22.79 501.60 9.94 0.02 7451.48 

18 11714.2 5517.05 52.91 413.38 4.18 0.01 7458.29 

29 12928.5 4799.91 62.87 379.17 1.49 0.004 7464.12 

33 12356.7 4897.75 60.36 372.75 1.82 0.005 7469.17 

	

Table 4 The optimisation results 

Model 

number 

Buckling load Pu (N) Imperfection 

sensitivity 

(%) 

Total strain 

energy C(J) 

Bending strain 

energy ratio R 

Total mass 

(kg) Intact structure 
Considering 

imperfection 

1 4140.69 4520.60 9.175 953.65 0.179 7448.57 

2 13205.80 6390.12 51.611 321.41 0.007 7472.14 

3 12344.60 6279.76 49.129 321.39 0.014 7473.26 

4 9118.37 6829.23 25.105 364.98 0.018 7463.24 

5 8763.36 7459.05 14.884 372.73 0.028 7465.89 

6 10076.10 9471.19 6.003 374.98 0.030 7467.66 

7 8186.90 7831.96 4.335 400.99 0.045 7460.33 

	

 

 

 

 

Table 5 Redundancy of components under vertical load 

Rod 

No. 

Redundancy 
Rod 

No. 

Redundancy 
Rod 

No. 

Redundancy 
Rod 

No. 

Redundancy 

This 

paper 
Literature 

This 

paper 
Literature 

This 

paper 
Literature 

This 

paper 
Literature 

1 26.8 28.2 7 42.9 44.4 13 22.8 22.6 19 22.8 22.6 

2 26.8 28.2 8 42.9 44.4 14 22.8 22.6 20 22.8 22.6 

3 26.8 28.2 9 42.9 44.4 15 22.8 22.6 21 22.8 22.6 

4 26.8 28.2 10 42.9 44.4 16 22.8 22.6 22 22.8 22.6 

5 26.8 28.2 11 42.9 44.4 17 22.8 22.6 23 22.8 22.6 



6 26.8 28.2 12 42.9 44.4 18 22.8 22.6 24 22.8 22.6 

 

Table 6 Comparison of overall redundancy between Model 2 and Model 6 

Group number The removed rods 
Rod redundancy order Overall redundancy Re 

Model 2 Model 6 Model 2 Model 6 

1 42 5 1 10.12 44.73 

2 41 4 2 11.72 53.31 

3 231 17 3 23.44 216.33 

4 119 2 4 15.55 60.13 

5 215 16 5 31.36 174.16 

6 34 20 6 20.35 153.61 

7 199 14 7 31.43 175.32 

8 110 10 8 21.64 182.24 

9 207 1 9 18.70 45.94 

10 135 3 10 17.34 14.45 

	

 

FIGURES 

	

 
(a) Dalí Museum in St. Petersburg, Florida.   (b) Singapore’s Changi Airport 

Fig. 1 single-layer grid structures 

 

 

Fig. 2 Shape optimisation of free-form cable-braced grid structure 

 

 

 



(a) Perspective view                        (b) supports and design variables 

Fig. 3 Initial model 
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Fig. 4 Variation of total strain energy    Fig. 5 Variation of bending strain energy and its ratio 
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Fig. 6 Fluctuation of imperfection sensitivity      Fig. 7 Variation of buckling load during optimisation 
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(a) Intact structure                      (b) Considering imperfection 

Fig. 8 Load-displacement curves of optimised structures 

 



	

Fig. 9 Iterative curve of model 3 

 

 

(a) Plan                                  (b) Perspective 

Fig. 10 Structural initial state 
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Fig. 11 Coordinate movements of 9-17 nodes         Fig. 12 Variation curves of structural strain energy 
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Fig.13 Buckling load variation curves            Fig.14 Variation curve of imperfection sensitivity 

 

 

(a) Model 1and model 2         (b) Model 1and model 3                 (c) Model 1and model 4 

 

(d) Model 1and model 5        (e) Model 1and model 6             (f) Model 1and model 7 

Fig. 15 Shapes after optimisation 
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(a) Intact structure                         (b) Structure considering imperfection 

Fig. 16 Load-displacement curves of different models 
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Fig. 17 Coordinate changes of nodes 77-85 in each models       Fig. 18 Iterative curve of model 6 

 

  

(a) Top view       (b) Front view 

Fig. 19 24-member dome (unit: m) 
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Fig. 20 The first 10 rods with less redundancy in Model 6     Fig. 21 Location of key rods 

 

	

 


