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Abstract

Zinc-nickel single flow batteries (ZNBs) have been demonstrated as a promising alternative

to lithium batteries for next generation grid-tied energy storage. However, due to the den-

dritic growth, the monitoring of working conditions in terms of the state of charge (SoC)

and battery capacity is intractable. Although longer lifespan can be achieved through the

periodic reconditioning maintenance, there is no mature method to identify the moment

of reconditioning. Model predictive control (MPC) is a popular optimization paradigm

in the process control. By incorporating the merits of model predictive control, this work

presents a novel model predictive control based observer (MPCO) for the working conditions

monitoring and reconditioning identification. Strong evidence from substantial experiments

and simulations manifests the convergence, robustness, effectiveness and generality of the

proposed method. The competitiveness is demonstrated by analytical comparisons against

other three estimators. In this regard, the relationships of the proposed observer with other

estimators are summarized briefly. At last, an indicator based on the capacity changes is

proposed to judge the timing of reconditioning.

Keywords: Redox flow batteries, Zinc-Nickel Single Flow Batteries, State of Charge

estimation, Capacity estimation, Reconditioning, Model predictive control, Observer
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1. Introduction

The energy storage applications integrated into the power grid promote high penetration

of renewable sources, in particular, the wind and solar power [1, 2, 3]. Long-life rechargeable

batteries have less geomorphic restraints [4], hence can flexibly address the sporadic avail-

ability issues of the renewable energy resource. In this regard, the scaled-up battery systems

are routinely settled alongside the renewable energy resource to improve the power quality

and system reliability [5]. Redox flow battery (RFB) is one of the most promising grid-tied

energy storage technologies in the marketplace. Unlike lithium batteries, a typical individ-

ual RFB system is relieved from the constraint between the storage capacity and the rated

power by separating the electrolyte reservoir and the battery stacks [4, 5, 6, 7]. Because of

the partial re-usability of battery materials [5], the disposal of redox couples is more effective

and economical. Unlike lithium batteries, the aqueous electrolyte is widely used in RFB,

leading to small solubility of the active species in the aqueous electrolyte, which restrains

the electrolyte conditions and averages current material density. As a consequence, though

the concept of RFB was proposed in 1974 by Thaller [7], only the all-vanadium flow bat-

teries (VFBs) pioneered by Skyllas-Kazacos.at.al [8] are commercially available. However,

the energy density of VFBs is still limited by the intrinsically low solubility of vanadium.

Other challenges [4, 5] such as energy wastes, extra costs on membranes, and high system

complexities have arisen, because the electrolyte is separated into two reservoirs.

As alternatives to the lithium batteries and other RFB counterparts, an innovative RFB

system based on nickel and zinc redox couples was first proposed [9]. The theoretical capac-

ity and energy ratio of Zinc-Nickel single flow batteries (ZNBs) are higher than other RFB

counterparts. The intrinsic electromotive force is above 1.72V [10], which is much higher

than VBFs (1.20V ) [8], leading to an improved specific energy (more than 85Wh/kg) [9, 11].
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The nominal voltage maintains up to 1.60V throughout the discharging period [9, 11]. The

discharging voltage is relatively stable at broad ranges of current rates. Moreover, the

aqueous electrolyte exhibits distinguishing stability and non-toxicity under over-charging

and over-discharging scenarios [11]. An interesting feature of ZNBs is the membrane-free

system, thus the expensive membranes are not needed in the system design leading to cost-

saving and simplified manufacturing [9]. Whereas, the viability of a commercial nickel zinc

battery has been hindered by the well-known phenomena of dendrite formation and zinc

morphology variation over time. Two fundamental culprits are the swelling of the nickel

electrode (cathode) resulted from the uneven current distribution, and the poor cycling

characteristics of the zinc electrode (anode) because of the growth of zinc dendrites [12].

Throughout the charging phase, the active materials are redistributed leading to a nonlin-

ear distribution, so that redox reaction is far from the equilibrium status. As a result, a

concentrated layer of zincate boundary is grown around the surface of the zinc electrode,

resulting in the appearance of dendritic zinc depositions [13, 10]. Once dendrite is formed,

due to the higher current density at the tips than other locations, the dendrites growth is

even more aggressive [14, 15]. Eventually, battery failures can be observed, such as internal

short circuits, cell housing damage, capacity deterioration, unreliable cell performance and

etc. In this regard, number of studies focus on how to suppress the zinc dendrite forma-

tion [10, 12, 13, 14, 15]. Non-organic and organic additives [16] have been added in the

electrolyte and electrode. However, it is time-consuming to find a proper additive based

on the extensive experiments. On the other hand, surface modification techniques have

been investigated by other research groups, to seek positive long-term effects on cycling

performance. Synthesized ZnO was used by [12, 14, 15] to control the shape of anode [15].

There is considerable diversity in the structure of the synthesized ZnO, so that substantial

experiments are needed before the commercialization. Besides, a compact zinc morphology

is achievable through limiting the applied current densities [13], which is however difficult

to implement in practical battery applications.

From the practical perspective, periodic reconditioning was thus introduced in [13, 17].

After a number of cycles, ZNBs will stop to conduct the reconditioning maintenance, i.e.
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a slowly trickling discharging cycle. In this way, the undissolved zinc depositions can be

stripped off from the surface of electrode. However, the unstable performance of ZNBs has

not been addressed. Specifically, two challenges are prevailing. One is that the unpredictable

zinc dendrites growth and residual uneven zinc morphology lead to the variations in capacity

values after each discharging cycle, resulting in shifting of State of Charge (SoC) estimation.

Unlike other counterparts, the SoC estimation of ZNBs has turned out to be inaccurate and

unreliable. The other difficulty is to determine the moment of reconditioning maintenance.

In this work, a novel framework of the SoC observer is introduced by the inspiration of the

model predictive control (MPC) scheme. MPC is a process control strategy developed in

the 1970s [18]. The systematic mathematical model is used to assess the influence of the

current control actions on the plant performance in the future [19]. The most remarkable

advantage of MPC is multiple constraints handling [20]. Moreover, the optimum solution

will be solved at each time step over a finite prediction horizon [21]. Analogous to thye MPC

scheme, in this note, the electrochemical constraints against the internal states estimates

in terms of the polarization voltage and SoC are imposed based on a first-order electrical

equivalent model (ECM). On the other hand, the implantation of rolling-horizon (window)

technique improves the precision of capacity estimation. Therefore, the influences of capac-

ity fluctuations are attenuated effectively by the proposed method. In addition, the degree

of capacity degradation can be treated as an indicator to trigger the reconditioning main-

tenance. Experiments have been performed on a handmade bench-scale ZNBs to affirm the

extraordinary efficiency and accuracy of the proposed MPC based observer (MPCO).

The major contribution of this paper is to design a nonlinear observer framework for SoC

estimation of ZNBs based on the MPC scheme. The mechanism to conduct the recondition-

ing operation has then been proposed according to the tendency of the capacity degradation.

Besides, this work analytically compares the performances with the other three state-of-

the-art SoC estimators and briefly summarises the rationales behind them, encompassing

Extended Kalman Filter (EKF), H−Infinity Filter and Sliding Mode Observer (SMO).
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2. Modelling and identification

According to various requirements of the modelling accuracy and practical applications,

many attempts to reproduce the electric dynamics of the battery have been reviewed [22].

The widely accepted methods are the electrochemical model and equivalent circuit model

(ECM) [21]. The electrochemical model provides more accurate results at the expense of

higher computational complexity and numerical instability. It is thus often adopted in the

battery design process to investigate the material influences on internal states based on the

specific parameters with the prescribed boundaries. Due to its complicated structure, the

electrochemical model does not work well for online applications. On the other hand, ECM

utilises different electrical parameters in terms of the resistor, the capacitor, and the voltage

source to depict the battery nonlinear behaviours. On the basis of the recent studies of the

major ECM applications [22], the first-order resistor-capacitor (RC) has been demonstrated

as a suitable tool for online applications as it represents a trade-off model between complexity

and accuracy.

2.1. Equivalent circuit model

A typical first-order ECM is considered in this work as illustrated in Fig.1. Throughout

the charging/discharging phases, Rs is the encountered ohmic resistance resulting in the

energy losses at the electrodes and electrolytes. It is noted that even at the same SoC level,

Rs is influenced by the ambient temperature and the ageing modes. The parallel RC branch

is employed to model the ZNBs transient responses and relaxation effects that appear during

and out of the cycles respectively, due to the existence of the activation polarization and

concentration polarization voltage (Vp). In this regard, Rp and Cp represents the polarisation

resistance and capacitance, respectively. Due to the above influences, once the terminal

current IL stops loading into the ZNBs, the terminal voltage signals Vt will slowly converge

to its equilibrium, denoted as open circuit voltage (OCV) Voc. At the efforts of the auxiliary

flow system (pump), the circulating electrolyte will effectively attenuate the polarization

voltage Vp and progressively facilitate the process of equilibrium [9].
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Figure 1: Schematic diagram of the first-order ECM

Apart from the above simple linear model, the statically monotonous correlation between

Voc and SoC is the routine benchmark in the process of battery modelling. However, this

relationship is intrinsically nonlinear and can be obtained from the experimental data only.

Therefore, the incremental OCV tests (IO) [23] are conducted to formulate the SoC-OCV

table. In this regard, the constant current constant voltage (CCCV) charging profile is

loaded to the ZNBs to reach a fully charged status. Then, successive discharge segments

in the form of pulse current are performed to drain up the capacity of ZNBs. Throughout

the entire cycle, the SoC values are recorded by high precision current sensors based on the

coulomb counting (CC) method. Meanwhile, the OCV values are logged at the end of each

discharging SoC interval. Finally, the SoC-OCV relationship is characterized by averaging

three current profiles in terms of 0.5C(1.85A), 1C(3.70A), and 1.5C(5.55A). In this work,

the SoC-OCV relationship is modeled as a fifth-order polynomial [24]:

Voc = f(SoC) =

p
∑

j=0

ρjSoC
j (1)

where p is the selected order (which is 5 in this work) of least square (LS) error curve fitting

technique; ρj are the polynomial coefficients to fit the nonlinear correlation. The rationale

and justification of the above method are elaborated in [24]. On the other hand, due to

the merits of the flowing electrolyte, the generated heat will be transmitted outside by the

circulating electrolyte while dissipating away fleetly. Therefore, the effects of temperature

on SoC-OCV table is negligible.
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2.2. Online model parameter identification

The dynamic process of the chemical reactions is also associated with the influences of

the ambient temperature and aging modes. Besides, ZNB is a slowly time-varying system.

In order to best model the battery process, the parameters have to be updated regularly

to adjust to process dynamics [24]. In this paper, the recursive least square (RLS) with a

fixed user-defined forgetting factor λ = 0.98 is adopted to identify the model parameters

online while considering the effects of the environment, aging evolution and other unmodeled

dynamics.

Assuming the positive sign of current is for discharge, and vice versa. Based on the

Kirchhoff laws and the principle of the RC circuit, the electrical model is governed by the

following ordinary differential equations (ODE):

Cp

dVp

dt
+

Vp

Rp

= IL (2)

Vt = VOC − Vp − ILRs (3)

Followed on, the one time step discretization of Eq. (2) is of the expression:

Vp(t) = e
− ∆ts

RpCp Vk(t−∆ts) +
(

1− e
− ∆ts

RpCp

)

RpIL(t−∆ts) (4)

where the time interval ∆ts is the sample rate and is fixed in the whole experiments. As-

suming 0 is the starting point of the discretized series, denote Vp(k) = Vp(k∆ts). Analogous

to Vp, the similar definitions are applied to VOC , Vt, and IL. Therefore, Eq. (4) can be

rewritten in a neat format:

Vp(k) = e
− ∆ts

RpCp Vp(k − 1) +
(

1− e
− ∆ts

RpCp

)

RpIL(k − 1) (5)

Based on Eq.(3), by substituting Vp = VOC − Vt − ILRs in Eq.(5), the terminal voltage Vt is

obtained as follows:

Vt(k) = βVt(k − 1)−RsIL(k) + (β ·Rs − (1− β)Rp)IL(k − 1)

+ (VOC(k)− βVOC(k − 1)) , (6)
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where β = e
− ∆ts

RpCp . During the ZNBs cycling, the VOC is a slowly varying state opposite to

the terminal voltage Vt, where OCV variations are subtle between two neighbouring sample

points. Thereby, the one-time step difference is taken to remove the influence of OCV in

the process of the parameter identification. The differential voltage is drawn as follows:

∆Vt(k) = β∆Vt(k − 1)−Rs∆IL(k) + (β ·Rs − (1− β)Rp)∆IL(k − 1)

+ (∆VOC(k)− β∆VOC(k − 1)) , (7)

in this regard, Eq.(7) can be regressively expressed in a linear form:

y(k) = θT (k)φ(k) + e(k), (8)

where

y(k) = ∆Vt(k), θ(k) = α = [α1, α2, α3]
T = [β,−Rs, β ·Rs − (1− β)Rp]

T ,

φ(k) = [∆Vt(k − 1),∆IL(k),∆IL(k − 1)]T , e(k) = ∆VOC(k)− α1∆VOC(k − 1).

and e(k) is assumed as the error term in this regression procedure. Due to the feature

of slowly changing OCV, as long as the sample rate is fast enough, the error terms are

negligible. Therefore, the RLS method is applied to Eq.(8) to estimate the slowly time-

varying parameters θ(k) under different working environments. The process of RLS method

can then be summarized as follows.

y(k) = θ(k)T · φ(k) + ε(k) (9)

ε(k) = E(k)− θ(k − 1)T · φ(k) (10)

K(k) =
P (k − 1)φ(k)

λ+ φT
kP (k − 1)φ(k)

(11)

P (k) = λ−1
(

P (k − 1)−K(k)φ(k)TP (k − 1)
)

(12)

θ(k) = θ(k − 1) +K(k)e(k) (13)

where y(k) is the measured voltage Vt(k) signals. Besides, φ(k) and θ(k) are the model

input signals and the estimated parameter respectively. P (k) is the covariance matrix used

to update the parameters. A fixed user-defined forgetting factor λ to scale the contributions
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of previous samples to the covariance matrix. The parameters θ̂(k) of the regression model

can thus be solved at each sample point. Afterwards, the parameters [R̂s, R̂p, Ĉp]
T of the

ECM can be then calculated reversely:

R̂s = −α̂2, β̂ = α̂1,

R̂p =
β̂ · R̂s − α̂3

1− β̂
=

−α̂1α̂2 − α̂3

1− α̂1

,

Ĉp = −
∆ts

R̂p log(β̂)
=

∆ts · (1− α̂1)

(α̂1α̂2 + α̂3) log(α̂1)
.

3. SoC Observer and Reconditioning Indicator

The closed-loop online SoC estimation approach plays an indispensable role in both

academia and industry, thus raising growing attentions. In particular, Extended Kalman

filtering (EKF) [25] and its variants have been integrated into ECM modeling process in the

recent years. In order to compensate for the over-potential dynamics and keep the intact

nonlinearity of the battery model, H−infinity [26] method and particle filter (PF) [27] are

adopted respectively as the improvements of EKF. Apart from the above filters, other im-

plementations such as sliding-mode observer (SMO) [28], nonlinear geometric observer [29],

and Luenberger-type observers [30] are also proposed in line with the control paradigms and

theories.

3.1. MPC based Observer Design

MPC is a powerful optimization controller taking all the model-based process interactions

into consideration, where the control action at each sampling point will be determined by

solving the finite horizon optimization in real time. The successfully widespread deployment

of MPC in the industrial applications has confirmed its effectiveness. In practice, nearly

every application imposes constraints. MPC is one of few suitable control methods to

advantageously handle the constraints on manipulated variables and states simultaneously.

In this paper, inspired by the control paradigm of MPC [18] and SMO [28], a novel MPC-

based SoC observer (MPCO) is introduced in this section. It is known that the outputs of
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ECM are not accurate matches to the real measurements. The errors from measurements,

discretization process, and parameter identification in RLS have to be compensated by the

proposed SoC observer. According to Eq.(5), the two-dimensional state equations along

with small friction terms are formulated as follows:






SoC(k) = SoC(k − 1)− η∆ts
Q

IL(k − 1) + f1(k − 1)

Vp(k) = e
− ∆ts

RpCp Vp(k − 1) +
(

1− e
− ∆ts

RpCp

)

RpIL(k − 1) + f2(k − 1)
(14)

where Q is the capacity of ZNBs, whilst f1 and f2 stand for the errors not only from

measurements, modelling, and discretization, but also from the time-varying parameters

identified in RLS. Analogous to other observer/filter designs, the terminal voltage Vt is the

main focus of measurement equation:

Vt(k) = f(SoC(k))− Vp(k)−RsIL(k) + f3(k) (15)

where f is the pre-calibrated SoC-OCV table expressed as VOC = f(SoC). Herein, the f1(k)

and f2(k) are systematic frictions. In coincidence with the framework of the state equations

Eq.(14), f3(k) represents measurement equation friction. Assuming the systematic frictions

and measurement friction are independent, and thus are of the expressions as:




f1(k)

f2(k)



 ∼ N(0,Σ), f3(k) ∼ N(0, σ2) (16)

where Σ and σ are error covariance matrix and the standard deviation, respectively, which

are used to solve control law in the followed-on process. Denotes x(k) = [SoC(k), Vp(k)]
T

and thus the state vector X(k) and measurement vector Y(k) for n steps are derived as: ‘

X(k) =

















x(k − n+ 1)

x(k − n+ 2)
...

x(k)

















, Y(k) =

















Vt(k − n+ 1)

Vt(k − n+ 2)
...

Vt(k)

















(17)

where n is the decision window in the MPCO. Therefore, a neat state equation is written

as:

X(k + 1) = Ak ·X(k) + Bk · u(k) + f(k) (18)
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where

Ak =























0 I2 0 · · · 0

0 0 I2 · · · 0
...

...
...

...
...

0 0 0 · · · I2

0 0 0 · · · A























, Bk =























0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

0 0 0 · · · B























, u(k) =























IL(k − n+ 1)

IL(k − n+ 2)
...

IL(k − 1)

IL(k)























f(k) =























0

0
...

0

f(k)























, A =





1 0

0 e
− ∆ts

RpCp



 , B =





−η∆ts
Q

1− e
− ∆ts

RpCp



 , f(k) =





f1(k)

f2(k)





Suppose the posteriori-estimate X̂(k) and the corresponding error covariance matrix Σ̂k

have been obtained after the k-th measurement. Thereby, the intermediate priori-estimate

X̂−(k + 1) in the next sample instant can be calculated as follows:

X̂−(k + 1) = Ak · X̂(k) + Bk · u(k) (19)

Afterwards, the posteriori-estimate X̂(k+1) can be corrected by solving the control law as:

X̂(k + 1) = x̂
(n)
− (k + 1) + ∆x(k + 1) = Ak · X̂(k) + Bk · u(k) + ∆x(k + 1) (20)

where ∆x(k+1) is not only the MPC control law obtained from the solution of the quadratic

programming as disclosed in the following content, but also the correction to priori-estimate.

The errors of the priori-estimate and posteriori-estimate are expressed as follows, respec-

tively:

e−(k + 1) = Ak · e(k) + f(k),

e(k + 1) = e−(k + 1)−∆x(k + 1)
(21)
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According to the ECM, the posteriori-estimate for ˆY(k + 1) can be calculated:

Ŷ(k + 1) = F (C1 · X̂(k + 1))− C2 · X̂(k + 1)−Rs · u(k + 1)

≈ F (C1 · X̂−(k + 1)) +
∂F

∂X

∣

∣

∣

∣

x=C1·X̂−
(k+1)

· C1 ·∆X(k + 1)− C2 · X̂(k + 1)−Rs · u(k + 1)

= F (C1 · X̂−(k + 1))− C2 · X̂−(k + 1)−Rs · u(k + 1) +

(

∂F

∂x
· C1 − C2

)

·∆x(k + 1)

(22)

where due to the nature of recursive properties, a set of n outputs from model can be

estimated. A neat form of ˆY(k + 1) is thus reformulated as :

Ŷ(k + 1) = yk+1 +G ·∆x(k + 1) (23)

where

C1 = blkdiag{[1 0], . . . , [1 0]}, C2 = blkdiag{[0 1], . . . , [0 1]}

F

































x1

x2

...

xl

































=

















f(x1)

f(x2)
...

f(xl)

















,
∂F

∂x

































x1

x2

...

xl

































= diag{f ′(x1), f
′(x2), . . . , f

′(xl)}

yk+1 = F (C1 · x̂−(k + 1))− C2 · x̂−(k + 1)−Rs · u(k + 1), G =
∂F

∂x
· C1 − C2

Analogous to the control paradigm of MPC, the optimal control law i.e. the gain of the

proposed MPCO, can be determined by minimizing the following cost function:

J =||Ŷ(k + 1)−Y(k + 1)||S2 + ||x(k + 1)− x−(k + 1)||R2

=||G ·∆x(k + 1) + yk+1 −Y(k + 1)||S2 + ||∆x(k + 1)||R2

(24)

where Ŷ(k+1) is the estimated vector of future Vt given the controlled state vector ∆x(k+1).

On the other hand, Y(k + 1) is the vector of the real voltage measurements, which are

considered as references. Herein, the length of the decision horizon is n. It is should be
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noted that differing from the traditional framework of MPC, during each optimization step,

the moment k and n − 1 steps ahead model outputs, which equal to the length of the

decision horizon n, are compared with the real measurements. By substituting Eq.(23) into

the Eq.(24), a quadratic expression is given:

J =∆x(k + 1)T · (GTSG+R) ·∆x(k + 1)

+ 2 (yk+1 −Y(k + 1))T SG ·∆x(k + 1) + Sy

(25)

where Sy =
(

yk+1 − y(n)(k + 1)
)T

· S ·
(

yk+1 − y(n)(k + 1)
)

. In additional, the positive

definite weighting matrices R and S denote the measurement error covariance and priori-

estimate error covariance respectively, which can be derived as follows:

S−1 = diag{σ2, σ2, . . . , σ2}, R−1 = AkΣ̂kA
T
k + diag{0, . . . ,Σ} (26)

For the unconstrained optimization problem min∆x(k+1) J , an analytical solution could be

readily found below:

∆x∗(k + 1) = (GTSG+R)−1GTS(Y(k + 1)− yk+1)

def
= L · (Y(k + 1)− yk+1) (27)

where L is defined to simplify equations:

L
def
= (GTSG+R)−1GTS,

I − LG = I − (GTSG+R)−1GTSG

= (GTSG+R)−1R (28)

According to matrix inverse formula, yielding:

(GTSG+R)−1 = R−1 −R−1GT
(

S−1 +GR−1GT
)−1

GR−1 (29)
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Hence the new covariance matrix will be expressed as:

Σ̂+
k+1 = V ar[x̂+(k + 1)] = V ar[x̂−(k + 1) + ∆x(k + 1)]

= V ar[x̂−(k + 1)− L · yk+1 + L ·Y(k + 1)]

= V ar[(I − LG)x̂−(k + 1) + L ·Y(k + 1)]

= (I − LG)R−1(I − LG)T + LS−1LT

= (GTSG+R)−1R(GTSG+R)−1 + (GTSG+R)−1GTSG(GTSG+R)−1

= (GTSG+R)−1 (30)

For unconstrained case, calculating R is unnecessary. The only costly calculation might be

(S−1+GR−1GT )−1 in Eq. 29, which has O(n3) time complexity. However, calculating R has

7 times more complexity as the number of rows and columns of R is twice of GR−1GT +S−1.

3.2. Constrained formulation on SoC Observer

In order to improve the accuracy of the proposed SoC observer, a couple of constraints

can be integrated into the process of the SoC estimation while keeping in line with the

MPC paradigm. When incorporating the ZNBs intrinsic electrochemical characteristics into

observer formulation, the controlled state variables ∆x(k + 1) has to be bounded within

the feasible regions derived by the potential constraints. Taking polarization voltage Vp

as an example, though the enlarged distance among electrodes increases the value of Vp,

the circulating electrolyte can offset the distance effects to drag Vp back within ±0.06V . A

faster flow rate may even further reduce the polarization voltage. Apart from Vp, the varying

ranges of SoC also has to be restrained between 0 and 1. Alternatively, the SoC changes can

also be limited into other ranges depending on the realistic operating conditions. Therefore,

linear constraints e.g. lower and upper thresholds for SoC and Vp are integrated into the

control formulation:

C1∆X(k + 1) ∈
[

sl − C1X̂−(k + 1), su − C1X̂−(k + 1)
]

(31)

C2∆X(k + 1) ∈
[

Vp,l − C2X̂−(k + 1),Vp,u − C2X̂−(k + 1)
]

(32)
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where sl and su are the lower and upper bounds for SoC, and Vp,l and Vp,u are the lower and

upper bounds for Vp. The inequalities Eq.(31) and Eq.(32) guarantee the states constraints.

Then the above problem is transformed to solve a quadratic programming problem under

the linear constraints. It is worth noting that in order to comply with the control theory of

the MPC, the optimized solutions will be updated at each sampling point, and then only

the first control signal with regard to the current instant is loaded to the actuator [31].

Analogously, merely the first line of ∆X is employed as the gain value to update the state

estimations. Owing to the merits of the imposed constraints, the estimated results will

show a perfect match to the theoretical values. And thus the internal state estimations

will converge quickly, providing a more accurate SoC estimation for the followed capacity

estimation.

For the QP problem, the solution is located either in the interior of constrained area,

or at the border. Therefore, two cases are discussed as follows. If the solution is in the

interior, it is equivalent to the solution without constraints. And if the solution is at the

borders, it means the solution is actually truncated by constraints. As the true values of the

state variables lie in the constraint borders, the solution will have less error variance than

no-constraint-solution, leading to less correction effect. However, the state variable is fixed

at the constrained values in this case, resulting in 0 variance. In order to cope with filter

system, the unconstrained covariance matrix is used to approximate constrained covariance

matrix, which is smaller in theory. By doing so, similar to the scheme of H−infinity filter,

the larger covariance matrix along with a less correction effect brings extra robustness to

the estimation.

3.3. Time Complexity Analysis

In this section, only one window length is considered. Complexity analysis is more

focused on feasibility of online estimation. Multi-window is only considered as a more

accurate alternative for capacity updates after each cycle. The general method to solve

quadratic programming problem with linear constraints is already sketched in Section 3.2,

which is detailed as follows:
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1. Suppose the problem is

min
x

1

2
xTΓx+ fTx (33)

s.t. Cix <= gi, 1 ≤ i ≤ l (34)

where gi is a number and each gi represents for a constraint.

2. As the solution will be at the border or within the border for each constraint, consider

a combination of the l constraints, and solve the problem with these constraints being

equal. For example, if the i1, i2, . . . , ik−th constraints are selected, i.e. to solve

min
x

1

2
xTΓx+ fTx (35)

s.t. Cix = gi, i = i1, i2, . . . .ik (36)

The above problem can thus be easily solved using Lagrange multiplier. If the solution

satisfies all constraints, it will be kept, otherwise is discarded.

3. Consider all combinations and compare the corresponding results. There will be 2l

combinations and less than 2l valid results. Select the one with minimum cost function

value as the global minimum solution.

In this paper, the state variable x is two-dimensional. There are four constraints but only

9 possible solutions are attainable, detailed as: one solution without constraints, four with

one constraints, and other four with two constraints. The problem with one constraints are

thus reduced to a one-dimensional quadratic function minimization problem. Additionally,

two constraints directly determine the solution. These are trivial cases to solve. Thereby,

little extra time complexity will be added to the problem.

The main computational burden in this work appears in solving the problem without

constraints. As stated in the last part of Section 3.1, solving this case has similar complexity

to H−infinity filter, but will be slower than Kalman Filter (EKF), hence also slower than

Sliding Mode Observer (SMO). However, they just differ by a small constant scalar. On

the other hand, the experimental time used for each method is summarised in Table 1. The
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elapsed time is tiny as 0.2541ms per loop. Although the MPCO proposed in this paper is

the slowest among the comparisons, it is yet fast enough for online application.

Filter Method SMO EKF H−finity MPCO

Elapsed Time (ms) per Loop 0.1062 0.1364 0.1456 0.2542

Table 1: Experimental Time Complexity Comparisons

3.4. Reconditioning Operation indicator

Substantial investigations on bench-scale and grid-scale ZNBs, have indicated that a

periodic reconditioning operation (every 15/20 cycles) [13], i.e. discharging the ZNBs in

a trickle current profile, would effectively reactivate the battery. By doing so, even after

3000+ cycles, ZNBs are still performing well [17]. However, little contribution has been

made on identifying the reconditioning moment in the literature. In practice, frequent or

premature recondition maintenance will lead to a waste of energy in the storage system,

because the process of trickle discharging can last for more than a day. On the other hand,

when ZNBs are cycling under the poor conditions, the chain reactions to damage the cell

housing and electrodes catastrophically will be progressively provoked. The preliminary

studies indicate that in poor operating conditions, ZNBs are subject to two main issues,

which are anodes self-corrosion and cathodes transformation. The latter one specifically

refers to active materials stripping and swelling. As a result, the effective reaction areas of

electrode are not stable leading to the variations in capacity, and it will then deteriorate the

accuracy of SoC estimate. In this paper, the developed MPCO enhances the robustness of

estimates. In addition, the reversely calculated battery capacity through the SoC estimation

has been selected as the reconditioning indicator.

Revisiting Eq.(14), the battery capacity can be interpreted by the ratio of accumulated

coulomb, which is explained by the SoC change during a certain time.

Q =
η
∫ tβ
tα

ILdt

SoCtβ − SoCtα

(37)
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where tα and tβ are the starting and ending points of pre-defined time interval. It is worth

noting that the robustness of SoC estimations i.e. SoCtα and SoCtβ is essential to the

capacity estimate. One key element has to be emphasized accordingly. The time intervals

should be set sufficiently large to make SoC estimate converge. In this paper, tα and tβ

are prescribed as the 100 sample points after the start-up and 100 sample points ahead of

the end-point, respectively. Therefore, underpinned by this framework, the multi-windows

method is able to be implemented to improve the accuracy of the previous SoC estimations

again, which will be elaborated in Section 5.3. The updated capacity after each discharging

cycle will be employed as the reconditioning indicator to judge the health conditions of

ZNBs. If the capacity suddenly drops below 90% of the nominal capacity, the ZNBs have

to be stopped for maintenance.

3.5. The Framework of the Proposed Observer

In this paper, the RLS based online identification method is used to parameterize the

time-varying system, i.e. the ECM model. Therefore, the effects of aging evolution and

varying working conditions have been considered in the process of parameters identification.

Afterwards, the identified parameters are applied to the proposed MPCO to obtain a robust

SoC estimation. Then the capacity is updated at the end of a full cycle, which will be used

as the base capacity in the following cycle to overcome the capacity fluctuation issues. The

capacity estimate is regarded as an indicator for the reconditioning and maintenance. The

systematic flowchart of the proposed method is given in Fig.2.

4. Experiments and Setups

4.1. Experimental Apparatus

Fig.3 illustrates the schematic of the experimental apparatus. A bench scale ZNBs

demonstrator has been fabricated based on the previous studies [9, 11]. The designed capac-

ity of this ZNBs demonstrator is 3.70Ah. The operating flow rate is remaining at 19cm/s [9].

The battery testerNEWARECT−3008W−15V 3A generates the testing current regimes on

the ZNBs demonstrator. According to the specification of battery tester, the measurement
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Figure 2: Implementation flowchart of the developed method

errors are bounded within 0.1%. Throughout the entire experiments, the room temperature

maintains 25± 3◦C, and the output data will be logged by an external host computer. It is

notable that the separators are not required in such a single flow system.

4.2. Pulse Tests

1C (3.70A) current stress is loaded into the ZNBs in pulses. Specifically, the charge and

discharge regimes are a constant 10min pulse in a 1C current rate. In this work, the 1C cur-

rent rate in pulse is dedicated to exciting the batteries in a moderate manner. Consequently,
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Figure 3: Schematic diagram and experimental apparatus

the applied pulse tests protect the unmatured, hand-made ZNBs demonstrator from over-

excitations and rapid deterioration. In particular, the battery rests for 15min after each

pulse to secure the completeness and sufficiency of the redox reactions. On the other hand,

the dynamic pulses tests are carried out as well, which reflect the responsive performance

of the battery under the scenario of frequency control [32]. Four pulse patterns in terms of

1C, 1.5C, 0.5C, and 1C are consecutively loaded into the battery during charge/discharge

processes. The dynamic pulse tests are conducted under an acceptable current stress for

short-term testing, aiming to examine the transient behaviours, convergence and tracking

performance of the proposed model and observer, while preventing the demonstrator from

over-excitation.

4.3. Capacity tests

Galvanostatic cycle tests [23] are carried out using the constant charge/discharge rates

of 1C (3.70A). The objective of these tests is to manifest the effectiveness of the proposed

method to handle the capacity fluctuation issues. In each cycle, the charging phase is

terminated once the ZNBs demonstrator has reached its full capacity 3700mAh. It is notable

that the capacity calculation in this paper is based on the ability of nickel electrode. And

then, the demonstrator is treated as fully discharged when the terminal voltage Vt drops to

the cut-off voltage 1.2V .
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4.4. Applicability Tests

To further validate the generality of the proposed observer in more complex current pro-

files and deal with different electrochemical storage applications, the Federal Urban Driving

Schedule (FUDS) test [23] is carried out on a 5Ah lithium battery to test the proposed

method. The regime of FUDS satisfies the automobile industry standards. In addition, it

represents the power requirements in the practical utilization of electric vehicle (EV). The

FUDS test starts with a fully charged state under the CCCV charging mode, and the test

is terminated by consuming all the net capacity.

Throughout each process of above tests, the reference SoC trajectory is obtained by

the highly reliable CC method. Testing regimes are detailed in Fig.4(a), where the current

profiles and voltage responses are depicted in black and red lines respectively.

5. Experimental Results and Discussion

5.1. Model verification

The RLS based simple first-order ECM is used in this work to reproduce the battery

dynamics under different working conditions. In order to verify the efficacy of the used

first-order ECM battery model, one set of the modelling results of the RLS online model

identification are given in Fig.4(b), in which a 1C (3.7A) constant current is imposed on the

battery i.e. the Galvanostatic cycle tests. There is no prior information available for the

model parameters. The parameters in ECM are thus erroneously initialized as Rs = Rp =

0.02Ω and Cp = 1000F . As depicted in the Fig.4(b), during the entire charging process, the

output signals i.e. terminal voltage Vt highly match the input measured voltage, and the

modelling errors are within ±0.01V . Though a reasonable deviation appears at the start-up

stage because of the erroneous initialisation, the outputs converge to the voltage trajectory

quickly. In addition, the parameters of electrical elements in the ECM encompassing Rs,

Rp, and Cp converge in fast manners and keep stable throughout the charging phase, which

are also in accord with the intrinsic features of the ZNBs acting as a slowly time-varying

system.
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(a) The details of the tests regimes
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Figure 4: Detailing of the tests regimes and modelling performance
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5.2. Accuracy of states estimates

In this paper, the dynamic pulse tests as shown in Fig.4(a) are carried out to mimic the

practical RFBs working conditions introducing the intermittence of renewable electricity

sources. Additionally, for the purpose to compare the performance of state estimates among

different algorithms in terms of the SoC tracking performance, transient behaviours, esti-

mation robustness, convergence. etc., a more complex excitation is imposed on the ZNBs,

namely dynamic pulse tests as shown in the Fig.4(a). With an intentionally initial SoC error

of −20%, the resultant SoC estimation of the proposed MPCO method is compared with

the state-of-the-art algorithms such as EKF, H-infinity, and SMO. In order to conduct fair

comparisons among all SoC estimators, the efforts on the parameters turning process, e.g.

P , Σ, and σ. etc. are kept in a similar level, besides, it should be noted that the size of the

decision window (horizon) is set as one to secure the approximate computational burden are

used. The SoC estimation and comparisons are displayed in Fig.5.

From the observations on Fig.5(a) and Fig.5(b), the estimation of MPCO presents a

good convergence behaviour to the SoC reference trajectory, resulting from the imposed

hard constraints on the polarization voltage estimation Vp revealed in Fig.5(c). Specifically,

as illustrated in the zoom-in plot of the starting stage, the SoC estimation provided by

MPCO converges to the CC reference faster than other counterparts, while SMO shows the

slowest convergence performance. The relative poor convergence is foreseeable in SMO, due

to its simplest structural design. In this regard, the analytical discussion among different

estimators are detailed in Section 6. Apart from the ending stage, the worst transient be-

haviours occurs in the first transient pulse, where the current changes from 1C to 1.5C.

It can be explained by the effects of the unstable model parameters in the initial stage.

As shown in Fig.5(b), the estimation performances of EKF, H-infinity and SMO, are get-

ting worse in the ending stage. The comparisons of SoC estimate error among these four

approaches are detailed in Table.2, where the proposed MPCO method provides the best

accuracy of the SoC estimation. Additionally, unlike the other counterparts, MPCO exhibits

strong robustness, and the estimation accuracy of MPCO still remains stable yet, with the

SoC estimation errors almost bounded within 1.5%. These phenomena are owing to the
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introduced hard constraints on the polarization voltage Vp. As presented in Fig.5(c), the

proposed MPCO method is capable of not only incorporating the priori-knowledge of the

battery intrinsic electrochemical properties into SoC estimation, but also restricting the SoC

estimation within reasonable region. Therefore, the SoC estimation is further optimised by

the proposed MPCO method. On the other hand, the proposed MPCO inherits the ad-

vantages of MPC that are good at handling the non-Gaussian noises according to Eq.(14)

and Eq.(15). In this paper, for the convenience sake, only the Gaussian noises with a stan-

dard deviation of 10mV is imposed on the voltage measurement for all the SoC estimators.

Moreover, the accuracy of capacity estimation will be enhanced by raising the length of the

windows, as discussed in the following content 5.3.

SoC Error MPCO SMO EKF H-Infiinty

Mean −0.0087 −0.0314 −0.0227 −0.0225

Std. Dev. 0.0187 0.0458 0.0229 0.0250

Table 2: Dynamic Charging Profile SoC Estimate Error Summary

5.3. Capacity estimation and effects of windows sizes

A major objective of the proposed MPCO is to estimate capacity dynamically then

determine the time for reconditioning. Thereby, the estimated capacity is expected to be

an indicator for the maintenance of ZNBs. The proposed MPCO is applied for the SoC

estimation over the galvanostatic cycling tests as depicted in Fig.4(a). In this section, in

order to obtain a robust estimation of capacity, different horizon window of the state variable

are tested. Furthermore, the effects of window size are discussed.

Fig.6(a) concludes the resultant SoC estimates over 15 discharging cycles. Large error

spikes only occur at the starting stage of each discharging cycle, due to the intentional

−20% SoC initialization error. However, all the applied methods attenuate the initial errors

and converge quickly. Through comparison with EKF in Fig.6, MPCO has remarkably

outperformed in the SoC estimation. In this regard, as the number of cycling increases,
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Figure 5: The states estimation results and comparisons during the dynamic pulse tests

25



(a) SoC estimation under different windows

2 4 6 8 10 12 14 16
Cycles

3.5

3.6

3.7

3.8

3.9

C
a

p
a

c
it
y
 (

A
h

)

Galvanostatic Cycle Tests

Reference

window=1

window=2

window=3

window=4

window=5

window=6

EKF Estimation

2 4 6 8 10 12 14 16Cycles

-0.1

0

0.1

0.2

C
a

p
a

c
it
y
 E

rr
o

r 
(A

h
)

window=1

window=2

window=3

window=4

window=5

window=6

EKF Estimation

13 13.5 14 14.5 15

3.66

3.68

1 1.5 2 2.5

3.65

3.7

3.75

14 15

0.005

0.01

0.015

7 7.5 8 8.5 9 9.5

-0.02

0

0.02

0.04

(b) Capacity estimation under different windows

Figure 6: Capacity estimation and effects of windows sizes during the galvanostatic cycling tests

the SoC estimations provided by EKF are going far from the CC references, where larger

discrepancies can be observed after 10 cycles. These phenomena can be explained from two

aspects. Firstly, even single window MPCO outperforms EKF due to the constraints in SoC

estimation. At the start of each cycle, an intentional SoC initialization error is considered.

The SoC constraints help in faster convergence and prevent underestimation (below 0) at the

end of each cycle. While EKF is tend to underestimate SoC when approaching later cycles

(from 11 to 15) due to weak traceability of battery capacities. The underestimation of SoC

then results in poorer capacity estimates as detailed in Fig.6(b). With the constraints in the
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proposed MPCO, this cross-interference can be more manageable. Secondly, as illustrated

in Fig.6(b), longer window outperforms in the convergence speed of the capacity estimation.

For instance, when the window length increases to 6, the capacity estimate converges to the

reference value quickly, bringing the estimation error down to tiny values, merely after 1

cycle. As interpreted by Eq.(24), in the process of solving objective function, more previous

measurements are involved in the optimization when longer windows are used. Consequently,

the past SoC estimates are updated as well, becoming closer to the SoC-OCV table. Except

for the faster convergence speed, the performance of these counterparts (window lengths from

1 to 6) is comparable and outperforms traditional EKF, which is foreseeable as explained

in previous context. Throughout the entire 15 discharging cycles, the estimation errors of

the capacity are subtle, only within ±2%. According to Eq.(37), the accurate estimation of

SoC thus reinforces the precision of capacity estimates accordingly. The simulation results

further verify the effectiveness of the proposed MPCO method as given in Fig.6. Therefore,

the proposed MPCO is able to reflect the dynamics of the practical capacity, which is poised

to be a good indicator to determine the moment of reconditioning.

5.4. Validation of applicability

In order to test the generality of the proposed MPCO, a 5Ah prismatic LiFePO4-

Graphite lithium battery (GWL/Power Company) has been tested. Throughout the entire

tests, the same initial settings in the above Section 5.1 and Section 5.2 are adopted on

EKF, H-infinity, and SMO approaches as well. The SoC and polarization voltage Vp are

restricted within 0 to 1 and ±0.04V , respectively. The FUDS testing profile, given in the

Fig.4(a), is loaded to the lithium battery with the erroneously initial SoC value of −20%.

According to the aforementioned, the length of the decision window is set as 1 to provide

a short-term comparison of SoC estimation among different SoC estimators. In addition,

at the early stage of FUDS tests, an artificial perturbation, 10A charging current lasts for

5s, is intentionally inserted in the input current to evaluate the robustness of the proposed

methods.

As shown in Fig.7, all the estimators attempt to attenuate the initial errors in a fast man-
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(a) SoC estimations under different filter designs

(b) Error of Soc estimation under different filter designs

(c) Polarization voltage Vp estimations under different filter designs

Figure 7: The states estimation results and comparisons during FUDS tests
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ner. As shown in the zoom-ins in Fig.7(a), before the artificial perturbation, the SoC esti-

mation converge to the reference value fast. Yet, a slower convergence speed can be observed

on SMO, which is in accordance with the ZNBs tests. In other words, EKF, H−infinity and

the proposed MPCO give similar estimation accuracy and convergence speed. Afterwards,

an artificial perturbation in the charging current with a pulse form of 100A magnitude is

imposed on the input signals at t = 1000s. Due to the prescribed constraints on the in-

ternal states in the observer design, the proposed MPCO method outperforms among all

four approaches, showing up the best performance of disturbance rejecting and robustness.

We believe these phenomena are owing to the imposed estimation constraints, which limit

the state estimation in a reasonable range and reduce the estimation errors. Addition-

ally, Fig.7(b) reveals that SMO provides the worst performance in terms of robustness and

convergence at the starting stage, in which the convergence speed can be adjusted by the

prescribed value of error covariance. Typically, a large value can converge more quickly, but

it will also bring ripples to the SoC estimation, losing the accuracy. However, as depicted in

Fig.7(b) the error of SoC estimation will remarkably increase when the discharging phase is

approaching the end and the terminal voltage is close to the cut-off voltage. It is because

of the progressive nonlinearity of SoC-OCV table in the range of lower SoC. In this regard,

the utilized first-order ECM is not able to capture the battery dynamics anymore, leading

to equally poor performance of MPCO, EKF and H-infinity. However, the primary goal of

MPCO to comply with the intrinsic electrochemical properties has still been achieved as

depicted in Fig.7(c). Based on Eq.(31) and Eq.(32), the hard constraints are imposed on

the polarization voltage and SoC. All the estimated Vp are thus bounded within the em-

pirical value ±0.04V , which pre-filters out the interference of estimation outliers, leading

to more accurate estimation of Vp. It is worth noting that the MPCO provides potential

ways to leverage the electrochemical knowledge of batteries. If more explicit constraints can

be prescribed, in principle, the accuracy of SoC estimation can be increased significantly

through the proposed MPCO scheme. The simulation results verify the applicability of the

proposed method on other eletrochemical systems. In specific, the proposed MPCO per-

forms competitively on the SoC estimation for lithium batteries, even more effectively in the
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convergence speed. Additionally, the robustness of the proposed method is stronger than

other counterparts.

6. Analytical Comparisons among Different Estimators

This section provides a brief analytical comparison among the four different online SOC

estimators mentioned in this paper. Starting with the simplest and fastest method, namely

Sliding Mode Observer (SMO), this observer updates the state vector estimate according to

measurement equation by:

x+(k) = x−(k) +







g1, f(x−(k), u(k)) > y(k)

g2, f(x−(k), u(k)) < y(k)

where g1 and g2 satisfy







gT1
∂f

∂x
< 0, f(x, u(k)) > y(k)

gT2
∂f

∂x
> 0, f(x, u(k)) < y(k)

Due to the simple structure, the advantages of SMO are obvious. It is straightforward to be

utilised, and thus has the smallest computational burden. Furthermore, the updating step

vector g1 and g2 are easy to find. On the other hand, the disadvantages of SMO are apparent

as well. The most unbearable one is that the arbitrary selection for g1 and g2 might result

in poor convergence, which has been reflected in the aforementioned simulation.

To overcome the drawbacks of SMO, the Kalman Filter/Extended Kalman Filter (EKF)

acts as an advanced method which maintains the basic logic on sliding of SMO, but further

introduces the covariance matrix of the state vector. The Kalman gain has secured the

sliding requirements on g1 and g2 in SMO:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + Σν)

−1

x+(k) = x−(k) +Kkek = x−(k) + gk

eTkCkgk = eTkCkKkek = eTkCkPk|k−1C
T
k (CkPk|k−1C

T
k + Σν)

−1ek

= eTkCkPk|k−1C
T
k ek(CkPk|k−1C

T
k + Σν)

−1 > 0
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The KF estimation aims at acquiring state estimate with the smallest covariance matrix,

i.e. any linear combination of state variables with the smallest variance. By doing this KF

exhibits the fastest convergence.

However, Kalman Filter also shows its limitations. The most widely argued point is the

assumption that errors follow normal distributions. This priori knowledge is not applicable

to most cases in the real world. In order to solve this issue, the H−infinity filter has been

proposed. Comparing with Kalman Filter, the H−infinity filter has the following gain value

and covariance matrix update:

Ŝk = LT
k SkLk

Pk|k = Pk|k−1

(

I − θŜkPk|k−1 + CT
k Σ

−1
ν CkPk|k−1

)−1

Kk = Pk|kC
T
k Σ

−1
ν

The H−infinity is only interested in the user-defined linear combination of state variables,

i.e. Lkx(k). Another difference from KF is in user-defined “enlarge” parameter, which makes

the covariance matrix and gain value slightly larger than in KF, intentionally leading to a

more robust result at the expense of larger covariances. In addition, it can be verified with

simple algebra that under special case of chosen parameters, H−infinity is equivalent to KF.

Nevertheless, all three methods discussed above cannot cope with constraints issues. The

method proposed in this paper is based on MPC framework to induce constrained estimates.

It can also be shown that without constraints, the performance of MPCO is equivalent to

the KF, which has further guaranteed the correctness of the rationale behind the proposed

MPCO method. Besides, MPCO is easy to understand and readily implementable.

7. Conclusion

This paper develops a novel SoC estimation method based on the powerful optimization

tool, namely, MPCO. Additionally, an in-depth investigation of the emerging grid-tied bat-

tery technique ZNBs has been provided in this work. The RLS method is incorporated with

a widely accepted first-order ECM for the parameter identification, which provides a simple
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implementation of ZNBs modelling not only to ensure the accuracy but also to simplify

the battery model structure. Moreover, there are two major advantages of the proposed

observer. Firstly, based on the inherent electrochemical knowledge, state constraints are

incorporated into the estimation process, which brings more robust estimates. Secondly,

an attempt in multi-window framework has demonstrated better performance in capacity

estimation. The experiments and simulations have verified the convergence, effectiveness,

and the generality of the proposed MPCO approach. Underpinned by the advantages of the

proposed MPCO, this method can provide a robust and reliable estimate to ZNBs capacity,

with a good tracking behaviour to handle the fluctuating capacity issues. This estimated

capacity can be regarded as an indicator of the reconditioning maintenance. Additionally,

the relationships among the state-of-the-art estimators has been discussed briefly in this

work.
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