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Abstract. We study Authenticated Encryption with Associated Data (AEAD) from the viewpoint
of composition in arbitrary (single-stage) environments. We use the indifferentiability framework to
formalize the intuition that a “good” AEAD scheme should have random ciphertexts subject to de-
cryptability. Within this framework, we can then apply the indifferentiability composition theorem to
show that such schemes offer extra safeguards wherever the relevant security properties are not known,
or cannot be predicted in advance, as in general-purpose crypto libraries and standards.
We show, on the negative side, that generic composition (in many of its configurations) and well-known

classical and recent schemes fail to achieve indifferentiability. On the positive side, we give a provably
indifferentiable Feistel-based construction, which reduces the round complexity from at least 6, needed
for blockciphers, to only 3 for encryption. This result is not too far off the theoretical optimum as we
give a lower bound that rules out the indifferentiability of any construction with less than 2 rounds.
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1 Introduction

Authenticated-Encryption with Associated-Data (AEAD) [Rog02, BN00] is a fundamental build-
ing block in cryptographic protocols, notably those enabling secure communication over untrusted
networks. The syntax, security, and constructions of AEAD have been studied in numerous works.
Recent, ongoing standardization processes, such as the CAESAR competition [Ber14] and TLS 1.3,
have revived interest in this direction. Security notions such as misuse-resilience [PS16, GL15,
HRRV15, RS06], robustness [ADL17, AFL+16, HKR15], multi-user security [BT16], reforgeabil-
ity [FLLW17], and unverified plaintext release [ABL+14], as well as syntactic variants such as online
operation [HRRV15] and variable stretch [HKR15, RVV16] have been studied in recent works.

Building on these developments, and using the indifferentiability framework of Maurer, Renner,
and Holenstein [MRH04], we propose new definitions that bring a new perspective to the design of
AEAD schemes. In place of focusing on specific property-based definitions, we formalize when an
AEAD behaves like a random one. A central property of indifferentiable schemes is that they offer
security with respect to a wide class of games. This class includes all the games above plus many
others, including new unforeseen ones. Indifferentiability has been used to study the security of
hash functions [CDMP05, BDPV08] and blockciphers [CPS08, HKT11, ABD+13, DSSL16], where
constructions have been shown to behave like random oracles or ideal ciphers respectively. We inves-
tigate this question for authenticated encryption and ask if, and how efficiently, can indifferentiable
AEAD schemes be built. Our contributions are as follows.

Definitions: We define ideal authenticated-encryption as one that is indifferentiable from a random
keyed injection. This definition gives rise to a new model that is intermediate between the
random-oracle and the ideal-cipher models. Accordingly, the random-injection model offers new
efficiency and security trade-offs when compared to the ideal-cipher model. Along the way, we
also recall the composition theorem and give an extension that includes game-based properties
with multiple adversaries.

Constructions: We study a number of AEAD schemes from the view of indifferentiability. We
obtain both positive and negative results. For most well-known constructions our results are
negative. However, our main positive result is a Feistel construction that reduces the number of
rounds from eight for ideal ciphers to only three for ideal keyed injections. This result improves
the concrete parameters involved as well. We also give a transformation from offline to online
ideal AEADs.

Efficiency lower bounds: Three rounds of Feistel are necessary to build injections. However,
we prove a stronger result that lower bounds the number of primitive queries as a function of
message blocks in any construction. This, in turn, shows that the rate of our construction is not
too far off the optimal solution. For this result we combine two lower bound techniques, one for
collision resistance and the other for pseudorandomness, which may be of independent interest.

The central motivation for the study of indifferentiable encryption is the composition theorem. We
give a brief overview of indifferentiability before discussing their implications for our work.

1.1 Background on Indifferentiability

A common paradigm in the design of symmetric schemes is to start from some simple primitive, such
as a public permutation or a compression function, and through some “mode of operation” build
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a more complex scheme, such as a blockcipher or a variable-length hash function. The provable-
security of such constructions has been analyzed mainly through two approaches. One is to formulate
specific game-based properties, and then show that the construction satisfies them if its underlying
primitives are secure. This methodology has been successfully applied to AEAD schemes. (See
works cited in the opening paragraph of the paper.) Following this approach, higher-level protocols
need to choose from a catalog of explicit properties offered by various AEAD schemes. For example,
one would use an MRAE scheme whenever nonce-reuse cannot be excluded [PS16, GL15, HRRV15,
RS06] or a key-dependent message (KDM) secure one when the scheme is required to securely
encrypt its own keys [BK11, BRS03].

The seminal work of Maurer, Renner, and Holenstein (MRH) on the indifferentiability of random
systems [MRH04] provides an alternative path to study the security of symmetric schemes. In this
framework, a public primitive f is available. The goal is to build another primitive F from f via
a construction Cf . Indifferentiability formalizes a set of necessary and sufficient conditions for the
construction Cf to securely replace its ideal counterpart F in a wide range of environments: there
exists a simulator S, such that the systems (Cf , f) and (F, SF ) are indistinguishable, even when
the distinguisher has access to f . Indeed, the composition theorem proved by MRH states that, if
Cf is indifferentiable from F , then Cf can securely replace F in arbitrary (single-stage) contexts.4

Thus, proving that a construction C is indifferentiable from an ideal object F amounts to proving
that Cf retains essentially all security properties implicit in F . This approach has been successfully
applied to the analysis of many symmetric cryptographic constructions in various ideal-primitive
models; see, e.g., [CDMP05, BDPV08, HKT11, DSSL16, DSST17]. Our work is motivated by this
composition property.

1.2 Motivation

Maurer, Renner, and Holenstein proposed indifferentiability as an alternative to the Universal Com-
posability (UC) framework [Can01] for compositional reasoning in idealized models of computation
such as the random-oracle (RO) and the ideal-cipher (IC) models. Indifferentiability permits finding
constructions that can safely replace ideal primitives (e.g., the random oracle) in various schemes.

The UC framework provides another general composition theorem, which has motivated the
study of many UC-secure cryptographic protocols. Küsters and Tuengerthal [KT09] considered
UC-secure symmetric encryption and defined an ideal functionality on par with standard notions of
symmetric encryption security. This, however, resulted in an intricate functionality definition that
adds complexity to the analysis of higher-level protocols.

By adopting the indifferentiability framework for the study of AEADs, we follow an approach
that has been successfully applied to the study of other symmetric primitives. As random oracles
formalize the intuition that well-designed hash functions have random-looking outputs, ideal en-
cryption formalizes random-looking ciphertexts subject to decryptability. This results in a simple
and easy-to-use definition. We discuss the benefits of this approach next and give limitations and
open problems at the end of the section.

4 We recall this theorem and its proof. Consider a game G that allows an adversary A to attack Cf with direct

oracle access to f . Game G controls the attack surface via GCf ,Af

. Viewing the composition of the game G and
the adversary A as an indifferentiability attacker, we may use the indifferentiability of Cf to show that the analysis

can be performed in game GF,ASF

instead. By assumption, the simulator S is able to produce f -values as if the

(monolithic) object F was constructed through CSF

. Combining algorithms A and S into B := AS we arrive at

game GF,BF

. Therefore, using indifferentiability, the G-security of Cf has been reduced to the G-security of F .
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Once a primitive is standardized for general and widespread use, it is hard to predict in which
environments it will be deployed, and which security properties may be intuitively expected from
it. For example, consider a setting where a protocol designer follows the intuition that an AEAD
scheme “essentially behaves randomly” and, while not knowing that AE security does not cover
key-dependent message attacks [BK11, HK07, BRS03] (KDM), uses a standardized general-purpose
scheme for disk encryption. A similar problem could occur in a cloud storage scenario when dedupli-
cation schemes [BKR13, ABM+13] are used. In other settings, a designer might create correlations
among keys (as in 3GPP confidentiality and authenticity mechanisms) or allow an adversary to
tamper parts of the key (e.g., set them to zero), expecting the underlying scheme to offer security
against related-key attacks [IK04, BK03] (RKAs). There are also chosen-key settings where the
adversary is allowed to entirely choose the keys. For example, certain MPC protocols [CO15] rely
on AE schemes that need to be committing against malicious adversaries, which can choose all
inputs and thus also the keys. This has lead to the formalizations of committing [GLR17] and
key-robust [FOR17] authenticated encryption. When there is leakage, parts of the key and/or ran-
domness might be revealed [PSV15, BMOS17]. All of these lie beyond standard notions of AE
security, so the question is how should one deal with such a multitude of security properties.

One approach would be to formulate a new “super” notion that encompasses all features of the
models above. This is clearly not practical. The model (and analyses using it) will be error-prone
and, moreover, properties that have not yet been formalized will not be accounted for. Instead, and
as mentioned above, we consider the following approach: a good AEAD scheme should behave like
a random oracle, except that its ciphertexts are invertible. We formulate this in the language of
indifferentiability, which results in a simple, unified, and easy to use definition. In indifferentiability
the adversarial interfaces are not restricted to uniformly or independently chosen keys. All inputs
are under the control of the adversary. This means that the security guarantees offered extend to
notions that allow for tampering with keys or creation of dependencies among the inputs. Once
indifferentiability is proved, security with respect to all these games, combinations thereof, and
new yet unforeseen notions simultaneously follows as a corollary of the composition theorem.

Therefore one use-case for indifferentiable schemes would be to provision additional safeguards
against primitive misuse in various deployment scenarios, such as general-purpose crypto libraries
or standards, where the relevant security properties for target applications are complex or not
known. We discussed some of these in the paragraph above. Protocol designers can rely on the
intuition given by an ideal view of AEADs when integrating schemes into higher-level protocols,
keeping game-based formulations implicit. Other applications include symbolic protocol analysis,
where such idealizations are intrinsic [MW04] and security models where proof techniques such as
programmability may be required [Unr12].

A concrete example. In Facebook’s message-franking protocol, an adversary attempts to com-
pute a ciphertext that it can later open in two ways by revealing different keys, messages and header
information. (Facebook sees one (harmless) message, whereas the receiver gets another (possibly
abusive) message.) Grubbs, Lu, and Ristenpart [GLR17] formalize the security of such protocols
and show that a standard AEAD can be used here, provided that it satisfies an additional security
property called r-BIND [GLR17, Fig. 17 (left)].

One important feature of this definition is that it relies on a single-stage game in the sense
of [RSS11]. The single-stage property immediately implies that any indifferentiable scheme is r-
BIND if the ideal encryption scheme itself satisfies the r-BIND property. In contrast, not every AE-
secure scheme is r-BIND secure [GLR17]. Interestingly, it is easy to see that the ideal encryption
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scheme (a keyed random injection) indeed satisfies r-BIND and this is what, intuitively, the protocol
designers seem to have assumed: that ciphertexts look random and thus collisions are hard to find,
even if keys are adversarially chosen.

Indifferentiable AEADs therefore allow designers to rely on the above (arguably pragmatic)
random-behavior intuition much in the same way as they do when using hash functions as random
oracles. As the practicality of random oracles stems from their random output behavior (beyond
PRF security or collision resistance) indifferentiable AEAD offers similar benefits: instead of fo-
cusing on a specific game-based property, it considers a fairly wide class of games for which the
random behavior provably holds. Thus an indifferentiable AE can be used as a safety net to ensure
any existing or future single-stage assumptions one may later need is satisfied (with the caveat of
possibly weaker bounds). However, we note that for RO indifferentiability there is the additional
motivation that a fair number of security proofs involving hash functions rely on modeling the hash
as RO. Our work also unlocks the possibility to use the full power of random injections in a similar
way (see [KPS13] and footnote 5).

To summarize, in the context of Facebook’s protocol, if an indifferentiable scheme was used
from the start, it would have automatically met the required binding property. The same holds
for RKA security (in 3GPP), KDM security (in disk encryption), and other single-stage AEAD
applications.

1.3 Contributions

Definitions. The MRH framework has been formulated with respect to a general class of random
systems. We make this definition explicit for AEAD schemes by formulating an adequate ideal
reference object. This object has been gradually emerging through the notion of a pseudorandom
injection (PRI) in a number of works [RS06, HKR15, HRRV15, BMM+15], and has been used to
study the security of offline and online AEADs [HKR15, HRRV15]. (We refer the reader to the
work of Hoang, Reyhanitabar, Rogaway, and Vizár [HRRV15] for a review of the rich body of work
in this area.) We lift these notions to the indifferentiability setting by introducing offline and online
random injections, which may be also keyed or tweaked. As a result, we obtain a new idealized model
of computation: the ideal-encryption (or ideal-injection) model, which is intermediate between the
RO and IC models.

Analysis of known schemes. We examine generic and specific constructions of AEADs that ap-
pear in the literature in light of our new definition. Since indifferentiability implies security in the
presence of nonce-misuse (MRAE) as well as its recent strengthening to variable ciphertext stretch,
RAE security,5 we rule out the indifferentiability of a number of (classical) schemes that do not
achieve these levels of security. This includes OCB [RBBK01], CCM, GCM, and EAX [BRW04],
and all but two of the third-round CAESAR candidates [Ber14]. The remaining two candidates,
AEZ [HKR17] and DEOXYS-II [JNPS16], are also ruled out, but only using specific indifferentia-
bility attacks.

We then turn our attention to generic composition [BN00, NRS14]. We study the well-known
Encrypt-then-MAC and MAC-then-Encrypt constructions via the favored (A1–A8) and modified

5 The notion of RAE security that we use in this paper deviates from the original notion proposed in [HKR15] in
the sense that we do not consider the benign leakage of partial information during decryption. This is because all
indifferentiable constructions must guarantee that, like the ideal object, decryption gives the stronger guarantee
that ⊥ is returned for all invalid ciphertexts.
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(B1–B8) composition patterns of Namprempre, Rogaway and Shrimpton [NRS14]. These include
Synthetic Initialization Vector (SIV) [RS06] as A4 and EAX [BRW04] as B1. To simplify and
generalize the analysis, we start by presenting a template for generic composition, consisting of a
preprocessing and a post-processing phase, that encompasses a number of schemes that we have
found in the literature. We show that if there is an insufficient flow of information in a scheme—a
notion that we formalize—differentiating attacks exist. Our attacks render all of these construc-
tions except A8 differentiable. We also identify key reuse as a mechanism to foil some of these
attacks, leaving the modifications of A2, A6, and A8 with key reuse as potential indifferentiability
candidates.

In short, contrarily to our expectations based on known results for hash functions and per-
mutations, we could not find a well-known AEAD construction that meets the stronger notion of
indifferentiability. We stress that these findings do not contradict existing security claims. However,
an indifferentiability attack can guide the search to find environments in which the scheme will not
offer the expected levels of security. For example, the lack of a successful simulator for some of our
differentiators stems from the fact that ciphertexts do not depend on all keying material, giving way
to related-key attacks. In others, the attacks target intermediate values in a computation, and are
reminiscent of padding oracles [Vau02]. Indeed, a scheme might be vulnerable to different types of
differentiating attacks, leading to different “bad” environments. On the other hand, proving indif-
ferentiability sets a lower bound for the complexity of any attack in any (single-stage) environment.
For these reasons, and even though our results do not single out any of the CAESAR candidates as
being better or worse than the others, we pose that our results are aligned with the fundamental
goal of CAESAR and prior competitions such as AES and SHA-3, to “boost to the cryptographic
research community’s understanding” of the primitive [Ber14].

Building injections. Looking for a simple and provably indifferentiable AEAD scheme, we revisit
the classical Encode-then-Encipher (EtE) transform [BR00]. Given expansion τ , which indicates the
required level of authenticity, EtE pads the input message with 0τ and enciphers it with a variable-
input-length (VIL) blockcipher. Decryption checks the consistency of the padding after recovering
the message. We show that EtE is indifferentiable from a random injection in the VIL ideal-cipher
model for any (possibly small) value of τ . The ideal cipher underlying EtE can be instantiated
via the Feistel construction [CHK+16] in the random-oracle model or via the confusion-diffusion
construction [DSSL16] in the random-permutation model. In a series of works, the number of rounds
needed for indifferentiability of Feistel has been gradually reduced from 14 [HKT11, CHK+16]
to 10 [DS15, DKT16] and recently to 8 [DS16]. Due to the existence of differentiators [CPS08,
CHK+16], the number of rounds must be at least 6. For confusion-diffusion, 7 rounds are needed
for good security bounds [DSSL16]. This renders the above approach to the design of random
injections somewhat suboptimal in terms of the number of queries per message block to their
underlying ideal primitives (i.e., their rate).

Our main positive result is the indifferentiability of three-round Feistel for large (but variable)
expansion values τ . Three rounds are also necessary, as we give a differentiator against the 2-round
Feistel network for any τ . In light of the above results, and state-of-the-art 2.5-round constructions
such as AEZ, this is a surprisingly small price to pay to achieve indifferentiability. Our results,
therefore, give some support to inclusion of redundancy for achieving authenticity (as opposed to
generic composition). Furthermore, when using a blockcipher for encryption with redundancy, a
significantly reduced number of rounds may suffice.
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To simplify the analyses and focus on fundamental problem of constructing random injections,
we first prove indifferentiability for a restricted class of differentiators that are bound to fixed (but
arbitrary) key, nonce, associated data and expansion values. We then show how to extend these
results to adversarially controlled values. We do this by proving a slightly more general result that
identifies a set of sufficient conditions on the construction, a simulator, and the ideal objects that
guarantee independence of executions, allowing a hybrid argument to go through. Along the way, we
also formalize a folklore result on key extension via random oracles for constructions and reference
objects that are structured.

The simulator. Our main construction is an unbalanced 3-round Feistel network Φ3 with inde-
pendent round functions where an input X1 is encoded with redundancy as (0τ , X1) (see Figure 1).

The main task of our indifferentiability simulator is to consistently respond to round-function
oracle queries that correspond to those that the construction makes for some (possibly unknown)
input X1. We show that with overwhelming probability the simulator can detect when consistency
with the construction must be enforced; the remaining isolated queries can be simulated using
random and independent values.

X1

0τ

X3 := X1 ⊕ F2(X2)X2 := F1(X1) X4 := X2 ⊕ F3(X3)

F1 F2 F3

Fig. 1. Random injection from 3-round Feistel.

Take, for example, a differentiator that computes
(X ′

3, X
′
4) := Φ3(X1) for some random X1, then com-

putes the corresponding round-function outputs X2 :=
F1(X1), Y2 := F2(X2), Y3 := F3(X1 ⊕ Y2), and finally
checks if (X ′

3, X
′
4) = (X1 ⊕ Y2, X2 ⊕ Y3).

Note that these queries need not arrive in this par-
ticular order. Indeed, querying F1(X1) first gives the
simulator an advantage as it can preemptively complete
this chain of queries and use its ideal injection to give
consistent responses. A better (and essentially the only) alternative for the differentiator would be
to check the consistency of outputs by going through the construction in the backward direction.
We show, however, that whatever query strategy is adopted by the differentiator, the distribution
of such chained queries in the real world takes the form

(X1, X2) (X2, Y2) (X1 ⊕ Y2, Y3) (X1, (X1 ⊕ Y2, X2 ⊕ Y3))

∆corresponding, respectively, to F1, F2, F3 and the construction. In the ideal world, the last
component is fixed by the random injection. However, the simulator can still match the above by
a change of variables, simulating them as

(X1, Y3 ⊕X4) (Y3 ⊕X4, X1 ⊕X3) (X3, Y3) (X1, (X3, X4))

for a random Y3, and (X3, X4) taken from the output of the random injection. For instance, in an
inverse attack, once the F2 and F3 queries arrive, (X3, X4) is fixed, and the simulator can use the
inverse construction oracle to work out the corresponding X1 and provide consistent answers.

A crucial part of this analysis hinges on the fact that the output of the first round function
is directly fed as input to the second round function as a consequence of fixing parts of the input
to 0τ .6 When launching an attack, the ability to cause collisions in internal wire values of Feistel
typically allows an adversary to create input/output pairs that exhibit non-trivial relations in the

6 Padding with 0τ has also been used by Kiltz, Pietrzak, and Szegedy [KPS13] in the context of building public-key
signature schemes with message recovery and optimal overhead. The authors show that 4 -round Feistel is publicly
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real world. From the simulator’s perspective, such collisions would create ambiguity and prevent it
from being able to check when consistency with the ideal object must be enforced. We show that
for large τ the attacker would have no hope of finding collisions on the internal wires for distinct
inputs in either direction.

As corollaries of our results (and the composition theorem) we obtain efficient and (simul-
taneously) RKA and KDM-secure offline (and, as we shall see, online) AEAD schemes in the
random-permutation model under natural, yet practically relevant restrictions on these security
models. For example, if the ideal AEAD AE is secure under encryptions of φAE (K) for some oracle
machine φAE , then so is an indifferentiable construction Cπ in presence of encryptions of φCπ

(K),
the restriction being that φ does not directly access π.

Bounds. Security bounds, including simulator query complexity, are important considerations for
practice. Our bound for the Encode-then-Encipher construction is essentially tight. Our simulator
for the 3-round Feistel construction has a quadratic query complexity and overall bounds are
birthday-type. Improving these bounds, or proving lower bounds for them [DRST12], remain open
for subsequent work.

Our construction of an ideal encryption scheme from a non-keyed ideal injection introduces
an additional multiplicative factor related to the number of different ideal injection keys queried
by the differentiator, resulting from a hybrid argument over keys. Furthermore, the number of
ideal injection keys used in the construction is bound to the number of encryption and decryption
operations that are carried out. This means that the overall bound for our authenticated encryption
construction includes a multiplicative factor of q3 (see Section 5.3).

We note that the concrete constructions that we analyze may satisfy (R)AE, RKA or KDM
security with improved bounds (via game-specific security analyses), while remaining compatible
with the single proof and bound that we present for all single-stage games.

Online AEADs. We give simple solutions to the problem of constructing an indifferentiable
segment-oriented online AEAD scheme from an offline AEAD.

Following [HRRV15], we define ideal online AEAD scheme via initialization, next-segment en-
cryption/decryption, and last-segment encryption/decryption procedures. The difference between
next-segment and last-segment operations is that the former propagates state values, whereas the
latter does not. Since a differentiator typically has access to all interfaces of a system, the state
values become under its control/view. For this we restrict the state size of the ideal object to be
finite and hence definitionally deviate from [HRRV15] in this aspect. Therefore our constructions
have the extra security property that the state value hides all information about past segments.

The most natural way to construct an ideal online AEAD would be to chain encryptions of
the segments by tweaking the underlying encryption primitive with the input history so far. This
would ensure independence across segments for different keys, nonces and prefixes, which is also
the intuition underlying the CHAIN transform of HRRV [HRRV15, Figure 8]. We show, how-
ever, that standard XOR-based tweaking techniques [HRRV15, BMM+15] are not sound in the
indifferentiability setting and, in particular, we present a differentiating attack on CHAIN.

In building an indifferentiable online AEAD scheme, we put use to the parallel composition
properties enjoyed by indifferentiable constructions [MRH04, DGHM13]. By decomposing the ideal

indifferentiable with tight security bounds. In public indifferentiability the simulator sees all the queries of the
differentiator to the construction oracle. This level of indifferentiability, however, is not sufficient in the AEAD
setting as it does not even imply CPA security. This is due to the fact that the adversary B := AS contains the
simulator, and hence it gets to see the full inputs (including the key) to the construction.
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object for online AEAD into simpler ones, we obtain a construction similar to CHAIN essentially
for free, where a random oracle is used to prepare the state for the next segment. This hashing
operation, however, comes at an extra cost proportional to the total size of key, nonce, associated
data, and message. By unwrapping the underlying key computation for the offline AEAD, we
can reduce the overhead to one that is proportional to the length of the message only. We call the
resulting scheme HashCHAIN. Via optimizations specific to 3-round Feistel, we are able to reduce
the overheads further to a constant number of hashes per segment. (We note, however, that other
constructions might also be amenable to benefit from this technique.) Furthermore, our construction
can also be optimized using a parallel and indifferentiable tree mode such as MD6 [DRRS09].

Lower bounds. The indifferentiability of Sponge [BDPV08] allows us to instantiate the round
functions in 3-round Feistel with this construction and derive a random injection in the random-
permutation model.7 This construction requires roughly 3w calls to its underlying (one-block)
permutation, where w is the total number of input blocks. This is slightly higher than 2.5w for
AEZ (which shares some of its design principles with us, but does not offer indifferentiability). This
leads us to ask whether or not an indifferentiable construction with rate less than 3 is achievable.
Our second main result is a lower bound showing the impossibility of any such construction with
rate (strictly) less than 2. To prove this lower bound, we combine negative results for constructions of
collision-resistant hash functions [Sta08, BCS05] and pseudorandom number generators by Gennaro
and Trevisan [GT00], and put critical use to the existence of an indifferentiability simulator. To
the best of our knowledge, this is the first impossibility result that exploits indifferentiability.

Roughly speaking, we prove the lower bound as follows. Take any indifferentiable random func-
tion Cπ : {0, 1}wn −→ {0, 1}wn from a permutation π : {0, 1}n −→ {0, 1}n in q queries. We “slice”
the construction into q components that process incoming inputs (from the previous stage), make a
single π-query, and return an output. Since the input space of Cπ is of size 2wn, we can iteratively
and in a small number of π-queries find a subset of inputs of size at least 2n such that the first w−1
slices always query π at a fixed set of points on these inputs. This means that the first w−1 queries
to π are essentially made redundant for inputs that are restricted to this subset. Let us now consider
the rest of the slices consisting of q − (w − 1) further queries to π. By viewing the corresponding
π-responses as parts of a seed, we can show that this truncated construction is a secure PRG that
makes no π calls and has a seed length that is shorter than its output length. However, no such
PRG can information-theoretically exist. This means we must have that n+ (q − (w − 1))n ≥ wn,
which translates to q ≥ 2w− 2. To make this argument precise, we have to ensure that hardwiring
of various values does not result in PRG insecurity. For this, we rely on the indifferentiability of
the construction. Our lower bound immediately extends to random injections as we can indifferen-
tiably reduce a random function to a random injection in a single query by simply chopping off a
sufficiently large number of bits from the outputs of the injection. We do not have constructions
or lower bounds for indifferentiable schemes with a rate r ∈ [2, 3). We leave bridging this gap for
future work.

1.4 Limitations and future work

As clarified by Ristenpart, Shacham, and Shrimpton [RSS11], the indifferentiability composition
theorem has limitations. It does not necessarily apply to multi-stage games where multiple ad-

7 The round-function for the intermediate round can actually be fully parallelized to cost a single parallel call to the
underlying primitive, as it is expanding a small seed to a large w-block random-looking string.
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versaries cannot be collapsed into a single central adversary. Such games do exist, for example
when an adversary’s outputs are constrained in their format/lengths. Accordingly, indifferentiable
AEAD schemes come with similar limitations. Moreover, other types of attacks, such as side-channel
analysis, algorithm substitution, backdoors, etc. lie outside the model.

Indifferentiability typically operates in an ideal model of computation. Although this methodol-
ogy has been successful in the analysis of practical schemes, it leaves open the question of standard-
model security. However, it does not exclude a “best of the two worlds” construction, which is both
indifferentiable and, for example, is RAE secure under a standard-model assumption. For example,
chop-Merkle–Damg̊ard [CDMP05] can be proven both indifferentiable from a random oracle and
collision resistant in the standard model under standard assumptions. We leave exploring this for
future work.

2 Basic Definitions

We let N denote the set of non-negative integers, including zero, and {0, 1}∗ denote the set of
all finite-length bit strings, including the empty string ε. (Note that {0, 1}0 = {ε}.) For two bit
strings X and Y , X|Y denotes string concatenation and (X,Y ) denotes a uniquely decodable
encoding of X and Y . The length of a string X is denoted by |X|.

2.1 Games

An n-adversary game G is a Turing machine GΣ,A1,...,An where Σ is a system (or functionality) and
Ai are adversarial procedures that can keep full local state but may only communicate with each
other through G. We say an n-adversary game Gn is reducible to an m-adversary game if there
is a Gm such that for any (A1, . . . ,An) there are (A ′

1 , . . . ,A
′
m) such that for all Σ we have that

GΣ,A1,...,An
n = G

Σ,A ′
1 ,...,A

′
m

m . Two games are equivalent if they are reducible in both directions. An
n-adversary game is called n-stage [RSS11] if it is not equivalent to any m-adversary game with

m < n. Any single-stage game GΣ,A can be also written as Ā G
Σ

for some oracle machine G and
a class of adversarial procedures Ā compatible with a modified syntax in which the game is called
as an oracle.

2.2 Offline reference objects

Underlying the security definition for a cryptographic primitive there often lies an ideal primitive
that is used as a reference object to formalize security. For instance, the security of PRFs is defined
with respect to a random oracle, PRPs with respect to an ideal cipher, and as mentioned above,
AEADs with respect to a random injection. Given the syntax and the correctness condition of a
cryptographic primitive, we will define its ideal counterpart as the uniform distribution over the set
of all functions that meet these syntactic and correctness requirements (but without any efficiency
requirements). We start by formalizing a general class of ideal functions—that may be keyed, admit
auxiliary data (such as nonces or authenticated data), or allow for variable-length outputs—and
derive distributions of interest to us by imposing structural restrictions over the class of considered
functions. This definitional approach has also been used, for example, in [BBT16, Section 6].

Ideal functions. A variable-output-length (VOL) function F with auxiliary input has signature

F : A ×M × X −→ R ,
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where A is the auxiliary-input space,M is the message space, X ⊆ N is the expansion space, and
R is the range. We let Fun[A ×M × X −→ R] be the set of all such functions satisfying

∀(A,M, τ) ∈ A ×M × X : |F(A,M, τ)| = τ .

We endow the above set with the uniform distribution and denote the action of sampling a uniform
function F via F←←Fun[A ×M × X −→ R]. To ease notation, given a function F , we define
Fun[F ] to be the set of all functions with signature identical to that of F . Granting oracle access
to F to all parties (honest or otherwise) results in an ideal model of computation.

Injections. We define Inj[A ×M × X −→ R] to be the set of all expanding functions that are
injective onM:

∀(A,M, τ), (A,M ′, τ) ∈ A ×M × X : M 6= M ′ =⇒ F(A,M, τ) 6= F(A,M ′, τ) ,

and satisfy the length restriction

∀(A,M, τ) ∈ A ×M × X : |F(A,M, τ)| = |M |+ τ .

Each injective function defines a unique inverse function F− that maps (A,C, τ) to either a unique
M if and only if C is within the range of F(A, ·, τ), or to ⊥ otherwise. (Such functions are therefore
tidy in the sense of [NRS14].) This gives rise to a strong induced model for injections where oracle
access is extended to include F−, which we always assume to be the case when working with
injections.

Observe that when k = 0 the key space contains the single ε key and we recover unkeyed
functions. For the sake of compactness we use the following abbreviations:

Fun[n,m] := Fun[{0, 1}0 × {0, 1}n × {m} −→ {0, 1}m] ,

Perm[n] := Inj[{0, 1}0 × {0, 1}n × {0} −→ {0, 1}n] .

Lazy samplers. Various ideal objects (such as random oracles) often appear as algorithmic pro-
cedures that lazily sample function values at each point. For instance, it is well known that lazy
samplers for random functions and permutations with arbitrary domain and range exist. These
procedures can be extended to admit auxiliary data and respect either of our length-expansion
requirements above. Furthermore, given a list L of input-output pairs, these samplers can be mod-
ified to sample a function that is also consistent with the points defined in L (i.e., the condi-
tional distribution given L is also samplable). We denote the lazy sampler for random oracles with
(Y ;L)←←LazyRO(A,X, τ ;L) and that for ideal ciphers with (Y ;L)←←LazyIC±(A,X;L). The case
of random injection is less well known, but such a procedure appears in [RS06, Figure 6]. We denote
this sampler with (Y ;L)←←LazyRI±(A,X, τ ;L).

2.3 Authenticated-Encryption with Associated-Data

We follow [HRRV15] in formalizing the syntax of (offline) AEAD schemes.8 We allow for arbitrary
plaintexts and associated data, and also include an explicit expansion parameter τ specifying the
level of authenticity that is required. Associated data may contain information that may be needed

8 When referring to an AEAD without specifying its type, we mean an offline AEAD.
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in the clear by a higher-level protocol (such as routing information) that nevertheless should be
authentic. We also only allow for public nonces as the benefits of the AE5 syntax with a private
nonce are unclear [NRS13].

Syntax and correctness. An AEAD scheme is a triple of algorithms Π := (K,AE ,AD) where:
(1) K is the randomized key-generation algorithm which returns a key K. This algorithm defines
a non-empty set, the support of K, and an associated distribution on it. Slightly abusing notation,
we denote all these by K. (2) AE is the deterministic encryption algorithm with signature AE :
K × N × H × {0, 1}∗ × X −→ {0, 1}∗. Here N ⊆ {0, 1}∗ is the nonce space, H ⊆ {0, 1}∗ is the
associated data space, and X ⊆ N is the set of allowed expansion values. We typically have that
K = {0, 1}k, N = {0, 1}n for k, n ∈ N, H = {0, 1}∗, and the expansion space contains a single value.
(3) AD is the deterministic decryption algorithm with signature AD : K×N ×H×{0, 1}∗×X −→
{0, 1}∗∪{⊥}. As usual we demand that AD(K,N,A,AE(K,N,A,M, τ), τ) = M for all inputs from
the appropriate spaces. We also impose the ciphertext expansion restriction that for all inputs from
the appropriate spaces |AE(K,N,A,M, τ)| − |M | = τ .

Ideal AEAD. An ideal AEAD is an injection with signature (K ×N ×H)×M × X −→ C and
satisfying the ciphertext-expansion restriction. Therefore an ideal AEAD is a random injection in
Inj[(K × N × H) ×M × X −→ C]. Given a concrete AEAD scheme Π with signature K × N ×
H ×M × X −→ C we associate the space AE[Π] := Inj[(K ×N ×H)×M × X −→ C] to it.9

Naming conventions. When referring to AEAD schemes we use (AE ,AD) instead of (F ,F−).
When the associated-data space is empty, we use (E ,D) for (encryption without associated data),
when the nonce space is also empty we use (F ,F−) (for keyed injection), when τ = 0 as well we
use (E,E−) (for blockcipher), and if these are also unkeyed we use (ρ, ρ−) and (π, π−) respectively.
For a random function (without inverse) we use H.

RAE security. Robust AE (RAE) security [HKR15, HRRV15, BMM+15] requires that an AEAD
scheme behaves indistinguishably from an ideal AEAD under a random key. Formally, for scheme
Π = (K,AE ,AD) and adversary A we define

Advrae
Π (A ) := Pr

[

RAE-RealAΠ

]

− Pr
[

RAE-IdealAΠ

]

,

where games RAE-RealAΠ and RAE-IdealAΠ are defined in Figure 2. Informally, we say Π is
RAE secure if Advrae

Π (A ) is “small” for any “reasonable” A . Misuse-resilient AE (MRAE) secu-
rity [RS06] weakens RAE security by constraining the adversary to a fixed and sufficiently large
value of expansion τ . AE security [Rog02] weakens MRAE security and requires that the adversary
does not repeat nonces in its queries to either oracle. These definitions lift to idealized models of
computation where, for example, access to an ideal injection in both the forward and backward
directions is provided.

The following proposition formalizes the intuition that the ideal AEAD, that is the trivial AEAD
scheme in the ideal AEAD model, is indeed RAE secure. This fact will be used when studying the
relation between indifferentiability and RAE security.

Proposition 1 (Ideal AEAD is RAE secure). For any q-query adversary A attacking the
trivial ideal AEAD Π in the ideal AEAD model we have that Advrae

Π (A ) ≤ q/2k.
9 We do not idealize the key-generation procedure. This is compatible with the approach adopted in the ideal-cipher
model where the key-generation algorithm simply returns a k-bit prefix of its random coins: the addition of oracle
access to the identity function does not change the model.
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Game RAE-RealAΠ

K←←K
b←←A

Enc,Dec

return b

Proc. Enc(N,A,M, τ)

return AE(K,N,A,M, τ)

Proc. Dec(N,A,C, τ)

return AD(K,N,A,C, τ)

Game RAE-IdealAΠ
(AE ′,AD′)←←AE[Π]
K←←K
b←←A

Enc,Dec

return b

Proc. Enc(N,A,M, τ)

return AE ′(K,N,A,M, τ)

Proc. Dec(N,A,C, τ)

return AD′(K,N,A,C, τ)

Fig. 2. Games defining RAE security. The adversary queries its oracles on inputs that belong to appropriate spaces.

Proof. The adversary in the real and ideal worlds has, respectively, access to

(AE(· · · ),AD(· · · ),AE(K, · · · ),AD(K, · · · )) and (AE(· · · ),AD(· · · ),AE ′(K, · · · ),AD′(K, · · · )) .

Here (AE ,AD) and (AE ′,AD′) are both ideal. These worlds are identical until A queries the second
set of oracles with the key K. However, the probability of this event in the second environment over
its q queries is at most q/2k as the two oracles are independent and (AE ′,AD′) can be implemented
independently of K. ⊓⊔

3 AEAD Indifferentiability

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [MRH04] formalizes
a set of necessary and sufficient conditions for one system to securely replace another in a wide
class of environments. This framework has been successfully used to justify the structural sound-
ness of a number of cryptographic constructions, including hash functions [CDMP05, DRS09],
blockciphers [ABD+13, CHK+16, DSSL16], and domain extenders for them [CDMS10]. The in-
differentiability framework is formulated with respect to general systems. When the ideal AEAD
object defined in Section 2.3 is used, a notion of indifferentiability for AEAD schemes emerges. In
this section, we recall indifferentiability of systems and make it explicit for AEAD schemes. We will
then discuss some of its implications that motivate our work.

3.1 Definition

A random system or functionality Σ := (Σ.hon,Σ.adv) is accessible via two interfaces Σ.hon and
Σ.adv. Here, Σ.hon provides a public interface through which the system can be accessed. Σ.adv
corresponds to a (possibly extended) interface that models adversarial access to the inner workings
of the system, which may be exploited during an attack on constructions. A system typically
implements some ideal object F , or it is itself a construction CF

′

relying on some underlying
(lower-level) ideal object F ′.

Indifferentiability [MRH04]. Let Σ1 and Σ2 be two systems and S be an algorithm called
the simulator. The (strong) indifferentiability advantage of a (possibly unbounded) differentiator
D against (Σ1,Σ2) with respect to S is

Advindiff
Σ1,Σ2,S(D) := Pr

[

Diff -RealDΣ1

]

− Pr
[

Diff -IdealDΣ2,S

]

,

where games Diff -RealDΣ1
and Diff -IdealDΣ2,S are defined in Figure 3. Informally, we call Σ1 in-

differentiable from Σ2 if, for an “efficient” S , the advantage above is “small” for all “reasonable”
D .
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Game Diff -RealDΣ1

b←←D
Const,Prim

return b

Proc. Const(X)

return Σ1.hon(X)

Proc. Prim(X)

return Σ1.adv(X)

Game Diff -IdealDΣ2,S

b←←D
Const,Prim

return b

Proc. Const(X)

return Σ2.hon(X)

Proc. Prim(X)

return SΣ2.adv(X)

Fig. 3. Games defining the indifferentiability of two systems.

In the rest of the paper we consider a specific application of this definition to two systems with
interfaces

(Σ1.hon(X),Σ1.adv(x)) := (CF1(X),F1(x)) and (Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)) ,

where F1 and F2 are two ideal cryptographic objects sampled from their associated distributions
and CF1 is a construction of F2 from F1. To ease notation, we denote the advantage function by
Advindiff

C,S (D) when F1 and F2 are clear from context. Typically F2 will be an ideal AEAD and F1

a random oracle or an ideal cipher.

3.2 Consequences

MRH [MRH04] prove the following composition theorem for indifferentiable systems. Here we state
a game-based formulation from [RSS11].

Theorem 1 (Indifferentiability composition). Let Σ1 := (CF1 ,F1) and Σ2 := (F2,F2) be two
indifferentiable systems with simulator S. Let G be a single-stage game. Then for any adversary
A there exist an adversary B and a differentiator D such that

Pr
[

GCF1 ,A F1
]

≤ Pr
[

GF2,B
F2
]

+Advindiff
C,S (D) .

Proof. The proof is simple enough to be presented here:

Pr
[

GCF1 ,A F1
]

≈ Pr

[

GF2,A
SF2

]

= Pr
[

GF2,B
F2
]

,

where the first transition follows from indifferentiability by viewing the composition of G and A

as a differentiator D , and the second from absorption of S into A as adversary B. ⊓⊔

As discussed in [RSS11], the above composition does not necessarily extend to multi-stage games
since the simulator often needs to keep local state in order to guarantee consistency. However, some
(seemingly) multi-stage games can be written as equivalent single-stage games (see Section 2 for
a definition of game equivalence). Indeed, any n-adversary game where only one adversary can
call the primitive directly and the rest call it indirectly via the construction can be written as a
single-stage game as the game itself has access to the construction. We summarize this observation
in the following theorem, which generalizes a result for related-key security in [FP15].

Theorem 2. Let Σ1 := (CF1 ,F1) and Σ2 := (F2,F2) be two indifferentiable systems with simula-
tor S. Let G be an n-adversary game and A := (A1, . . . ,An) be an n-tuple of adversaries where
A1 can access F1 but Ai for i > 1 can only access CF1. Then there is an n-adversary B and a
differentiator D such that

Pr

[

GCF1 ,A F1 ,A CF1
2 ,...,A CF1

n

]

≤ Pr
[

GF2,B
F2
1

,B
F2
2

,...,B
F2
n

]

+Advindiff
C,S (D) .
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Remark 1. There is a strong practical motivation for the restriction imposed on the class of games
above. Consider, for example, security against related-key attacks (RKAs) where the related-key
deriving (RKD) function φF1 may depend on the ideal primitive [AFPW11]. The RKA game is
not known to be equivalent to a single-stage game. The authors in [FP15] consider a restricted
form of this game where dependence of φ on the ideal primitive F1 is constrained to be through
the construction CF1 only. In other words, an RKD function takes the form φCF1 rather than
φF1 . When comparing the RKA security of a construction CF1 to the RKA security of its ideal
counterpart, one would expect the set of RKD functions from which φ is drawn in two games to be
syntactically fixed and hence comparable. Since no underlying ideal primitive for F2 exists, RKD
functions take the form φF2 and hence it is natural to consider RKD functions of the form φCF1

with respect to CF1 . The same line of reasoning shows that an indifferentiable construction would
resist key-dependent message (KDM) attacks for key-dependent deriving functions that depend
on the underlying ideal primitive via the construction only. Other (multi-stage) security notions
that have a practically relevant single-stage formulation include security against bad-randomness
attacks, where malicious random coins are computed using the construction, and leakage-resilient
encryption where leakage functions may rely on the construction. Therefore, from a practical point
of view, composition extends well beyond 1-adversary games.

Remark 2. Theorem 1 only reduces the security of one system to that of another, leaving an
overall security statement conditional on the latter. For instance, using the theorem one can deduce
the RKA (resp., KDM or leakage-resilient) security of an indifferentiable construction CF1 of F2

if F2 itself can be proven to be RKA (resp., KDM or leakage-resilient) secure. We have seen
an example of the latter in Proposition 1, where the ideal AEAD scheme is shown to be RAE
secure. Hence Theorem 1 and Proposition 1 immediately allow us to deduce that an indifferentiable
AEAD construction CF1 will be RAE secure in the idealized model of computation induced by
its underlying ideal primitive F1. Analogous propositions for RKA, KDM, leakage resilience of
the ideal AEAD scheme (for quantified classes of related-key deriving functions, key-dependent
deriving, and leakage functions) can be formulated. These in turn imply that an indifferentiable
AEAD scheme will also resist strong forms of related-key, KDM, and leakage attacks. We leave a
formal treatment to future work.

Public indifferentiability. Public indifferentiability is a (substantial) weakening of standard
indifferentiability where the simulator gets to see all the queries that the differentiator makes to
the construction oracle(s). This notion guarantees composition in games where all inputs to the
construction are known to the adversary. Collision resistance would be an example of such a game.
In the context of authenticated encryption, however, public indifferentiability is of limited use. In
particular it does not imply AE security (or even one-wayness) as the encryption key is kept outside
the view of the adversary in these security games.

4 Differentiators

Having defined AEAD indifferentiability, we ask whether or not (plausibly) indifferentiable con-
structions of AEAD schemes in the literature exist. In this section we present a number of generic
and specific attacks that essentially rule out the indifferentiability of many constructions that we
have found in the literature.10 We emphasize that existing schemes were not designed with the goal

10 Our treatment is not (and cannot be) exhaustive and hence we only focus on a selection of well-known schemes.
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Algo. AE(K,N,A,M, τ)

(est0, est1)← Ie(K,N,A,M, τ)

(K′, N ′,M ′, τ ′)← EH0 (est0)
C′ ← E(K′, N ′, ε,M ′, τ ′)

C ← EH1 (C′, est1)
return C

Algo. AD(K,N,A,C, τ)

(dst0, dst1)← Id(K,N,A,C, τ)

(K′, N ′, C′, τ ′)← DH0 (dst0)
M ′ ← D(K′, N ′, ε, C′, τ ′)

M ← DH1 (M
′, dst1)

return M

Fig. 4. A template for a typical generically composed AEAD scheme (AE ,AD) from an encryption scheme (without
associated data) (E ,D) and a hash function H.

of meeting indifferentiability, and our attacks do not contradict any security claims made under the
standard RAE, MRAE, or AE models. Indeed, many AEAD schemes are designed with the goal of
maximizing efficiency, forsaking stronger security goals such as misuse resilience or robustness.

4.1 Generic composition

Any construction that is not (M)RAE secure (in the sense of [RS06, HKR15]) can be immediately
excluded as one that is indifferentiable: the ideal AEAD is RAE secure (Proposition 1), furthermore
RAE is a single-stage game and hence implied by indifferentiability (Theorem 1). This simple obser-
vation rules out the indifferentiability of a number notable AEAD schemes such as OCB [RBBK01],
CCM, GCM, EAX [BRW04], and many others. The MRAE insecurity of these schemes are discussed
in the respective works.

RAE insecurity can be used to also rule out the indifferentiability of some generic AEAD
constructions. In this section, we present a more general result by giving differentiators against
a wide class of generically composed schemes, some of which have been proven to achieve RAE
security. This class consists of schemes built from a hash function H, which we treat as a random
oracle, and an encryption scheme (E ,D), which we consider to be an ideal AEAD without associated
data. We assume that the encryption algorithm of the composed scheme operates as follows. An
initialization procedure Ie is used to prepare the inputs to a preprocessing algorithm EH0 and a
post-processing algorithm EH1 . The preprocessing algorithm prepares the inputs to the underlying
E algorithm. The post-processing algorithm gets the output ciphertext and completes encryption
(e.g., by appending a tag value). The decryption algorithm operates analogously by reversing this
process via an initialization procedure Id, a preprocessing algorithm DH0 and a post-processing
algorithm DH1 . See Figure 4 for the details.

The next theorem shows that this class of generically composed schemes are differentiable as
long as certain conditions on information passed between the above sub-procedures are met.

Theorem 3 (Differentiability of generic composition). Let Π be a generically composed
AEAD scheme from an encryption scheme (without associated data) (E ,D) and a hash function
H that follows the structure shown in Figure 4 for some algorithms (Ie, E0, E1, Id,D0,D1). Let
∆C := |C| − |C ′| denote the ciphertext overhead added by the transform. Suppose that one of the
following conditions holds.

Type-I : Let est1 be the state passed to E1. We require that for all inputs (K,N,A,M) and for a
sufficiently large ∆1 we have that |(K,N,A,M)|−|est1| ≥ ∆1.

11 Furthermore, there is a recovery

11 We do not count the length of τ as our attacks also work for fixed values of τ .
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algorithm R1 (with no oracle access) that on input C recovers C ′, the internal ciphertext output
by E .

Type-II : Let dst0 be the state passed to D0. We require that for all inputs (K,N,A,C) and for a
sufficiently large ∆2 we have that |(K,N,A,C)| − |dst0| ≥ ∆2. Furthermore, there is a recovery
algorithm R2 (with no oracle access) that on input M ′ recovers M , the output of DH1 (M ′, dst1)
in decryption.

Then Π is differentiable. More precisely, for any type-I (resp., type-II) scheme Π there exists a
differentiator D1 (resp., D2) such that for any simulator S making at most q queries in total to its
ideal AEAD oracles

Advindiff
Π,S (D1) ≥ 1− q/2∆1 − (q + 1)/2∆C and Advindiff

Π,S (D2) ≥ 1− q/2∆2 − (q + 1)/2n .

Proof. We start with type-I schemes. The differentiator computes a ciphertext for a random set
of inputs using the construction in the forward direction and then checks if the result matches
that computed via the generic composition using the provided primitive oracles. To rule out the
existence of successful simulators the differentiator must ensure that it does not reveal information
that allows the simulator to use its ideal construction oracles to compute a correct ciphertext. The
restriction on the size of est1 (and the ability to recompute the internal ciphertext C ′ via R1) will
be used to show this. The pseudocode for the differentiator, which we call D1, is shown in Figure 5
(left). The attack works for any given value of τ , and to simplify the presentation, we have assumed
all spaces consist of bit strings of length n.

Analysis of D1. It is easy to see that when D1 is run in the real world with respect to the
generically composed construction and with its correctly implemented underlying primitives, its
output will be always 1. This follows from the fact that R1(C) will correctly recover the internal
ciphertext C ′ and hence EPrim2

1 (C ′, est1), being run with respect to correct inputs and hash oracle,
will also output C.

We now consider the ideal world. We first modify the ideal game so that the ideal object
presented to the simulator is independent of that used to answer construction queries placed by the
differentiator. This game is identical to the ideal world unless S queries the forward construction
oracle on (K,N,A,M, τ) (call this event E1) or the backward construction oracle on (K,N,A,C, τ)
(call this event E2). We will bound the probability of each of these events momentarily. In the
modified game, we claim that no algorithm S can compute C from (C ′, est1). This is the only
information about C that is revealed to a simulator and this claim in particular means that running
EPrim2

1 (C ′, est1) within D1 won’t output the correct C either. The answers to oracle queries placed
by S can be computed independently of the ideal construction oracles. Furthermore, (C ′, est1)
misses at least ∆C bits of information about C as est1 is computed independently of C. The
simulator therefore has at most a probability of 1/2∆C of outputting C in this game.

We now bound the probability of events E1 and E2 in the modified game. The occurrence of
Event E2 is similar to the analysis above for guessing the value of C, but here we admit that S can
make q distinct guesses corresponding to its maximum number of queries; this results in an overall
bound q/2∆C . To analyze event E1, we observe that (C ′, est1) misses ∆1 bits of information about
the uniformly chosen (K,N,A,M) as C ′ is simply a randomly chosen string. Hence, over q distinct
queries to the construction oracle, S can cause such an event with probability at most q/2∆1 . We
therefore obtain an overall upper bound of (q + 1)/2∆C + q/2∆1 for guessing C.

Let us now consider type-II schemes. The differentiator will compute a ciphertext corresponding
to a random input via the construction oracle and will check if it matches that computed via the
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Algo. D
Const+,Prim2

1 (τ)

(K,N,A,M)←←{0, 1}4n

C ← Const+(K,N,A,M, τ)
(est0, est1)← Ie(K,N,A,M, τ)
C′ ← R1(C)

C̃ ← EPrim2

1 (C′, est1)

return (C̃ = C)

Algo. D
Const+,Prim−

1
,Prim2

2 (τ)

(K,N,A,M)←←{0, 1}4n

C ← Const+(K,N,A,M, τ)
(dst0, dst1)← Id(K,N,A,C, τ)

(K′, N ′, C′, τ ′)← DPrim2

0 (dst0)
M ′ ← Prim−

1 (K
′, N ′, C′, τ ′)

M̃ ← R2(M
′)

return (M̃ = M)

Fig. 5. Differentiators D1 and D2 against type-I and type-II schemes respectively.

generically composed encryption algorithm. In this case, however, the differentiator will perform
the check by attempting to decrypt the internal ciphertext passed to E and verifying if the result
matches the message queried to the construction oracle. Once again, the differentiator has to ensure
that the simulator does not learn sufficient information to recover the originally queried message.
(For example, the simulator would be able to do this via the backward construction oracle if it learns
(K,N,A,C).) This will be guaranteed by the restriction imposed on the size of dst0. Algorithm R2

will be used to recover the original message M from the internal message M ′ (e.g., by removing
any tag values or masking). The pseudocode for this differentiator, which we call D2, is shown in
Figure 5 (right). Again, the attack will work for any fixed value of τ .

Analysis of D2. It is easy to see that when D2 is run in the real world with respect to the
generically composed construction and its correctly implemented underlying primitives, the output
will be always 1. This follows from the fact that Prim−

1 oracle will correctly recover the internal
message M ′ and hence R2, being run on the correct input, will recover the original message M .

We follow a similar strategy to that for type-I schemes to analyze the success probability of
simulators. We first modify the ideal game so that the ideal object presented to the simulator is
independent of that used to answer construction queries placed by the differentiator. This game
is identical to the ideal world unless S queries the forward construction oracle on (K,N,A,M, τ)
(call this event E1) or the backward construction oracle on (K,N,A,C, τ) (call this event E2).
In this modified game, no algorithm S can compute M from dst0 alone (note that (K ′, N ′, C ′, τ ′)
are determined based on dst0). The answers to oracle queries placed by S can be computed in-
dependently of the ideal construction oracles and since dst0 is independent of M—it is computed
from (K,N,A,C, τ) for a random C—the probability of guessing M is 1/2n. This in particular
means that the sequence of statements in D2 consisting of DPrim2

0 , Prim−
1 and R2 will output the

correct M with probability 1/2n as the sole input to perform these statements is dst0.

We now bound the probability of events E1 and E2 in the modified game. The occurrence of
Event E2 is similar to the analysis above for guessing the value of M , but here we admit that S
can make q distinct guesses corresponding to its maximum number of queries; this results in an
overall bound q/2n.

Finally, we consider the probability of event E2 where the simulator queries (K,N,A,C, τ).
Since the simulator only sees dst0, at least ∆2 bits of information about the uniformly chosen
(K,N,A,C) are missing from its view. Hence, over q distinct queries to the construction oracle,
S can cause such an event with probability at most q/2∆2 . We therefore obtain an over all upper
bound of (q + 1)/2n + q/2∆2 for guessing M . ⊓⊔
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Consequences for generic composition. Namprempre, Rogaway, and Shrimpton [NRS14] ex-
plore various methods to generically compose an AEAD scheme from a nonce-based AE scheme
(without associated data) and a MAC. In their analysis the authors single out eight favored schemes
A1–A8. Roughly speaking, schemes A1, A2, and A3 correspond to Encrypt-and-MAC where, re-
spectively, N , (N,A), and (N,A,M) are used in the preparation of the input IV to the base AE
scheme. Scheme A4 is the Synthetic Initialization Vector (SIV) mode of operation [RS06, Figure
5], which is misuse resilient. Schemes A5 and A6 correspond to Encrypt-then-MAC, where IV is
computed using N and (N,A), respectively. Schemes A7 and A8 correspond to MAC-then-Encrypt,
where IV is computed using N and (N,A) respectively. The MAC component in all these schemes
is computed over (N,A,M). Key L is used for IV and MAC generation, and an independent key K
is used in encryption. We refer the reader to the original paper [NRS14, Figure 2] for further details.
For convenience we reproduce this figure in Appendix A, Figure 20.

A-schemes. Indifferentiability of A1–A6 can be ruled out using the first differentiator D1 above:
the computation of tag T does not depend on the encryption key K, which means that K can
be omitted from est1, and hence |est1| is sufficiently smaller than |(K|L,N,A,M)|. We can rule
out the indifferentiability of A7 via our second differentiator D2: the computation of IV does not
depend on A, which means that IV can be omitted from dst0 and hence |dst0| is sufficiently smaller
than |(K|L,N,A,C)|. (Note that the required recovery algorithms in both cases trivially exist and
simply read off the correct outputs from the inputs.) This leaves A8 as the only favored scheme that
could meet indifferentiability. Our construction in the next section is similar to A8 and simplifies
it by providing authenticity via redundancy (rather than a MAC tag computation).

Key reuse. NRS [NRS14] consider independent keys K and L in their generically composed
schemes, a choice that is needed for standard-model security analyses. With ideal components,
however, one can consider reuse of keys: setting K = L avoids the differentiator D1. With this
modification, however, the second differentiator D2 can still be used to rule out A1, A3, A4, A5,
and A7. Indeed, in all these schemes, IV is either available in the clear as part of the ciphertext, or
its computation does not depend on A at all. This means that A can be excluded from dst0 and hence
|dst0| is smaller than |(K,N,A,C)|. This leaves the modified A2, A6, and A8 schemes (i.e., with key
reuse) as plausibly indifferentiable candidates. We note that these schemes, respectively, correspond
to the (enhanced) Encrypt-and-MAC, Encrypt-then-MAC, and MAC-then-Encrypt transforms with
key reuse. (Here both N and A are included in the computation of IV and (N,A,M) is included
in the computation of tag T .) Proving the indifferentiability of these transforms would bring new
and strong assurances for these classical constructions. We leave establishing these (or disproving
them) to future work.12

Other schemes. NRS also identify eight schemes B1–B8 [NRS14, Figure 3] associated to the
A-schemes that are more efficient as their MAC is instantiated via the “XOR3” construction. We
observe the B-schemes are not indifferentiable either. Schemes B1, B3, B4, B5, and B7 (with or
without key reuse) can be attacked identically to their corresponding A-schemes. For the remaining
schemes (with or without key reuse), a differentiator can ensure IV := fL1(N)⊕ fL3(A) is always
zero by setting L1 = L3 and N = A. This then enables launching the same attack performed by
D2 in Figure 5 with respect to IV = 0. Among the four N-schemes [NRS14, Figure 6], N1 and N2
follow the structure of A1 and A5 respectively, are type-I and hence differentiable. Schemes N3 and

12 We note, however, that a positive result would not provide a satisfactory construction as the underlying assumption
of an ideal AE (without associated data) is very close to the desired end goal of an ideal AEAD.
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N4 follow that of A7, are therefore type-II and hence also differentiable. In the literature, we also
found a recent scheme called Robust Initialization Vector (RIV) [AFL+16], that is MRAE secure
and bears similarities to our construction. We show in Appendix C that RIV is type-I and hence
differentiable. For the readers’ convenience, we reproduce the original figures depicting B-schemes
and N-schemes from [NRS14] in Appendix A.

4.2 A glimpse of CAESAR

We now take a brief look at the indifferentiability of the 15 third-stage candidates in CAE-
SAR [Ber14]. All except two of these candidates are one-pass, preserve prefixes, and hence do not
meet MRAE security [RS06, HKR15]. Therefore, by the observations at the beginning of this sec-
tion, they are also differentiable. The remaining two candidates are DEOXYS-II, a misuse-resilient
version of DEOXYS [JNPS16], and AEZ [HKR15, HKR17].

DEOXYS-II follows the Synthetic Counter-in-Tweak (SCT) composition pattern [PS16]. This
is akin to scheme A4 (SIV) discussed above [NRS14] with two exceptions: (1) the key K is reused in
the MAC and encryption computations and (2) the nonce N is both authenticated and directly fed
into the encryption stage. However, as in scheme A4, the IV is encoded explicitly in the ciphertext,
which means that associated data need not be known when inverting the encryption layer (cf. [PS16,
Figure 4]). According to the terminology introduced in the previous section, associated data A does
not need to be present in dst0. For this reason, DEOXYS-II and SCT both fall prey to the same
differentiating attack we described for the A4 construction with key reuse.

For AEZ, we consider the Encipher-AEZ-core algorithm of AEZ v5 [HKR17, Figure 3]. (See also
Figure 5 there for a schematic diagram of the construction, which we reproduce for the reader’s
convenience in Appendix B.) The computation of the final two ciphertext blocks in this algorithm
follows a 4-round Feistel network. For any input message of the form M1M

′
1 · · ·MmM ′

mMuvMxMy,
the final ciphertext block Cy is fully determined by (K,Mx⊕X,∆,My). Here the message is broken
into blocks of 128-bits, except for Muv which is at most 256-bits long, K is the secret key, ∆ is
a hash value that is independent of the message being enciphered, and X is fully determined by
(K,M1M

′
1 · · ·MmM ′

mMuv), i.e., by the key and the initial message blocks.
This design is not a problem in the RAE security model, since X and ∆ are unpredictable

when K remains hidden from adversary. However, an indifferentiability attacker can learn these
intermediate values. Indeed, for any message MMxMy, an attacker can use the oracles for the
underlying round functions to compute X and then choose a distinct message M′M ′

x
My such that

Mx ⊕ X = M ′
x
⊕ X ′. This means that the attacker can cause a collision in the final block of

the construction. A successful simulator in the ideal world would have to provide responses for the
round functions so that they also give rise to similar collisions with respect to ideal injection oracles.
This, however, is infeasible for any simulator that places a polynomial number of oracle calls. The
argument is similar to that used for a differentiating attack against the 5-round Feistel network
presented in [CPS08]: With high probability the attacker in the real world is able to generate a set
of construction input/output values that satisfy a non-trivial (XOR-based) relation. In the ideal
world, however, the simulator is bound to a random object for which such relations only hold with
negligible probability. This means that no simulation strategy can be successful.

4.3 Interpretations

The indifferentiability composition theorem, along with its generality and modularity implications
as discussed in the introduction, provide a strong case in support of adopting indifferentiability
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as a new design criteria for AEAD schemes. Put differently, a successful differentiator against
an AEAD scheme, even an RAE-secure one, can be indicative of potential deficiencies that can
manifest themselves as vulnerabilities when used in application scenarios that require strong levels
of security. By proving a scheme indifferentiable we show that no such vulnerabilities exist for any
single-stage security game.

On the other hand, the stronger indifferentiability guarantees could come with efficiency penal-
ties. Indeed, for ideal permutations (which can be seen as special forms of expansion 0 AEAD
schemes) the efficiency of the best known indifferentiable constructions is significantly worse than
what can be achieved in the standard model: the best results for Feistel networks and Confusion-
Diffusion networks yield rate 7 constructions (i.e., where the underlying primitive is called at least 7
times per input block) whereas rate 3 [DKS+17] and rate 4 [Luc96] constructions are known in the
standard model.

The efficiency penalties are not necessarily so large when it comes to AEADs. In the following
sections we will show how for large stretch τ a rate 3 indifferentiable scheme can be provably built.
This is not too far from the efficiency of practical RAE-secure constructions (cf. rate 2.5 for AEZ).
On the other hand, in Section 6 we give a lower bound showing that rate ≥ 2 is necessary. Although
extending this result to (M)RAE schemes remains open, we conjecture that this is indeed the case.
(In particular all MRAE scheme we have found have rate at least 2.) This means a 20–30% increase
in the number of primitives calls in our constructions, which is relatively a small price to pay for the
strong levels of security enjoyed by indifferentiable schemes. Moreover schemes with a rate closer
to that for RAE schemes are not (yet) ruled out. We leave finding such constructions (or proving
their impossibility) as an open challenge for the community.

5 Ideal Offline AEAD

We now give two constructions of ideal AEAD from simpler ideal primitives. The first is based on
a VIL blockcipher, it enjoys a simpler analysis and supports any expansion τ . The second is based
on the unbalanced 3-round Feistel network, where round functions are alternatively compressing
and expanding random oracles. It achieves higher efficiency, but here τ must be sufficiently large.

We present our proofs in a modular way. We first build ideal AEADs that achieve indifferentia-
bility in a restricted setting where all parameters except the input message are fixed. More precisely,
we first show that there is a simulator S that for any arbitrary but fixed value of K ′ := (K,N,A, τ)
is successful against all differentiators that are K ′-bound in the sense that they only query the
construction and primitive oracles on values specified by K ′. To this end, we also begin with the
simplifying assumption that the underlying ideal objects can be keyed with keys of arbitrary length.
We then show how these restrictions and simplifying assumptions can be removed to obtain fully
indifferentiable AEADs.

5.1 Indifferentiability of Encode-then-Encipher

Our first construction transforms a VIL ideal cipher with arbitrary key space into an ideal AEAD.
It follows the Encode-then-Encipher (EtE) transform of Bellare and Rogaway [BR00]. In its most
simple form, EtE fixes τ bits of the input to 0τ and checks the correctness of the included redundancy
upon inversion (see Figure 6).13 The domain of the underlying blockcipher should therefore be at

13 In both the EtE construction and the Feistel construction in the next section, the 0τ constant can be replaced
by any fixed constant ∆ of the same length. For EtE the indifferentiability proof is the same. For the Feistel
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least τ bits longer than that needed for the injection. This, in particular, is the case when both
objects have variable input lengths.

Algo. AE(K,N,A,M, τ)

K′ ← (K,N,A, τ)
C ← E(K′, 0τ |M)
return C

Algo. AD(K,N,A,C, τ)

K′ ← (K,N,A, τ)
T |M ← E−(K′, C), where |T | = τ
if T 6= 0τ return ⊥ else return M

Fig. 6. The (un-hashed) Encode-then-Encipher construction. In the full scheme we set K′ ← H(K,N,A, τ) for a
random oracle H.

The results of this section (in contrast to the attacks against other generic schemes) support
the soundness of EtE-based schemes from an indifferentiability perspective.

Theorem 4 (EtE is indifferentiable). The EtE construction in Figure 6 is indifferentiable from
an ideal AEAD for any fixed K ′ := (K,N,A, τ) when instantiated with a VIL ideal cipher (E,E−).
More precisely, there is an expected 4q-query simulator S( · ;K ′) that presents a perfect simulation
of the underlying permutation for any K ′-bound q/2-query differentiator D for q/2 ≤ 2n+τ/8.

Proof. We start by observing that since K ′ non-ambiguously encodes (K,N,A, τ), the simulator
gets to the τ that the differentiator is bound to when its first (forward or backward) query arrives.
Furthermore, for any such fixed K ′, the ideal AEAD objects (E,E−) simply implement a random
injection (ρ, ρ−) with expansion τ and the simulator only has to simulate a random permutation
(π, π−) rather than an ideal cipher. Hence we will present a simulator for permutations and with
respect to a random injection that receives a fixed τ at the onset as input. (The specific values
of (K,N,A) are not needed by the simulator; it is only important to recall that they are fixed
throughout the attack.)

Intuitively, the simulator will simulate the permutation on inputs of the form 0τ |M via the ideal
AEAD oracle ρ and will use a lazily sampled injection disjoint from ρ (i.e., one whose domain and
range are disjoint from those of ρ) for inputs of the form T |M with T 6= 0τ . The pseudocode for

the simulator Sρ± := (Sρ
+,S

ρ−

− ) is shown in Figure 7. In the description of the simulator we use
procedures LazyIC±(P ;L) for the lazy sampling of an ideal cipher in the forward and backward
directions conditioned on a partial list of already assigned elements L; see Section 2.2.

Let D be a differentiator. We show the views of D in the real and ideal worlds with respect
to the simulator S above are identical. The view of D consists of inputs to and outputs from the
forward/backward directions of the (real or ideal) injection and forward/backward directions of the
(real or simulated) permutation. More precisely, such a view (in either world) can be seen as a list
containing entries of the form

(Const+,M,C) , (Const−,M,C) , (Prim+, X, Y ) , (Prim−, X, Y ) ,

indicating the oracle, its input, and the output received (for the inverse queries the output is written
first). By observing that the oracles in both the real and ideal worlds faithfully implement functions

construction the proof can be easily adapted. To see this, note that any round function F1(X) can be replaced
with an indifferentiable one F ′

1(X) = ∆ ⊕ F1(X). The resulting construction becomes identical to the one using
0τ by cancellation.
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Algo. Sρ
+(X; τ)

if X = (0τ |M)
Y ← ρ(M, τ)
return Y

L′ ← L
do

(Y ;L)←←LazyIC(X;L′)
while ρ−(Y, τ) 6=⊥
return Y

Algo. Sρ−

− (Y ; τ)

M ← ρ−(Y, τ)
if M 6=⊥

X ← 0τ |M
return X

L′ ← L
do

(X;L)←←LazyIC−(Y ;L′)
while X = 0τ |M
return X

Fig. 7. The simulator for un-hashed EtE and with respect to a fixed τ . List L is initialized to empty.

and their inverses we can simplify D ’s view to a list containing entries of the form

(Const,M,C) , (Prim, X, Y ) .

We assume, without loss of generality and at the expense of doubling the query complexity of
the differentiator to q, that before termination D places the following queries.14 (1) For all entries
(Const,M 6=⊥, C) it queries X := 0τ |M to Prim+. (2) For all entries (Const,⊥, C) it queries C
to Prim−. Note that in both the real and ideal worlds Prim− returns a value T |M where T 6= 0τ .
(3) For all entries of the form (Prim, 0τ |M,Y ) it queries M to Const+. (4) For all entries of the
form (Prim, T |M,Y ) with T 6= 0τ it queries Y to Const−. This allows us to match Const and
Prim queries in a one-to-one manner and partition D ’s view in both the real and ideal worlds as
follows.

(1) Entries (Const,M,C) and (Prim, 0τ |M,Y ) with M 6=⊥. We call these invertible chains.

(2) Entries (Const,⊥, C) and (Prim, T |M,C) with a T 6= 0τ . We call these non-invertible chains.

Let us now look at the views of D in the two worlds.

Real world. In the real world, the distribution of D ’s view is induced by application of the
random permutation π to inputs. Hence the invertible and non-invertible chains are distributed as
show below for a random permutation π.

(Const,M, π(T |M)) , (Prim, T |M,π(T |M)) where T = 0τ ,

(Const,⊥, π(T |M)) , (Prim, T |M,π(T |M)) where T 6= 0τ .

Ideal world. In the ideal world, since the simulator knows τ and has access to (ρ, ρ−), it can detect
queries that belong to an invertible chain. If invertible, it simulates the output of the permutation
via the random injection. Hence the D ’s view of invertible chains is

(Const,M, ρ(M)) , (Prim, 0τ |M,ρ(M)) .

This is identically distributed to invertible chains in the real world as the outputs of ρ(·) and π(0τ |·)
are identically distributed. If the simulator detects that a value belongs to a non-invertible chain,

14 This is indeed without loss of generality because for any D that does not have this behavior, we can construct
another one that runs D , waits for it to decide on its output, and then performs the missing queries.
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it uses lazy sampling of a random permutation subject to the condition that sampled range values
are not in the range of ρ and sampled domain vales do not takes the form 0τ |M . Hence these values
are distributed as

(Const,⊥, π̃(T |M)) , (Prim, T |M, π̃(T |M)) where T 6= 0τ

for a random permutation π̃ that is disjoint from the from the permutation induced by ρ. By
construction, the simulator glues these two permutations together to get an overall random permu-
tation, and hence we can deduce that the overall view of D is distributed as in the real world.

Runtime of S. We now analyze the number of queries of the simulator to ρ or ρ−. For queries
corresponding to invertible chains the simulator places a single call to the forward/backward ideal
object. This, in particular, is always the case when τ = 0. To analyze non-invertible chains, we
assume τ ≥ 1. On each such query, the simulator places an initial call to the ideal object to detect
that the query is non-invertible. S+ then samples a random Y , subject to permutativity, such that
it does not have a preimage under ρ−. Value Y is sampled uniformly from a set of size at least
2n+τ − q. Furthermore there are at most 2n points that have a preimage under ρ−. Hence the
probability of rejection in each iteration is Pr[ρ−(Y, τ) 6=⊥] ≤ 2n

2n+τ−q
. Similarly, S− looks for a

random T |M such that T 6= 0τ . There are at most 2n values of T |M that start with 0τ and the
sampling is performed from a set of size at most 2n+τ − q. Hence the probability of rejection in
each iteration is again Pr[T 6= 0τ ] = 2n

2n+τ−q
. Assuming q ≤ 2n+τ/4 (and τ ≥ 1), this probability is

at most 2/3. This in turn leads to 1/(1 − 2/3) = 3 expected samples, and in total an expected 4
queries to the random injection for each query of D . ⊓⊔

Remark. Our simulator runs in expected polynomial time and provides a perfect simulation of the
permutation oracles. This simulator can be converted into one that runs in strict polynomial-time
in the standard way by capping the number of samples to t tries. With q ≤ 2n+τ/4, this simulator
fails with probability at most (2/3)t for each query of the differentiator, and hence introduces an
overall statistical distance of q(2/3)t.

5.2 Indifferentiability of 3-round Feistel

A variable-input-length (VIL) permutation can be constructed via the Feistel construction [CHK+16]
from a VIL/VOL random oracle, or via the confusion-diffusion construction [DSSL16] from a fixed-
input-length (FIL) random permutation.15 By indifferentiability composition, the VIL/VOL hash
function in Feistel can be instantiated with the Sponge construction [BDPV08] in the FIL random-
permutation model.16 The number of rounds needed for indifferentiability of Feistel from an ideal
cipher has been gradually reduced from 14 [HKT11, CHK+16] to 10 [DS15, DKT16] and recently to
8 [DS16]. Due to the existence of differentiators [CPS08, CHK+16], the number of rounds must be
at least 6.17 For confusion-diffusion, 7 rounds are needed for good security bounds [DSSL16]. This

15 We note that using a hybrid argument (and the fact that input lengths can be read from the inputs) the indiffer-
entiability of the Feistel and confusion-diffusion constructions carry over to variable input lengths, provided that
the underlying ideal objects also support variable-length inputs and outputs.

16 As noted in [DGHM13], when dealing with domain and range extension for Sponge one needs to take care of
encoding the lengths of inputs and outputs as part of the inputs fed to the random oracle.

17 And provable indifferentiability for 6 rounds seems to be difficult [CPS08].

25



state of affairs leaves the above approach to the design of random injections somewhat suboptimal
in terms of the number of queries per message block to a random permutation.

We ask weather or not this rate can be improved for random injections. Our starting point is
the observation that indifferentiability attacks against 5-round Feistel do not necessarily translate
to those that fix parts of the input to 0τ . Despite this, we show that differentiating attacks against
2-round Feistel still exist. For concreteness, we refer to the first two rounds of the construction
shown in Figure 1.

Proposition 2 (Differentiability of 2-round Feistel). The 2-round unbalanced Feistel con-
struction Φ2 with the left part of the input fixed to 0τ is differentiable from an ideal injection. More
precisely, there is a differentiator 2-query differentiator D such for any q-query simulator S

Advindiff
Φ2,S (D) ≥ 1− (2q + 1)/2n .

Proof. Consider the differentiator D in Figure 8 that checks the consistency of simulated output
against the construction on a random input X. When D ’s oracles implement the real construction
and the primitives F1 and F2, we have that (X2, X3) = (F1(X1), X1 ⊕ F2(F1(X1))). The second
primitive oracle is then queried on X2 = F1(X1) which means that Y2 = F2(F1(X1)). Hence in this
case X1 ⊕ Y2 = X3 with probability 1.

Algo. D
Const+,Prim2

X1←←{0, 1}
n

(X2, X3)← Const+(X1)
Y2 ← Prim2(X2)
if (X1 ⊕ Y2 = X3) return 1
else return 0

Fig. 8. Differentiator against 2-round Feistel.

Let us now analyze the ideal game execution. We
first modify the ideal game so that the ideal oracle avail-
able to the simulator is independent of that used to
answer construction queries placed by the differentia-
tor. This game is identical to the ideal game, unless
the simulator queries the ideal injection oracle in the
forward direction on X1 (call this event E1) or in the
backward direction on (X2, X3) (call this event E2). We
will bound the probability of each of these events oc-
curring momentarily. In this modified game, however,
S can only guess the random value Y2 = X1⊕X3 with probability at most 1/2n, since the answers
to all of its queries can be computed independently of the ideal construction oracle.

The probability of event E1 occurring is essentially that of the simulator outputting q distinct
values, over q queries, and hitting the value X1 of which it has no information; it is therefore at
most q/2n. Similarly, for event E2, the probability of occurrence is that of guessing a length n+ τ
random string over q distinct queries, and this is therefore at most q/2n+τ . The proposition follows
from the combination of the previous bounds. ⊓⊔

The simplicity of the above attack and the necessity for large number of rounds in building
indifferentiable permutations raise the undesirable possibility that many rounds would also be
needed for building random injections. We show, perhaps surprisingly, that this is not the case
and adding only one extra round results in indifferentiability as long as τ and the input size are
sufficiently large.18 This means, somewhat counter-intuitively, that the efficiency of constructions
of ideal injections can be increased when a higher level of security is required. The 3-round Feistel
construction and variable names are shown in Figure 1.

We present the more intricate part of the proof of the following theorem in the code-based
game-playing framework of Bellare and Rogaway [BR06] to help its readability and verifiability.

18 We note, on the other hand, that the previous construction applied to possibly small values of τ .
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Theorem 5 (Indifferentiability of 3-round Feistel). Take the 3-round Feistel construction
Φ3 shown in Figure 1 when it is instantiated with three independent keyed random oracles (the
round functions are all keyed with the same key and they are VIL/FOL in rounds 1 and 3 and
FIL/VOL in round 2). This construction is indifferentiable from an ideal AEAD scheme for any
fixed key of the form K ′ := (K,N,A, τ). More precisely, there is a simulator S such that for all
(qe, qd, q1, q2, q3)-query K ′-bound differentiators D with qe + qd + 2q1 + q2 + q3 ≤ q we have

Advindiff
Φ3,S (D) ≤ 9q2/2τ ,

as long as q2(q1 + q2 + q3) ≤ 2n+τ/2 and qe + q1 ≤ 2n/2. The simulator places at most q2 queries
to its oracles.

Proof. To make the notation lighter we omit the key input to the various ideal objects (as we are
dealing with K ′-bound differentiators) and indicate forward/backward queries to the construction
or ideal AEAD by C/C−, and queries to the real or simulated round functions by F1, F2, and F3.
To simplify the analysis, we consider a restricted class of differentiators that (1) query C(X1) before
any query F1(X1), and (2) never query C−. We also call a simulator C-respecting if it calls C only
when simulating F1(X1), in which case it places a single query C(X1). The following lemma shows
that we can focus on restricted differentiators for C-respecting simulators.

Lemma 1 (Restricting D). For any (qe, qd, q1, q2, q3)-query differentiator D there is a restricted
(qe + q1, 0, q1, q2, q3)-query differentiator D ′ such that for any C-respecting simulator S

|Advindiff
Φ3,S (D

′)−Advindiff
Φ3,S (D)| ≤ 3qd/2

τ ,

as long as qe + q1 ≤ 2n/2.

Proof. Given an unrestricted D consider the restricted D ′ that runs D , answers its C, F1, F2 and F3

queries using its own equivalent oracles, always queries C(X1) before a query F1(X1) by D , and
answers C−(Y ) queries with ⊥, unless Y was the output one of its C queries (which include those
of D to F1). In this case D ′ returns the correct preimage using a list that it maintains. It is easily
seen that D ′ is restricted. We analyze the distance between the outputs of D and D ′ in the two
worlds.

Real world. The two outputs with respect to the real game are identical unless D queries C− on
a Y that results in X1 6=⊥ in the real game and in ⊥ when run by D ′. The latter happens when X1

was not queried to either C or F1. (Recall D ′ forwards both the C and F1 queries of D to its C
oracle.) Let us call this event E. We bound the probability of E when D is run by D ′. First note that
D ′ can be modified to a new D ′′ that uses F1, F2, and F3 to perfectly emulate C via the construction.
This D ′′ can also convert a valid C− query Y = (X3, X4) to a valid pair (X1, X2 := F1(X1)) by
computing X2 := F3(X3) ⊕ X4 and X1 := F2(X2) ⊕ X3 without querying F1(X1) (see Figure 1).
Moreover, procedures F2 and F3 are independent of F1, and D ′′ can lazily sample them. We have
thus built an algorithm D ′′ that places at most q1+ qe queries to a random oracle F1 and outputs a
valid pair (X1, F1(X1)) in a list of qd possible candidates (corresponding to the inverse queries). By
the union bound, the success probability of any such D ′′ is upper bounded by qd/2

τ (independently
of q1 + qe).

Ideal world. We now turn to the outputs of D and D ′ in the ideal game. Since the outputs
of the simulator are not affected by the extra query of D ′ to C, the two outputs are identical

27



unless a query Y of D to C− results in X1 6=⊥ in the ideal world that is answered with ⊥ by D ′.
This happens if X1 was not queried to either C or F1. Let us call this event E. We bound the
probability of E in the former setting. We view the composition of algorithms D and S as a single
algorithm D with access to C and C−. We now look at the probability that D places a query Y
to C− and receives X1 6=⊥ but D (note the over-line) never queried C on X1. Since the simulator
is C-respecting, requiring that D does not query C or F1 on X1 is equivalent to requiring that D

does not querying C on X1. Moreover, since C is a truly random injection, after at most qe + q1
queries to C, the probability that a (fresh) candidate for Y inverts successfully under C− is at most
(2n−qe−q1)/(2

n+τ −qe−q1). Assuming qe+q1 ≤ 2n/2, maximizing the numerator and minimizing
the denominator, this translates to an overall upper bound of qd/(2

τ − 1/2) ≤ 2qd/2
τ for the qd

queries that D places to C−. (Note that queries of S to C− are not counted as C− is not replaced
by ⊥ for S .)

The lemma will follow from putting together the bounds established above. ⊓⊔

We prove indifferentiability with respect to restricted differentiators via a sequence of games
as follows. We start with the real game, which includes oracles for the construction and the round
functions, and gradually modify the implementations of these oracles until: (1) the construction
no longer places any queries to the round functions and is implemented as an ideal injection; and
(2) the round functions use this (ideal) construction oracle. We start with a high-level description
of these games, which are detailed in Figures 9–13.

Proc. C(X1) G0

Y1 ← F1(X1)
X2 ← Y1

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

X3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi) // i = 1, 2, 3

if ∃(Xi, Yi) ∈ Li return Yi

if (i = 1, 3) then Yi←←{0, 1}
τ

if (i = 2) then Yi←←{0, 1}
n

Li ← Li ∪ (Xi, Yi)
return Yi

Proc. C(X1) G1

Y1 ← F1(X1)
X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G2

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

Y1←←{0, 1}
n; L1 ← L1∪(X1, Y1)

X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2←←{0, 1}
τ ; L2 ← L2 ∪ (X2, Y2)

Y2 ← F2(X2); X3 ← X1 ⊕ Y2

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Fig. 9. Games G0, G1, and G2.

G0 : This game is identical to the (restricted) real game as shown in Figure 9 (left). Therefore in
this game the construction oracle C calls F1, F2 and F3 and adds entries to their corresponding
lists L1, L2, and L3. Note that list LC is not used here.

G1 : This game introduces flag1. The game sets flag1 if F1 chooses an output value that was already
queried to F2. As we will see, we can easily bound the probability of this flag getting set via
the birthday bound.19

19 As usual, once a flag is set, nothing matters. For example, we can assume that the game is set to return 0.
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Proc. C(X1) G3

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}
n × {0, 1}τ

Y3 ← F3(X3)
Y1 ← X4⊕Y3 // same distribution

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

if ∃(X2, Y
′
2 ) ∈ L2 then

flag1 ← 1

Y2 ← X3 ⊕X1 // same distribution

L2 ← L2 ∪ (X2, Y2)
// X3 = X1 ⊕ Y2 (redundant)
// Y3 = F3(X3) (redundant)
// X4 = X2 ⊕ Y3 (redundant)
LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G4

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}
n × {0, 1}τ

Y3 ← F3(X3)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

// if ∃(X2, Y
′
2 ) ∈ L2 then

// flag1 ← 1 (code removed)

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. Fi(Xi): Unchanged

Proc. C(X1) G5

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}
n × {0, 1}τ

LC ← LC ∪ (X1, (X3, X4))
Y1 ← F1(X1) // cannot remove

return (X3, X4)

Proc. F1(X1)

if ∃(X1, Y1) ∈ L1 return Y1

// Y1←←{0, 1}
τ (code removed)

(X3, X4)← C(X1)
Y3 ← F3(X3)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)

return Y1

Proc. F2(X2), F3(X3): Unchanged

Fig. 10. Games G3, G4, and G5.

G2 : This game explicitly samples fresh values that are added to L1 and L2 as a result of a non-
repeat query X1 to C within the code of C rather than under the corresponding round functions.
This is a conceptual modification and the game is identical to G1. Indeed, the sampled L1 entry
is always guaranteed to be fresh assuming a non-repeat value X1, and the L2 entry will be
also non-repeat or flag1 is set. List LC is used to deal with repeat queries and avoid spurious
samplings.

G3 : This game introduces a (conceptual) change of random variables. Instead of choosing Y1
and Y2 (i.e., the outputs of F1 and F2) randomly and computing the outputs (X3, X4) of the
construction, it first chooses (X3, X4) and sets Y1 and Y2 based on these, the input, and Y3.
This is done via a linear change of variables that will not affect the distributions of Y1 and Y2,
as we show below. This game constitutes our first step in constructing the simulator by defining
the outputs of F1 and F2 in terms of those for C. The proof, however, is not yet complete:
although C is implemented independently of the round functions, F2 and F3 need access to the
list of queries made to C. This is not permitted in the (full) indifferentiability setting. In the
rest of the proof we remove this dependency.

G4 : This game removes flag1 (which allowed the previous transitions to be carried out in a con-
servative way) as we wish to gradually construct the code of the simulator, and this code is not
needed in the final simulation.20

G5 : This game shifts most of the code from the C oracle to the F1 oracle. In particular, the
manipulations of L1 and L2 are now done within F1. The outputs of C are still sampled within
the construction procedure and C makes a call to F1. Procedure F1 retrieves the necessary

20 We need not introduce additional terms as a results of this change. Indeed, suppose games G and G′′ never set
flag, but game G′ does. If these three games are identical until flag is set, then the distance between G and G′′ is
still bounded by the probability of flag getting set in any game.
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Proc. C(X1) G6

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}
n × {0, 1}τ

LC ← LC ∪ (X1, (X3, X4))

// Y1 ← F1(X1)

return (X3, X4)

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

// Y2←←{0, 1}
n (code removed)

for (X1, (X3, X4)) ∈ LC

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X ′
1, X2)∈L1 ∧X

′
1 6=X1

flag2 ← 1
(X3, X4)← C(X1)
//Y3 ← F3(X3) (redundant)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)

return Y2 //well-defined due to flag2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G7

Unchanged

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X1, (X3, X4)) ∈ LC

if ¬∃(X3, Y3) ∈ L3 then
Y3 ← F3(X3)

for (X1,(X3,X4))∈LC ,(X3,Y3)∈L3

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X ′
1, X2) ∈ L1 ∧X ′

1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G8

Unchanged

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

// for (X1, (X3, X4))∈LC

// if ¬∃(X3, Y3) ∈ L3 then
// Y3 ← F3(X3)
// if (X2 = X4 ⊕ Y3) then
// flag3 ← 1 (dummy)

for (X1, (X3, X4))∈LC , (X3, Y3)∈L3

Y3 ← F3(X3)
if (X2 = X4 ⊕ Y3) then

if ∃(X ′
1, X2) ∈ L1 ∧X ′

1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Proc. F1(X1), F3(X3): Unchanged

Fig. 11. Games G6, G7, and G8.

(X3, X4) values by calling back the construction (note these are now added to LC prior to
calling F1). This modification is conceptual since (1) restricted differentiators always call the
construction oracle before calling F1 and hence the entry for X1 will already be in the list LC ,
and (2) although some queries to F2 and F3 may no longer be done, these oracles behave as
random oracles and hence performing such queries earlier or later does not affect the view of
the adversary in any way.

G6 : This game removes the query to F1 from C and adds a bad event based on flag2 to F2 that
guarantees that this game is identical to G5 until flag2. Removing the call to F1 from C has
implications for F2, since the operation of this oracle depends on entries that were added to L2

whenever a call to C (and therefore a call to F1) occurred. For each F2 query, we therefore need
to ensure that processing left undone in this modified construction oracle (which may influence
the view of the adversary) is carried out as before. To this end, we go through the entries in LC

and check if an entry (X1, (X3, X4)) occurred that might have set the value of Y2. If more than
one such entry exists, then this is detected as a collision at the output of F1 and flag2 is set. If
only one candidate is found, this corresponds exactly to the query that would have been made
by the removed F1 call. If no candidate is found, then the oracle simply samples a fresh value
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Proc. C(X1): Unchanged G9

if ∃(X1, (X3, X4)) ∈ LC then
return (X3, X4)

(X3, X4)←←{0, 1}
n × {0, 1}τ

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2⊕Y3

if (X1, (X3, X4)) ∈ LC then

if ∃(X ′
1, X2) ∈ L1 ∧X ′

1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1) G10

if ∃(X1, (X3, X4)) ∈ LC

return (X3, X4)
(X3, X4)←←{0, 1}

n × {0, 1}τ

if ∃(X ′
1, (X3, X4)) ∈ LC then

flagC ← 1

LC ← LC ∪ (X1, (X3, X4))
return (X3, X4)

Proc. C−(X3, X4)

if ∃(X1, (X3, X4))∈LC return X1

return ⊥

Proc. F2(X2): Unchanged

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

if (X1, (X3, X4)) ∈ LC then
if ∃(X ′

1, X2) ∈ L1 ∧X ′
1 6= X1

flag2 ← 1
(X3, X4)← C(X1)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Proc. F1(X1), F3(X3): Unchanged

Proc. C(X1), C
−(X3, X4) G11

Unchanged

Proc. F2(X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

Y3 ← F3(X3); X4 ← X2 ⊕ Y3

X1 ← C−(X3, X4)
if X1 6=⊥ then

if ∃(X ′
1, X2) ∈ L1 ∧X ′

1 6= X1

flag2 ← 1

// (X3, X4)←C(X1) (removed)

Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Proc. F1(X1), F3(X3): Unchanged

Fig. 12. Games G9, G10, and G11.

as before. The games are therefore identical until flag2 is set, the probability of which we bound
via a birthday bound below.

G7 : This game introduces a conceptual change in the way the loops in F2 are executed. First,
all X3 values corresponding to entries in LC are queried to F3 if they were not previously done
so. This means that the subsequent search for a good Y3 can be equivalently made by going
through those entries in LC whose X3 value is already present in L3. This change sets the ground
for the next game where we drop the first loop completely.

G8 : We now remove the code that corresponds to the first loop in F2 completely and argue that
there is a rare event that allows us to prove the games identical until bad and bound the
statistical distance between the two. This rare event is explicitly shown, for convenience, as a
dummy flag3: it is activated whenever the first loop was adding to list L3 a freshly sampled
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entry (X3, Y3), which is used by the second loop.21 Again we can bound the probability of this
event easily, as F3 implements a random oracle.

G9 : This game rewrites the loops in F2 and only looks in LC for values that will be used by F2,
i.e., only those entries with X4 = X2 ⊕ Y3 will be searched over. This is a conceptual change.

G10 : This game introduces flagC , which is set if collisions in the outputs of C are found. This
prepares us to modify the implementation of C from a random function to a random injection.
We bound this via a standard RF/RI switching lemma. This game also introduces a (partial
and so far unused) inverse C− to C that returns the preimage to (X3, X4) if this value was
queried to C. This will allow us to remove the dependency on the LC next. (Recall that the
differentiator is restricted and it cannot call C− at all.)

G11 : In this game F2 no longer uses LC ; instead it uses C− to check if a value was queried to
C. Since this partial inverse oracle always returns ⊥ for inputs that are not on LC , this game
is identical to the previous game. (Note also that we may also omit the re-computation of
(X3, X4).)

G12 : This game modifies C to the forward direction of a random injection oracle and C− to its
backward direction (which could return a non-⊥ value even if an inverse is not found in LC). This
modification can be bounded via an argument similar to the analysis of the ideal world under
Lemma 1. Note that in Lemma 1 we were looking at inverse queries placed by the differentiator.
In contrast, here we are analyzing the probability that the simulator places an inverse query
that was not previously obtained from the forward construction oracle.

Proc. C(X1)

(X3, X4)←←LazyRI(X1;LC)
Return (X3, X4)

Proc. C−(X3, X4)

X1←←LazyRI−((X3, X4);LC)
Return X1

Proc. Fi(Xi): Unchanged G12

Fig. 13. Game G12.

Now observe that G12 is the ideal game where procedures F1, F2 and F3 are implemented in a
way that make use of random injection oracles (C,C−) but not its internal list LC . By viewing the
implementations of these procedures as three (sub-)simulators S1, S2 and S3 as shown in Figure 14,
we arrive at our simulator. We note that S2 omits flag2 in F2 with no loss in advantage (cf. remark
in the conservative jump to G4 above). We also note that this simulator is C-respecting as needed
in Lemma 1 above.

We now formally bound the probabilities of setting the four flags in the game sequence above.
Let qe, q1, q2 and q3 be, respectively, the number of queries of the restricted differentiator to C,F1, F2

and F3.

flag1 in game G1 : This flag is set whenever in a non-repeat query to the construction oracle a
value of X2 is freshly sampled from the uniform distribution over {0, 1}τ and it happens that
such a value already exists in L2, a list of length at most qe + q2. The probability of this event
occurring on each query to the construction is at most (qe + q2)/2

τ , and (q2e + qeq2)/2
τ overall.

21 Alternatively, we can explicitly introduce flag3 in G8 and then immediately remove it (in a game G8.5); cf. the
footnote in the conservative jump to G4 above.
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Algo. SC
1 (X1)

if ∃(X1, Y1) ∈ L1 return Y1

(X3, X4)← C(X1)
Y3 ← S3(X3)
Y1 ← X4 ⊕ Y3

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
return Y1

Algo. SC−

2 (X2)

if ∃(X2, Y2) ∈ L2 return Y2

for (X3, Y3) ∈ L3

X4 ← X2 ⊕ Y3

X1 ← C−(X3, X4)
if X1 6=⊥ then

L1 ← L1 ∪ (X1, Y1)
X2 ← Y1

Y2 ← X3 ⊕X1

L2 ← L2 ∪ (X2, Y2)
if ¬∃(X2, Y2) ∈ L2

Y2←←{0, 1}
n

L2 ← L2 ∪ (X2, Y2)
return Y2

Algo. S3(X3)

if ∃(X3, Y3) ∈ L3 return Y3

Y3←←{0, 1}
τ

L3 ← L3 ∪ (X3, Y3)
return Y3

Fig. 14. Simulator for the 3-round Feistel construction in terms of three sub-simulators corresponding to the three
round functions. The sub-simulators share lists L1, L2, and L3 as joint state (which are initialized to empty). The
for-loop and “if ∃(Xi, Yi) ∈ Li” commands go through the list in some well-defined order.

flag2 in G6 : This flag is set whenever two different values of X1 queried to the construction,
corresponding to distinct LC entries (X1, (X3, X4)) and (X ′

1, (X
′
3, X

′
4)) and corresponding L3

entries (X3, Y3) and (X ′
3, Y

′
3) give rise to the same value X2 = X4⊕Y3 = X ′

4⊕Y
′
3 . Since X1 6= X ′

1

we know that X4 and X ′
4 are sampled independently of each other. This means that, even

fixing Y3 and Y ′
3 , the probability of this event occurring for two arbitrary entries in L1 is

exactly 1/2τ . Since list L1 is of size at most q1 + q2, we have that the overall probability of this
event occurring is at most (q1 + q2)

2/2τ .
flag3 in G8 : This flag corresponds to the bad event that could arise when one removes explicit

samplings from F2 in G8. In particular, it corresponds to the probability that a freshly sam-
pled Y3 value happens to satisfy an equation X2 = X4 ⊕ Y3, where X2 and X4 are fixed. Since
this event can occur at most once for each entry in LC , the overall probability of this occurring
is upper bounded by qe/2

τ .
flagC in G10 : This event corresponds to collisions at the output of a random oracle of output

size n + τ emulated inside the construction oracle in G10. The probability of it occurring can
therefore be bounded by q2e/2

n+τ .
G11 to G12 : We need to upper-bound the probability of a backward query to C− that inverts

successfully, but was not returned by C. The maximum number of queries to C− is q2|L3|.
Guessing a fresh and valid (X3, X4) without obtaining it from C can be done with probability
at most 1/(2n+τ−q2|L3|); which brings the overall probability to at most q2|L3|/(2

n+τ−q2|L3|).
Assuming q2|L3| ≤ 2n+τ/2, this can be upper bounded by 2q2|L3|/2

n+τ . Note also that |L3| ≤
q1 + q2 + q3.

Variable change in G3 : It remains to show that the (variable) change introduced in game G3

preserves the distributions on Y1, Y2 and Y3 and (X3, X4) in G2. In both games F3 is an
independent random oracle and both games use F3 to compute Y3. On a non-repeat query X1

to C, uniform and independent Y1 and Y2 are generated in G2. The distributions of Y1 and Y2 in
G3 are also uniform and independent as X4 and X3 are uniform and independent (and XORing
with a constant acts as a permutation). Finally G2 sets X3 := X1⊕Y2 and X4 := Y1⊕Y3. This
is also the case in G3 as

X1 ⊕ Y2 = X1 ⊕X3 ⊕X1 = X3 and Y1 ⊕ Y3 = X4 ⊕ Y3 ⊕ Y3 = X4 .
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Collecting the terms above, we obtain an overall bound of

(q2e + qeq2) + (q1 + q2)
2 + qe

2τ
+

q2e + 2q2(q1 + q2 + q3)

2n+τ
.

Since qe + 2q1 + q2 + q3 ≤ q, this bound simplifies to 6q2/2τ . We note that the simulator places at
most q2 oracle queries (it is quadratic due to the loop in SC−

2 ). ⊓⊔

5.3 Removing restrictions and simplifications

Our AEAD schemes were analyzed with respect to differentiators that were bound to a fixed
(K,N,A, τ). We deal with arbitrary (K,N,A, τ) by applying a hybrid argument over (K,N,A, τ)
and their respective simulators. For this argument to hold, it is important to ensure that the
simulators do not “interfere” with each other: not only should they be run on independent coins,
but also their ideal AEAD oracles should be independent. We formalize this argument in a more
general form.

From key-wise to full indifferentiability. We call a keyed ideal object F uniformly keyed
if F(K,X) and F(K ′, X) are identically and independently distributed for any X and distinct
keys K and K ′. Let CF1 be a construction of a uniformly keyed object F2 from a uniformly keyed
object F1. We call the construction key-respecting if for all inputs (K,X) it queries F1 on K
only. (Note this means that the key spaces of the two objects are identical.) We call a simulator
(for F1) key-respecting if for all inputs (K,X) it queries F2 on K only. We call a differentiator
key-respecting if it always queries both the construction and the primitive oracles on K only. We
call the construction key-wise indifferentiable if it is indifferentiable with a key-respecting simulator
against all key-respecting differentiators.

Lemma 2 (Hybrid over keys). Let F1 and F2 be two uniformly keyed objects and CF1 be a key-
respecting construction of F2 from F1. Then if CF1 is key-wise indifferentiable, it is also (fully)
indifferentiable. More precisely, for any key-respecting simulator S and any q-query (unrestricted)
differentiator D there is a key-respecting differentiator D ′ such that

Advindiff
C,S (D) ≤ q ·Advindiff

C,S (D ′) .

Proof (Sketch). By key-wise indifferentiability, for each value ofK the distributions (F2(·),SF2(K, ·))
and (CF1 (K, ·),F1(K, ·)) are close. Since SF2(K, ·) and CF1 (K, ·) are both key-respecting and the
ideal objects F1(K, ·) and F2(K, ·) are independently distributed for distinct keys K, the outputs
of the real (resp., ideal) worlds for different values of K are independent. This allows us to apply
a hybrid argument over K to conclude. Appendix D gives the details of the hybrid argument. ⊓⊔

In order to apply this result to the EtE transformation, it suffices to syntacticly express a
variable input/key length ideal cipher (in both its forward and backward directions) as a single
keyed primitive F1, the ideal AEAD as a keyed primitive F2, and then show they are key-respecting.
To this end, we map the keys of the ideal cipher to the keys of F1 and treat the AEAD input
components (K,N,A, τ) as the key to F2 (note that this is consistent with our presentation in
Figure 6). To deal with inverse oracles, we append a bit to the inputs indicating the direction of
the oracle that is being queried. Note that this bit cannot be appended to the key as otherwise
the resulting ideal objects would not be independent for different keys; indeed, inverse and forward
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oracles for the same object would be accessible via different keys, which would prevent applying the
lemma. With respect to these (syntactic) implementations of the ideal cipher and the ideal AEAD,
the EtE constructions and its associated simulator can be easily seen to be key-respecting.

For 3-round Feistel, we define F1 as having the three round functions inside it, and attaching 2
bits to the inputs to identify which one is being called. Similarly to EtE, we will treat the AEAD
input components (K,N,A, τ) as the key to F2. Since the lemma requires the construction to be key-
respecting, with these implementations of Fi and the ideal AEAD, the same key (K,N,A, τ) has to
be used in the three round functions (which are nevertheless independent). We note that imposing
the key-respecting restriction across all round functions is not merely a technicality arising from
our proof presentation. Indeed, without observing this requirement, differentiating attacks similar
to those in Section 4 arise.

Dealing with keys of arbitrary size. Objects with an arbitrarily large key space can be
indifferentiably built from those with a smaller key space in the standard way by hashing the key
using a random oracle. This means we can remove the assumption of variable key lengths on the
VIL ideal cipher in our construction. Although establishing this for the ideal cipher would suffice
for our purposes, we prove a slightly more general result for any keyed ideal object. Once again,
we will indicate the forward or backward (or other) directions of an oracle via bits attached to the
inputs.

Proposition 3 (Key extension via hashing). Let F1 and F2 be two uniformly keyed ideal
objects with key spaces K1 and K2 respectively. Let H : K2 −→ K1 be a random oracle. Suppose
further that for some (and hence any) K1 ∈ K1 and K2 ∈ K2 we have that F1(K1, X) is identically
distributed to F2(K2, X). Then CF1,H(K,X) := F1(H(K), X) is indifferentiable from F2. More
precisely, there is a simulator S such that for any q/3-query differentiator D ,

Advindiff
C,F2

(D) ≤ 2q2/|K1| .

Proof. Intuitively the simulator SH for the random oracle performs lazy sampling. The simulator
SF2

1 for F1 on an input (K1, X) attempts to look up a preimage for K1 using the list for the
random oracle. If a unique preimage K2 is found, it answers the query via a call to F2(K2, X).
There is, however, the possibility that either no key or more than one key is found. In the former
case, whose probability can be bounded via the birthday bound, the simulator will return ⊥. In
the latter case, the differentiator is forming a “non-chain” query and the simulator will answer by
simulating an independent instance of F1 via lazy sampling.22 The pseudocode for this simulator
SF2 := (SH ,SF2

1 ) is shown in Figure 15.
Let D be a differentiator. The views of D in the real and ideal world consists of tuples of the

form
(Const,K2, X2, Y2) , (PrimH ,K ′

2,K
′
1) , and (Prim1,K1, X1, Y1) .

We call a triple of such entries a chain if for some (K2, X, Y2,K1, Y1) it takes the form

(Const,K2, X, Y2) , (PrimH ,K2,K1) , (Prim1,K1, X, Y1) .

We call a construction or primitive entry that does not belong to any chain an isolated query. We
assume, without loss of generality, that any (PrimH ,K2,K1) entry and any (Const,K2, X, Y2)

22 The ability to lazily sample F1 does not pose a restriction on the generality of the theorem: by our assumption
that F1(K1, X) is identically distributed to F2(K2, X) oracle F2 can be used to sample an independent instance
of F1.
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Algo. SH(K2)

if flag return ⊥
(K1;LH)←←LazyRO(K2, X;LH)
if K1 ∈ LH ∪ L1

flag← 1
return K1

Algo. SF21 (K1, X)

if flag return ⊥
if ∃(K2,K1) ∈ LH

return F2(K2, X)
(Y1;L1)←←LazyF1(K1, X;L1)
return Y1

Fig. 15. The simulator for converting a fixed-key-length ideal object to its variable-key-length counterpart. Here
LazyRO denotes a lazy sampler for the random oracle and LazyF1 denote a lazy sampler for the ideal object F1. The
two lists LH and L1 are initialized to empty.

entry is in a chain. For example we can simply consider a differentiator D ′ that runs D and, after
D has terminated and before returning its guess, completes all remaining chains by: (1) querying
Const(K2, 0) and Prim1(K1, 0)) for any remaining isolated (PrimH ,K2,K1) entries; and (2) com-
pleting chains for isolated (Const,K2, X, Y2) entries by calling PrimH(K2) to get K1 and then
querying Prim1(K1, X). This at most triples the query complexity of D , without changing its
overall advantage, and it also implies that only queries to Prim1 can be isolated.

Isolated entries. Consider the distribution of the outputs of an isolated (Prim1,K1, X1, Y1)
entry in the real world. These entries are distributed independently of the entries (PrimH ,K ′

2,K
′
1).

Furthermore, the output Y1 is also distributed independently of all Y2 that appear in an entry
(Const,K2, X2, Y2). This means that the distribution of Y1 in an isolated (Prim1,K1, X1, Y1)
entry follows that induced by F1(K1, X1).

Consider now the distribution of the simulated outputs for an isolated (Prim1,K1, X1, Y1)
entry in the ideal world. Once again, by the construction of the simulator, these are independent
of outputs for PrimH . Moreover, since no (K2,K1) exists in LH (the entry is isolated) it must be
the case that Y1 was lazily sampled. It follows that the distribution of Y1 in (Prim1,K1, X1, Y1) is
identical to F1(K1, X1).

Real chained entries. The first and last output entries of a chain in the real world always
satisfy Y2 = Y1, which is distributed according to F1. The distribution of the output of the hash,
K1, is random and independent of all other values. We now consider a modified version of the
real world where the distribution of isolated entries is as before, but the distribution of chained
entries, as we will show below, is exactly matched by our simulator. In this modified real world, the
primitive oracles return ⊥ if a collision in the outputs of H is found, or if an entry (Prim,K1, X, Y1)
appears before the entry (Prim2,K2,K1) does. It is easily seen that the probability of both events
is upper-bounded by the birthday bound q2/|K1|. This means that, for every q-query attacker D ,
the statistical distance between the original and modified worlds is at most 2q2/|K1|.

Ideal chained entries. We show that the distribution of the simulated view and that of the
modified real world are identical. Observe that the simulator returns ⊥ when a collision in LH ∪L1

is found, i.e., when the bad flag is set. This could happen as a result of two PrimH queries or as a
result of a Prim1 query followed by a PrimH query. The modified real world, however, also returns
⊥ in these scenarios and the simulation is perfect in these settings. Conditioned on flag not set, it
is easy to see that SH simulates a random oracle. Furthermore, if flag is not set, the simulation of
F1 on a chained entry (K1, X) would always recover a K2 (as otherwise flag would have been set)
and hence Y1 := F2(K2, X). By our assumption this is identically distributed to F1(K1, X). Hence
the simulation is also perfect when flag is not set. ⊓⊔
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The full construction. Our final AEAD construction can be written as AE(K,N,A,M, τ) =
Φ3(K

′,M), where K ′ = H(K,N,A, τ) and Φ3 is the ideal injection instantiated with 3-round
Feistel. The latter uses independent keyed random oracles Fi all with key space K matching the
co-domain of H. Combining Theorem 5 with Lemmas 2 and 3 we obtain an overall bound 9q3/2τ +
2q2/|K|, where q is an upper bound on the number of oracles queries.

6 Efficiency Lower Bounds

Suppose we instantiate the random oracles underlying our Feistel-based construction with the
Sponge construction [BDPV08]. Suppose also that the underlying Sponges absorb inputs and ex-
pand outputs in blocks of n bits (i.e., the Sponge has bit-rate n). Finally, assume that our input
message is w blocks long. This means that in both of our constructions roughly w primitive calls are
used in each round of Feistel. Indeed, when using a balanced Feistel network, each round function
will consume and expand w/2 blocks, whereas in the 3-round construction each round alternatively
uses a compressing and an expanding version of Sponge for w blocks. This adds up to 3w overall
primitive calls for the second construction and 8w calls for the first one. Our second construction
is therefore almost 3 times faster than the first.

We next show that the efficient construction is not too far from the theoretically optimal solution
by proving that at least 2w calls are necessary for any indifferentiable construction. We do this
by first giving a lower bound for indifferentiable constructions of random oracles (which is tight
as it is essentially matched by Sponge) and then show how to derive the lower bound for random
injections from it.

Figure 16 shows a schematic diagram of a general construction of a length-preserving random
oracle from a random permutation π. The functions fi represent how the construction manages
internal state and prepares the next call to the permutation. Overall the construction makes q
queries to transform a w-block input into a w-block output. The permutation π operates on a
single n-bit block.

π π

f1 fwf2

X1

X2

Xw π
Z1 Zw−1P1 Pw−1

...

π

fq+1

Y1

Y2

Yw

...
fq

| {z }

w−1 queries
| {z }

q−(w−1) queries

Fig. 16. The structure of a general construction of a wn-bit random oracle from an n-bit permutation π.

The following theorem establishes a relation between a lower bound on q and the number of
input blocks w for any indifferentiable construction of a random oracle.

Theorem 6 (Efficiency lower bound). Any indifferentiable construction of a random function
Cπ : {0, 1}wn −→ {0, 1}wn from a random permutation π : {0, 1}n −→ {0, 1}n must place at least
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q ≥ 2w − 2 queries to π. More precisely, for any such q-query construction Cπ and any qS-query
indifferentiability simulator S there is a w-query differentiator D such that

2 ·Advindiff
C,S (D) ≥ 1− 1/2(q−(2w−2))n − (q2 + qS)/2

n .

Proof. We prove this result by constructing a differentiator against any construction Cπ that places
q < 2w − 2 queries to π. Any such Cπ can be written in the form shown in Figure 16 for (π-
independent) functions f1, . . . fq+1 where

fi : {0, 1}
(w+i−1)n −→ {0, 1}(w+i)n for 1 ≤ i ≤ q ,

fq+1 : {0, 1}
(w+q)n −→ {0, 1}wn .

This structure reflects the fact that each fi can recompute everything that depends only on the
initial inputs, but also needs to take as additional inputs the values returned by π at each of the
previous calls.

Consider the first w − 1 calls to π. There are 2(w−1)n possible tuples P = (P1, . . . , Pw−1) that
can define the inputs to such queries. Since in total there are 2wn possible inputs, by a counting
argument, a subset D[C, π] of the input values of size at least 2n = 2wn/2(w−1)n will be mapped
by a construction C to the same P[C, π], for any given π. Set D[C, π] and points P[C, π] can be
found by a (possibly unbounded) attacker D using only w− 2 queries to π. Algorithm D proceeds
in rounds as follows. There is at least one point P1 ∈ {0, 1}

n such that f1 always chooses P1 for
at least 2wn/2n = 2(w−1)n of its inputs. No queries to π are needed to find P1 and we set D[C, π]
to a corresponding set of colliding inputs. We then get Z1 := π(P1) and we use it to analyze the
operation of f2. Given Z1 and D[C, π], at least 2(w−1)n/2n of the inputs in D[C, π] are such that f2
always chooses the same query point P2 to π. We update D[C, π] to this subset. Continuing in this
manner, we obtain a set D[C, π] of at least 2n points such that fw−1 chooses a point Pw−1 for all
inputs in D[C, π].

Put together, the restriction of Cπ to inputs in D[C, π] guarantees that the construction always
queries π at Pi for queries i = 1, . . . , w − 1 and then places an arbitrary sequence of q − (w − 1)
queries to π. Furthermore, from the previous discussion we can assume that the description of set
D[C, π] and values

Z[C, π] := (Z1, . . . , Zw−1) = (π(P1), . . . , π(Pw−1))

are known to D . If D can distinguish the output of PRG from a random string, this will allow
differentiating Cπ from a random function. We now show that such an attack is guaranteed to exist
if C does not make a sufficient number of queries to π.

Now consider a pseudorandom generator PRG : D[C, π]×{0, 1}(q−(w−1))n −→ {0, 1}wn that has
Z[C, π] hardwired in and operates as

PRG[Z[C, π]](X,Zw, . . . , Zq) := CZ1,...,Zq(X) ,

where CZ1,...,Zq(X) denotes running Cπ(X) and answering the i-th query with Zi. It is at this step
that we follow the techniques of Gennaro and Trevisan [GT00].

We will first prove that if Cπ is indifferentiable then PRG[Z[C, π]] is a secure pseudorandom
generators over a random choice of π. More precisely, our goal is to show that under the indiffer-
entiability of Cπ, the following distributions are statistically close.

(PRG[Z[C, π]](X,Zw, . . . , Zq),Z[C, π]) : π←←Perm[n]; X←←D[C, π]; Zw, . . . , Zq←←{0, 1}
(q−(w−1))n

(Y,Z[C, π]) : π←←Perm[n]; Y ←←{0, 1}wn
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The points in Z[C, π] are computed using oracle access to π at the onset and, being part of the
description of the PRG, are in the view of a PRG distinguisher. To prove this claim, we first observe
that the distributions

PRG[Z[C, π]](X,Zw, . . . , Zq) : π←←Perm[n]; X←←D[C, π]; Zw, . . . , Zq←←{0, 1}
(q−(w−1))n

Cπ(X) : π←←Perm[n]; X←←D[C, π]

are statistically close. To see this, note that the simulation of π using Zi is fully consistent for
queries i = 1, . . . , w − 1. This is also the case for i ≥ w unless Z1, . . . , Zq are not all distinct, which
by the birthday bound occurs with probability at most q2/2n.

Our goal can now be restated as showing that the following distributions to be statistically
close.

(Cπ(X),Z[C, π]) : π←←Perm[n]; X←←D[C, π]

(Y,Z[C, π]) : π←←Perm[n]; Y ←←{0, 1}wn

Here we cannot directly apply indistinguishability of Cπ(X) from a truly random wn-bit func-
tion H(X) (which follows from indifferentiability) as the hardwired values Z[C, π] are in the distin-
guisher’s view. Instead we proceed via a sequence of games as follows. First, we use the indifferen-
tiability simulator S to deduce that the following distributions are statistically close.

(Cπ(X),Z[C, π]) : π←←Perm[n]; X←←D[C, π]

(H(X),Z[C,SH]) : H←←Fun[wn,wn]; X←←D[C,SH]

This follows directly from the definition of indifferentiability. Consider a differentiator that con-
structs Z[C,Prim] and D[C,Prim] using the real or simulated π-oracle Prim, then queries its real
or ideal construction oracle on X←←D[C,Prim] to obtain the first component above. Any success-
ful distinguisher for the above distributions could be used by this differentiator to contradict the
indifferentiability assumption with the same advantage. Note also that this differentiator places
exactly w queries (w − 1 queries to the real or simulated π-oracle Prim to construct Z[C,Prim]
and one additional query to the real or ideal construction oracle). Note that this argument also
shows that D[C,SH] must also have at least 2n points.

The next step in the proof is to show that we can replace H(X) with Y for an independently
sampled random string Y that is not computed via the random oracle. More precisely, we argue
that the following distributions are statistically close.

(H(X),Z[C,SH]) : H←←Fun[wn,wn]; X←←D[C,SH]

(Y,Z[C,SH]) : H←←Fun[wn,wn]; Y ←←{0, 1}wn

Suppose S places at most qS queries to H. The set D[C, π] has size at least 2n and hence so does
the set D[C,SH]. Now since X is chosen uniformly at random from D[C,SH], the simulator S will
query H on X with probability at most qS/2

n. Hence H(X) is independent of the simulators view
and we may replace it with independent random value Y .

Finally, we use indifferentiability once more to show that we can replace Z[C,SH] back by Z[C, π]
in the presence of the independently sampled random string Y . The differentiator we construct
uses the real or simulated π-oracle Prim to construct set Z[C, π] or Z[C,SH], respectively, and then
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samples value Y . Again, any successful distinguisher for the above distributions will be translated
into a differentiating attack with the same advantage, resulting in a successful differentiator that
places exactly w − 1 queries.

We have therefore established that the distributions

(PRG[Z[C, π]](X,Zw, . . . , Zq),Z[C, π]) : π←←Perm[n]; X←←D[C, π]; Zw, . . . , Zq←←{0, 1}
(q−(w−1))n

(Y,Z[C, π]) : π←←Perm[n]; Y ←←{0, 1}wn

are within statistical distance (q2 + qS)/2
n + 2δ, where δ is the maximum advantage Advindiff

C,S (D)
over all D placing at most w queries. This concludes the proof that if Cπ is indifferentiable from a
random oracle then PRG is secure over seed space D′[C, π] := D[C, π]× {0, 1}(q−(w−1))n (of overall
size at least 2(q−w+2)n) and range R := {0, 1}wn.

We now show that, unless Cπ makes a sufficient large number of queries to π the above PRG
cannot be secure. The number of queries of Cπ translates to the size of the seed space of PRG.
Note that PRG does not make any queries to π (beyond the initial w− 1 queries used to hardwire
the fixed Z[C, π] values). However, the outputs of any PRG with domain D′[C, π] and range R can
be information-theoretically distinguished from random with advantage 1 − |D′[C, π]|/|R|: simply
enumerate all the |D′[C, π]| possible outputs of PRG and check if the challenge string lies in this
set. When the challenge is an output of PRG, this check will pass with probability 1. When the
challenge is a random element in R, the check will pass with probability at most |D′[C, π]|/|R|.
Hence, we must have that

1− |D[C, π]× {0, 1}(q−(w−1))n|/|{0, 1}wn| ≤ (q2 + qS)/2
n + 2δ .

This proves the theorem and assuming q2 + qS ≤ 2n/2, the inequality simplifies to

(q − w + 2)n− wn ≥ − log(δ) ⇐⇒ q ≥ 2w − 2− log(δ)/n .

Hence, if Cπ indifferentiable we must have that q ≥ 2w − 2.23 ⊓⊔

The above lower bound is essentially tight for random functions as the Sponge construction
meets the bound up to constant terms. (Or put differently, the above result establishes the opti-
mality of the Sponge construction.) The proof, however, does not directly apply to random injections
ρ, as the inverse oracle ρ− would allow an adversary to invert the outputs of the PRG. The next
proposition shows that by chopping sufficiently many bits of the outputs of ρ, a random function
can be indifferentiably obtained from a random injection in a single query. Together with the above
result this extends the lower bound to random injections as well.

Proposition 4. Let ρ : {0, 1}wn −→ {0, 1}wn+n be a random injection with inverse ρ−. Let
Cρ(X) := ρ(X)[1..wn] be a construction that outputs bits 1 through wn of ρ(X). Then Cρ is
indifferentiable from a random function H : {0, 1}wn −→ {0, 1}wn.

23 We note that by restricting the PRG to a subset of D[C, π] of size 2αn, for any constant α ∈ (0, 1], we can show
q ≥ 2w − (1 + α)− log(δ)/n, which slightly improves the lower bound to q ≥ 2w − 1 for α := 1/2.
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Algo. SH+(X)

R←←H(X)
T ←←{0, 1}n

L← L ∪ (X,R|T )
return R|T

Algo. SH−(R|T )

if ∃(X,R|T ) ∈ L
return X

return ⊥

Fig. 17. Simulator for converting a random injection
to a random function.

Proof. Consider the simulator (SH+ ,SH− ) given in Fig-
ure 17. We show that

(Cρ, ρ, ρ−) ≈ (H,SH+ ,SH− ) ,

for any differentiator D that, without loss of gen-
erality, does not make repeat queries to any of the
oracles.

We first analyze the real world execution and
identify a rare event: D queries a value R|T to ρ− that is successfully inverted but R was not
previously obtained from a query to ρ. By a union bound, this event occurs with probability at
most q/2n for a q-query D as the length of T is n. Note that the probability of this event in the
simulated world is zero. We therefore condition on this event and consider the simulation of ρ only.

Without loss of generality we assume that D calls the construction oracle on any query that it
submits to the forward primitive oracle. Hence the view of D in the real world consists of values
(Y, Y |Y ′) where Y |Y ′ is obtained via a random injection. The view of D in the ideal world consists
of values (R,R|T ) where R and T are obtained via two independent random oracles. The statistical
distance between Y |Y ′ and R|T (and hence the two views) is bounded above by q2/2(w+1)n, as
the real and simulated world are identical until two simulated outputs of the form R|T collide.
This results in an overall statistical distance of q/2n + q2/2(w+1)n between the simulated and real
views. ⊓⊔

Our construction of random injections in the previous section via the 3-round Feistel construc-
tion places 3w+O(1) queries to π. This is somewhat higher than the 2w− 2 required by the lower
bound. We leave bridging this gap between the lower and upper bounds for random injections (and
indeed also permutations) as the main open problem in this area. The possibilities are that: (1) an
optimized construction of rate 2 exists; (2) the lower bound can be strengthen to 3w − o(w); or
(3) the lower bound can be strengthened to ρw − o(w) for a ρ ∈ (2, 3) and a more efficient con-
struction that (essentially) meets this bound and places at most ρw + o(w) queries to π exits. We
emphasize that since Sponge meets the bound, a lower bound for random injections with ρ ≥ 2
must exploit the invertibility of the construction, a fact that we did not use in our proof.

7 Ideal Online AEAD

Offline AEAD schemes can fall short of providing adequate levels of functionality or efficiency in
settings where data arrives one segment at a time and should be processed immediately without
the knowledge of future segments. In an online AEAD scheme, the encryption and decryption
algorithms are replaced by segment-oriented ones that process the inputs one segment at a time.
We formalize the syntax and security of online AEAD schemes next.

7.1 Online primitives and reference objects

We follow [HRRV15, BMM+15] in our treatment, but deviate from it in a number of details that
have implications for relating the ideal objects used in the definitions to practical constructions.

Syntax. An online AEAD scheme is a seven tuple of algorithms

Π = (K,AE .init,AE .next,AE .last,AD.init,AD.next,AD.last) .
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Here K is the key-generation algorithm as in offline schemes and the remaining algorithms have
signatures as shown below.

AE .init : K ×N −→ S AD.init : K ×N −→ S
AE .next : S ×H ×M × X −→ C × S AD.next : S ×H × C × X −→ (M × S) ∪ {⊥}
AE .last : S ×H ×M × X −→ C AD.last : S ×H × C × X −→M ∪ {⊥}

Here S is some state space, and other spaces are interpreted as in offline AEAD schemes.24 Note
that a single nonce is provided for the entire sequence of segments. In contrast to [HRRV15], who
focus on a fixed expansion τ , our definitions allow for varying expansions across the segments. For
instance the scheme might be configured to not provide any authenticity until the last segment
is reached, at which point the entire stream is authenticated. We assume that M = {0, 1}∗, and
denote by {0, 1}∗∗ := ({0, 1}∗)∗ the set of segmented-strings. A segmented string X ∈ {0, 1}∗∗ is a
vector of strings.

Correctness. The correctness of an online AEAD scheme Π is defined via an associated of-
fline AEAD scheme with encryption and decryption algorithms AE , AD : K × N × {0, 1}∗∗ ×
X ∗ −→ {0, 1}∗∗ that operate iteratively on segmented strings. Algorithm AD(K,N,A,C, τ ) re-
turns the longest M whose encryption (using K, N , A, and τ ) is a prefix of C. (See Figure 25
in Appendix E.1.) We require the following correctness condition for an online AEAD scheme:
if K ∈ K, N ∈ N , A ∈ {0, 1}∗∗, M ∈ {0, 1}∗∗, τ ∈ X ∗, and C = AE(K,N,A,M , τ ), then
M = AD(K,N,A,C, τ ).

Memory, state, efficiency. An online algorithm, as understood commonly, processes its input
one segments at a time, possibly depending on the past segments, but without the knowledge of
the future ones. A state value is forwarded in each invocation of the algorithm to its next stage.
HRRV [HRRV15] take a different approach and define online computability in terms of the size
of the working memory and state used.25 We agree with HRRV that an efficient online AEAD
scheme should use both a reasonable amount of working memory and state size. Conversely, small
state usage implies that an algorithm is online in the usual sense: if the state cannot grow, one
cannot defer processing until future segments arrive. Hence the two approaches match with respect
to efficient AEAD schemes. This, however, raises the question of what an adequate ideal reference
object for online AEAD is. HRRV define this as essentially an offline AEAD whose invocations are
tweaked based on the entire history of prior inputs. (See Figure 4 in [HRRV15].) At first sight this
may look like the “right” choice, as one would expect that an ideal scheme “remembers” everything
that has been processed so far. This notion can be formalized by a function that stores the history
in its state. This approach, however, is not compatible with our efficiency requirements above.
Indeed, in the indifferentiability setting, one must give complete control over all interfaces of the
scheme to the adversary. This, in particular, includes the input/output states, which means that
an indifferentiable scheme would forcefully also have a growing state where all prior history was
kept. Instead, and consistently with efficiency requirements, we require that the state value of the
ideal object acts as a small and random summary of the inputs processed so far. A second benefit

24 In our definition both encryption and decryption are online. One can also consider other variants where only one
of these algorithms is online. The practical use-cases for these primitives, however, seem to be limited.

25 The authors write: “We say that an online AEAD scheme Π = (K, E ,D) has online-encryption if its state space
S is finite and, additionally, there’s a constant w such that E .next and E .last use at most w bits of working
memory.” They end with: “Our security definitions don’t care if a segmented-AE scheme is online: that’s an
efficiency requirement, not a security requirement.”
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of this approach is that under a threat model that allows for state revelation, an indifferentiable
scheme, according to our ideal objects, would retain maximal security. This stands in contrast to a
scheme that stores its history in the clear, which fails to protect the confidentiality of the previously
processed plaintexts as soon as the state is revealed.

Online functions. An online function(ality) is a triple of functions with signatures

F0 : A0 −→ S , F1 : S ×A ×M × X −→ R1 × S , F2 : S ×A ×M × X −→ R2 .

We allow for different auxiliary spaces and ranges above for the sake of generality. We define
Onj[A0,A,M,X ,S ,R1,R2] as the set of online functions for which F1 and F2 are injective over
M and respect the usual length-expansion requirement. An online injection gives rise to a unique
online inversion F−

1 associated to F1 that satisfies

∀(S,A,M, τ, C, S′) : F1(S,A,M, τ) = (C, S′) ⇐⇒ F−
1 (S,A,C, τ) = (M,S′)

∀(S,A,M, τ, C, S′) : (∄(M,S′) : F1(S,A,M, τ) = (C, S′)) ⇐⇒ F−
1 (S,A,C, τ) = ⊥ .

Similarly a unique inversion F−
2 corresponds to F2. We can associate to (F0,F1,F2) an offline

function on vectors of segments. This offline function starts by running F0, then processes each
segment up to and including the penultimate one using F1, and terminates by processing the final
segment using F2. Similarly, we define the associated offline inversion for (F0,F

−
1 ,F−

2 ), which is also
an inversion for the offline function associated to (F0,F1,F2). We emphasize that the propagation
of state is identical in F1 and F−

1 and hence the ideal objects for this set of functions will all
have this property. Finally, we note that the distribution induced on offline functions through this
association is not the uniform one on the set of all offline functions. Indeed, the extra functionality
offered by online schemes has security implications. For example any online AEAD scheme will
preserve prefixes at the segment level and hence can never meet the level of security enjoyed by
offline schemes [HRRV15, BMM+15].

Ideal online AEAD. An online AEAD is a uniform function in Onj[A0,A,M,X ,S ,R1,R2]
where A0 := K × N , A := H, and R1 := R2 := C. Given an online AEAD scheme Π, we define
OAE[Π] as the set of all expanding online injections with signatures that match those of Π.

ORAE security. We define the online RAE (ORAE) security of an online AEAD scheme by
requiring indistinguishability from an ideal online AEAD under a random key. Let

Advorae
Π (A ) := Pr

[

ORAE-RealAΠ

]

− Pr
[

ORAE-IdealAΠ

]

,

where games ORAE-RealAΠ and ORAE-IdealAΠ are defined via the natural generalization of
the offline variants in Figure 2: the attacker is given access either to the scheme or to an ideal
online AEAD sampled from OAE[Π] under a random key, and is allowed to construct arbitrary
sequences of segments. (The state of the encryption and decryption algorithms are not under the
view or control of the adversary.) This definition is similar to the OAE2b notion in [HRRV15,
Figure 5] and we give the details in Figure 26 in Appendix E.2. A strengthening of this definition
that allows adversarial corruption of state values could be considered. This would be implied by
indifferentiability (as it is single-stage), but we leave a formal treatment for future work.

Construction via composition. Let F ,F1, . . . ,Fn be ideal objects and C be a construction of
type F from F1, . . . ,Fn. Suppose that the outputs of F and CF1,...,Fn are identically distributed
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and that one can compute Fi using F for all i. More precisely, for some (oracle-free) algorithms Ei

and Di we have that Fi(X) = Di(F(Ei(X)) for all i and X. Then the distributions

(CF1,...,Fn ,F1, . . . ,Fn) ≡ (F , D1(F(E1( · )), . . . , Dn(F(En( · )))

are also identical. We can define sub-simulators SFi := Di(F(Ei( · )) and obtain a perfect simulator
by running them in parallel. Hence CF1,...,Fn is indifferentiable from F . (The composed simulator
places the same number of queries to its oracle as the differentiator does.) By Theorem 1 we also

obtain as a corollary that if Cfi
i are indifferentiable from Fi for all i, then the composed construction

CC
f1
1

,...,Cfn
n is also indifferentiable from F . This follows from a hybrid argument over Cfi

i .
A closer look at our definition of ideal online AEADs shows that it can be decomposed in this

way. Consider the construction shown in Figure 18 based on two independent ideal (offline) AEAD
schemes (AE1,AD1), (AE2,AD2) and two independent random oracles H0 and H1. We choose
these objects so that various spaces match what is expected from an ideal AEAD, i.e., for i = 1, 2

Ai = A , Mi =M , Ri = R , Ni = {ε} , Ki = S .

Furthermore, we choose H0 : K × N −→ S and H1 : S × A ×M × X −→ S . It is easy to
see that this construction falls within parallel composition discussed above. On the one hand, the
distribution of the outputs of the construction is identical to those presented by the ideal object.
On the other hand, given access to an ideal AEAD, one can encode inputs to it in way that we
obtain the underlying ideal objects (AE1,AD1), (AE2,AD2), H0 and H1. Indeed, H0 exactly
matches F1 part of the functionality, (AE2,AD2) matches F2, and one can use F1 to compute
both (AE1,AD1) and H1 (the latter using the forward direction of F1).

Algo. AE .initH0(K,N)

S ← H0(K,N)
return S

Algo. AE .nextAE1,H1(S,A,M, τ)

C ← AE1(S, ε,A,M, τ)
S ← H1(S,A,M, τ)
return (C, S)

Algo. AE .lastAE2(S,A,M, τ)

C ← AE2(S, ε,A,M, τ)
return C

Algo. AD.initH0(K,N)

S ← H0(K,N)
return S

Algo. AD.nextAD1,H1(S,A,C, τ)

M ← AD1(S, ε,A,C, τ)
if M =⊥ return ⊥
S ← H1(S,A,M, τ)
return (M,S)

Algo. AD.lastAD2(S,A,C, τ)

M ← AD2(S, ε,A,C, τ)
return M

Fig. 18. Ideal online AEAD decomposed into two random oracles H0 and H1 and two ideal offline AEAD schemes
(AE1,AD1) and (AE2,AD2).

It therefore follows that one can instantiate the construction in Figure 18 with indifferentiable
constructions of its underlying components and obtain an indifferentiable online AEAD. Interest-
ingly, the resulting construction is similar to CHAIN [HRRV15], which although more efficient, is
differentiable as we show below. We will also show how to obtain a more efficient indifferentiable
construction than that in Figure 18.
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Remark. We can further explore the decomposition paradigm to derive other constructions of
complex ideal objects. In Appendix E.3 we give a natural construction of parallel AEAD schemes.
This further highlights the merits of indifferentiability in designing complex objects in a modular
way from simpler ones.

7.2 The HashCHAIN construction

Our starting point to improve the efficiency of the above scheme is the CHAIN construction
of [HRRV15], which is proven OAE2 secure for any arbitrary but fixed (and possibly small) value
of τ . This construction processes messages and associated data one segment at a time using an
offline AEAD that is tweaked via a truncated XOR of the inputs and outputs in the previous
segment; see [HRRV15, Figure 8].

CHAIN is trivially differentiable as its initialization procedure AE .init (as well as its implicit
state-update procedures) are not random. This raises the possibility that a modified version that
derives state values via hashing could be indifferentiable. As we saw above, this would indeed be the
case if all inputs to AE .init and AE .next are included in hash computations. CHAIN, however,
aims to avoid this extra hash computation via the simpler truncated XOR operations. To preserve
efficiency, one possibility would be to hash the ciphertext instead of the authenticated data to derive
the next state (or even only the ciphertext as it implicitly “summarizes” both the message and the
authenticated data). This construction would therefore set S0 := H0(K,N) in initialization, and
update it within AE .next via Si := H1(Si−1,Mi, Ci). This modification, however, once again results
in a differentiable construction.26

Intuitively, to achieve indifferentiability the computation of ciphertext/state pair must be done
in a way that forces the differentiator to reveal all necessary information that is needed to recompute
them via the ideal objects to the simulator. Following this, we propose a new construction in
Figure 19, which we call HashCHAIN. Here, (AE ,AD) is an offline ideal AEAD with key length
k, and H is a VIL/VOL keyed random oracle with key size k that admits outputs of lengths k
and 2k. The nonce and authenticated data spaces of the online scheme are arbitrary. Its message,
expansion and ciphertext spaces match those of the offline scheme. The state space is S := K. To
ensure independence of the outputs of AE .init, AE .next, and AE .last (and similarly for decryption)
we attach two bits to associated data for domain separation. To avoid hashing the associated data
twice, we key encryption and state update via Proposition 3.27

Theorem 7 (HashCHAIN is indifferentiable). The HashCHAIN construction in Figure 19
is indifferentiable from an ideal online AEAD. More precisely, there is a universal simulator S such
that for any q/3-query differentiator D ,

Advindiff
HashCHAIN,S(D) ≤ 4q2/2k ,

where S makes at most q queries to its oracles.
26 Consider a differentiator that for i = 1, 2 uses the construction oracle to obtain encryption/state pairs (Ci, Si)

for arbitrary (S0, Ai,Mi, τ) with random authenticated data Ai. It then calls the primitive oracle for H1 on
(S1,M2, C2) and checks if the response matches S2. By construction, this is always be the case in the real world.
In the ideal world, however, if the simulator does not call the ideal AE .next on (S1, A1,M1, C1) it can only guess
the random state value S2. On the other hand, to place this query it needs to guess the random A1, which can be
done only with a small probability after a reasonable number of queries.

27 Using a single key that is tweaked based on (S,A) would be sufficient. However, for our scheme to remain amenable
to standard-model analyses we compute two separate keys.
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Algo. AE .initH(K,N)

S ← H(K, (00, N), k)
return S

Algo. AE .nextAE,H(S,A,M, τ)

(K1,K2)← H(S, (01, A, τ), 2k)
C ← AE(K1, ε, ε,M, τ)
S ← H(K2, (10,M), k)
return (C, S)

Algo. AE .lastAE,H(S,A,M, τ)

K1 ← H(S, (11, A, τ), k)
C ← AE(K1, ε, ε,M, τ)
return C

Algo. AD.initH(K,N)

S ← H(K, (00, N), k)
return S

Algo. AD.nextAD,H(S,A,C, τ)

(K1,K2)← H(S, (01, A, τ), 2k)
M ← AD(K1, ε, ε, C, τ)
if M =⊥ return ⊥
S ← H(K2, (10,M), k)
return (M,S)

Algo. AD.lastAD,H(S,A,C, τ)

K1 ← H(S, (11, A, τ), k)
M ← AD(K1, ε, ε, C, τ)
return M
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Fig. 19. The HashCHAIN transform (top) and its schematic diagram (bottom).

Proof (Sketch). We show via a sequence of replacements of various objects that the view of any
differentiator in the real game with respect to this construction is close to that with respect to
the construction in Figure 18. Wherever the construction uses domain separation on the inputs of
H, we introduce independent random oracles instead. This means that AE .init and AD.init use
a random oracle H00(K,N, k) independent of the rest of the oracles used. Algorithms AE .next
and AD.next use a random oracle H01 and AE .last and AD.last use a random oracle H11. We
then replace the computation of (K1,K2) by the parallel application of two independent random
oracles (H01,1(S, (A, τ), k),H01,2(S, (A, τ), k). Both of the above transformations are lossless as a
consequence of parallel composition: indeed, both domain separation and range separation are
particular cases of parallel composition. By Proposition 3 we can then replace the lines K1 ←
H01,1(S, (A, τ), k) and C ← AE(K1, ε, ε,M, τ) in the operation of AE .next with AE1(S, ε,A,M, τ).
Similar we use AD1(S, ε,A,M, τ) in AD.next. This incurs a loss of 2q21/2

k in security for q1/3 the
total number of queries to AE .next and AD.next. Similarly, we use AE2(S, ε,A,M, τ) in AE .last
and AD2(S, ε,A,M, τ) in AD.last. Again this incurs a loss of 2q22/2

k in security for q2/3 the
total number of queries to AE .last and AD.last. The resulting scheme is now identical to that in
Figure 18 and therefore indifferentiable from an online OAED. The bound in the theorem follows
from the fact that q1/3 + q2/3 ≤ q/3. ⊓⊔
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Further optimizations. HashCHAIN, in addition to computing the offline AEAD for each
segment, also computes a k-bit hash value H(K2, (01,M), k), where k is the key length. If M is wn
bits long and H has rate n, this incurs an extra w calls to the ideal primitive underlying H. We can
eliminate this overhead for our 3-round Feistel construction as follows. Recall that the first round
of Feistel computes a τ -bit hash of the wn-bit input message M . We can extend this hash value to
τ + k bits via a single extra call to the primitive underlying H. We then replace H(K2, (01,M), k)
with the last k bits of this hash value. This reduces the w extra ideal-primitive calls to a single
call. A proof similar to that for HashCHAIN can be given for this construction as we can first
decompose the random oracle implicit in the first round of Feistel and then proceed as in the proof
of HashCHAIN.
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A Generically Composed Schemes

We recall the A, B, and N-schemes from [NRS14] below.

Fig. 20. A-schemes from [NRS14, Figure 2] (with permission).

Fig. 21. B-schemes from [NRS14, Figure 3] (with permission).

Fig. 22. N-schemes from [NRS14, Figure 6] (with permission).

B Schematic Diagram for AEZ

We recall the operation of AEZ v5 [HKR17] below.
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Fig. 23. AEZ-core (top), AEZ-hash (bottom left), and AEZ-tiny (bottom right) from [HKR17, Figure 5] (with
permission).

C RIV Is Differentiable

The Robust Initialization Vector [AFL+16] (RIV) mode of encryption is shown in Figure 24. For
indifferentiability we view H1 and H2 as independent random oracles, and (E ,D) as an ideal
encryption scheme without associated data. RIV is a type-I scheme (as defined in Figure 4) and
hence by Theorem 3 it is differentiable. To see this note that I+ can omit K2 from est1 as it is not
used in post processing (but note that it must still include M to recompute the IV ). Furthermore,
∆C = |T |, which is large. Finally, the recovery algorithm R1 removes the tag T .

Algo. AE((K1,K2), N,A,M)

IV ← H1(K1, N,A,M)
C′ ← E(K2, IV, ε,M)
T ← H2(K1, N,A,C′)⊕ IV
return (C′, T )

Algo. AD((K1,K2), N,A, (C′, T ))

IV ← T ⊕H2(K1, N,A,C′)
M ← D(K2, IV, ε, C

′)
if T 6= H1(K1, N,A,M) return ⊥
return M

Fig. 24. The Robust Initialization Vector mode.

D Proof of Lemma 2: Hybrid over Keys

Lemma 3 (Lemma 2, restated). Let F1 and F2 be two uniformly keyed objects and CF1 be a
key-respecting construction of F2 from F1. Then if CF1 is key-wise indifferentiable, it is also (fully)
indifferentiable. More precisely, for any key-respecting simulator S and any q-query (unrestricted)
differentiator D there is a key-respecting differentiator D ′ such that

Advindiff
C,S (D) ≤ q ·Advindiff

C,S (D ′) .

Proof. For i ∈ {0, . . . , q} consider a hybrid world GF1,F2

i that operates as follows. On the ℓ-th
queried key Kℓ (to either Const or Prim), if ℓ ≤ i, the real procedures CF1 or F1 are used to
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answer the query. If ℓ > i and there was a key Kj with query number j ≤ i such that Kj = Kℓ,
again CF1 or F1 are used to answer the query. If ℓ > i and no key with query number j ≤ i
matches Kℓ, then F2 and SF2 are used. Observe that when i = 0 the hybrid game matches the
ideal world, and when i = q the hybrid matches the real world.

We show that no differentiator D can distinguish hybrid i−1 from hybrid i for any i ∈ {1, . . . , q}.
Consider a differentiator D ′ that runs D and answers its ℓ-th queried key Kℓ (to either Const or
Prim) as follows.

1. If ℓ < i the procedures CF1 or F1 with a lazily sampled F1 are used to answer the query.

2. If ℓ = i the provided (challenge) oracles are used to answer the query.

3. If ℓ > i and Kℓ = Kj for a previous key Kj with query number j < i, again CF1 or F1 with a
lazily sampled F1 are used.

4. If ℓ > i and Kℓ = Ki the provided (challenge) oracles are used to answer the query.

5. If ℓ > i and Kℓ 6= Kj for all keys Kj with query number j ≤ i, then F2 and SF2 with a lazily
sampled F2 are used.

We observe that D ′ is indeed a key-respecting differentiator as it only queries Ki to its provided
oracles. Since both the construction and the simulator are key-respecting, the construction queries
F1 only on keys that are input to it, and similarly the simulator queries F2 only on the keys that are
input to it. Since F1 and F2 are uniformly keyed, their instances over distinct keys are independent.
This means the lazy sampling of oracles above are distributed identically to those that D expects.
Furthermore, D ′ runs D in a environment identical to the (i− 1)-st or the i-th hybrid:

1. For queries ℓ < i or ℓ > i with Kℓ = Kj for j < i the outputs are distributed identically to both
hybrid i− 1 and hybrid i.

2. All queries ℓ > i with Kℓ 6= Kj for all j ≤ i are distributed identically to hybrids i− 1 and i.

3. If ℓ = i or ℓ > i andKℓ = Ki and the provided (challenge) oracles implement the real procedures,
the output distribution is identical to hybrid i. When the procedures are implement via the ideal
F2 and SF2 , the output distribution is identical to hybrid (i− 1).

The lemma follows. ⊓⊔

E Missing Details for Online AEADs

E.1 Associated offline scheme

The correctness of an online AEAD scheme Π is defined via an induced offline AEAD scheme
with encryption and decryption algorithms AE , AD : K × N × {0, 1}∗∗ × X ∗ −→ {0, 1}∗∗ that
operate iteratively on segmented strings. Algorithm AD(K,N,A,C, τ ) returns the longest M

whose encryption (using K, N , A, and τ ) is a prefix of C. Figure 25 details the operation of
these algorithms. We require the following correctness condition for an online AEAD scheme: if
K ∈ K, N ∈ N , A ∈ {0, 1}∗∗, M ∈ {0, 1}∗∗, τ ∈ X ∗, and C = AE(K,N,A,M , τ ), then
M = AD(K,N,A,C, τ ). The segmented-string with zero components is the empty vector [ ],
which is different from the empty string ε.
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Algo. AE(K,N,A,M , τ )

m← |M |
if m = 0 or |A| 6= |M | return [ ]
(A1, . . . , Am)← A

(M1, . . . ,Mm)←M

(τ1, . . . , τm)← τ

S0 ← AE .init(K,N)
for i = 1 . . .m− 1

(Ci, Si)← AE .next(Si−1, Ai,Mi, τi)
Cm ← AE .last(Sm−1, Am,Mm, τm)
return (C1, . . . , Cm)

Algo. AD(K,N,A,C, τ )

m← |C|
if m = 0 or |A| 6= |C| then return [ ]
(A1, . . . , Am)← A

(C1, . . . , Cm)← C

(τ1, . . . , τm)← τ

S0 ← AD.init(K,N)
for i = 1 . . .m− 1

if AD.next(Si−1, Ai, Ci, τi) =⊥
if m = 1 return [ ]
return (M1, . . . ,Mi−1)

(Mi, Si)← AD.next(Si−1, Ai, Ci, τi)
if AD.last(Sm−1, Am, Cm, τm) =⊥

return (M1, . . . ,Mm−1)
Mm ← AD.last(Sm−1, Am, Cm, τm)
return (M1, . . . ,Mm)

Fig. 25. The offline AEAD scheme associated to an online AEAD scheme.

E.2 ORAE security

We define the advantage of an adversary A against scheme Π in the online RAE game as

Advorae
Π (A ) := Pr

[

ORAE-RealAΠ

]

− Pr
[

ORAE-IdealAΠ

]

,

where games ORAE-RealAΠ and ORAE-IdealAΠ are shown in Figure 26.

E.3 Parallel AEAD

Some application scenarios, such as video streaming or interactive terminals, demand that after
some initialization stage an AEAD scheme processes incoming segments independently of all other
segments. Following [HRRV15], we can formalize a parallel online AEAD scheme as a restricted
type of an online AEAD scheme where state remains unmodified in each iteration.

Syntax. A parallel online AEAD scheme is a seven tuple of algorithms

Π = (K,AE .init,AE .next,AE .last,AD.init,AD.next,AD.last) .

Here K is the key-generation algorithm as in online schemes and the remaining algorithms have
signatures as shown below.

AE .init : K ×N −→ S AD.init : K ×N −→ S
AE .next : N× S ×H ×M × X −→ C AD.next : N× S ×H × C × X −→M ∪ {⊥}
AE .last : N× S ×H ×M × X −→ C AD.last : N× S ×H × C × X −→M ∪ {⊥}

All spaces are interpreted as for online AEAD schemes and all algorithms except state initialization
take as additional input the segment number. Note that AE .next and AD.next do not return
updated states. The correctness of a parallel online AEAD scheme is again defined via an associated
offline AEAD scheme in the natural way. We omit the details for conciseness.
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Game ORAE-RealAΠ

I, J ← 0; K←←K
b←←A

Enc.init,Enc.next,Enc.last,Dec.init,Dec.next,Dec.last

return b

Proc. Enc.init(N)

I ← I + 1; SI ← AE .init(K,N)
return I

Proc. Enc.next(i, A,M, τ)

if i /∈ [1..I] return ⊥
(C, Si)← AE .next(Si, A,M, τ)
return C

Proc. Enc.last(i, A,M, τ)

if i /∈ [1..I] return ⊥
C ← AE .last(Si, A,M, τ)
Si ←⊥; return C

Proc. Dec.init(N)

J ← J + 1; S′
J ← AD.init(K,N)

return J

Proc. Dec.next(j, A,C, τ)

if j /∈ [1..J ] return ⊥
(M,S′

j)← AD.next(S
′
j , A, C, τ)

return M

Proc. Dec.last(j, A,C, τ)

if j /∈ [1..J ] return ⊥
M ← AD.last(S′

j , A, C, τ)
S′
j ←⊥; return M

Game ORAE-IdealAΠ
(AE ′.init, . . . ,AD′.last)←←OAE[Π]
I, J ← 0; K←←K
b←←A

Enc.init,Enc.next,Enc.last,Dec.init,Dec.next,Dec.last

return b

Proc. Enc.init(N)

I ← I + 1; SI ← AE
′.init(K,N)

return I

Proc. Enc.next(i, A,M, τ)

if i /∈ [1..I] return ⊥
(C, Si)← AE

′.next(Si, A,M, τ)
return C

Proc. Enc.last(i, A,M, τ)

if i /∈ [1..I] return ⊥
C ← AE ′.last(Si, A,M, τ)
Si ←⊥; return C

Proc. Dec.init(N)

J ← J + 1; S′
J ← AD

′.init(K,N)
return J

Proc. Dec.next(j, A,C, τ)

if j /∈ [1..J ] return ⊥
(M,S′

j)← AD
′.next(S′

j , A, C, τ)
return M

Proc. Dec.last(j, A,C, τ)

if j /∈ [1..J ] return ⊥
M ← AD′.last(S′

j , A, C, τ)
S′
j ←⊥; return M

Fig. 26. Games defining the ORAE security of an online AEAD scheme.

Parallel online functions. A parallel online function is a triple of functions with signatures

F0 : A0 −→ S , F1 : N× S ×A ×M × X −→ R1 , F2 : N× S ×A ×M × X −→ R2 .

We define Inj||[A0,A,M,X ,S ,R1,R2] as the set of parallel online functions for which F1 and
F2 are injective over M and respect the usual length-expansion requirement. The unique inverse
functions are defined analogously to online functions.

Ideal parallel online AEAD. A parallel online AEAD is a function sampled uniformly from
Inj||[A0,A,M,X ,S ,R1,R2] where A0 := K ×N , A := H, and R1 := R2 := C. Given an online
AEAD scheme Π, we define POAE[Π] as the set of all expanding parallel online injections with
signatures that match those of Π.

Applying the same design principles based on the composition properties of indifferentiability,
we obtain an indifferentiable construction of a parallel AEAD similar to the STREAM construc-
tion [HRRV15, Figure 10 of full version], which we present in Figure 27. Our construction uses a
tweaked key S := H(K,N) as the initial state throughout and the segment number i is used as
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a nonce.28 The original STREAM construction includes (K,N) in S and uses (N, i) as nonce in
each invocation. As for online schemes, our approach provides protection against state corruption.

Algo. AE .initH(K,N)

S ← H(K,N)
return S

Algo. AE .nextAE1(i, S,A,M, τ)

C ← AE1(S, i, A,M, τ)
return C

Algo. AE .lastAE2(i, S,A,M, τ)

C ← AE2(S, i, A,M, τ)
return C

Algo. AD.initH(K,N)

S ← H(K,N)
return S

Algo. AD.nextAD1(i, S,A,C, τ)

M ← AD1(S, i, A,C, τ)
if M =⊥ return ⊥
return M

Algo. AD.lastAD2(i, S,A,C, τ)

M ← AD2(S, i, A,C, τ)
return M

Fig. 27. A parallel online AEAD scheme from a random oracle H and ideal offline AEAD schemes (AE1,AD2) and
(AE1,AD2). Encryption and decryption take as input a sequence number i.

28 Note that the nonce input is not used in HashCHAIN, which instead relies on the state update function for
tweaking successive segments.
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