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Abstract

Origin-destination flow of passengers in bus networks is a crucial input to the public transport

planning and operational decisions. Smart card systems in many cities, however, record only

the bus boarding information (namely anopen system), which makes it challenging to use smart

card data for origin-destination estimations and subsequent analyses. This study addresses this

research gap by proposing a machine learning approach and applying the gradient boosting

decision tree (GBDT) algorithm to estimate the alighting stops of bus trips from open smart

card data. It advances the state-of-the-art by including, for the first time, weather variables and

travel history of individuals in the GBDT algorithm alongside the network characteristics. The

method is applied to six-month smart card data from the City of Changsha, China, with more

than 17 million trip-records from 700 thousand card users. The model prediction results show

that, compared to classic machine learning methods, GBDT not only yields higher prediction

accuracy but more importantly is also able to rank the influencing factors on bus ridership. The

results demonstrate that incorporation of weather variables and travel history further improves
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the prediction capability of the models. The proposed GBDT-based framework is flexible and

scalable: it can be readily trained with smart card data from other cities to be used for predicting

bus origin-destination flow. The results can contribute to improved transport sustainability of

a city by enabling smart bus planning and operational decisions.

Keywords: Smart card data; Machine learning; Gradient boosting decision tree; Alighting bus

stop.
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1 Introduction

‘By 2030, provide access to safe, affordable, accessible and sustainable transport systems for

all, notably by expanding public transport (UN, 2015).’

The smart public transport system is an irreplaceable part of the ‘Smart City’ agenda

(Ma et al., 2019). A well-planned and efficient bus system is a critical component of sustainable

transport eco-system. The benefits of buses can be viewed from a range of different angles: (i)

compared to cars, buses offer high capacity and low emission travel (Kwan and Hashim, 2016);

(ii) buses are low-cost and quick to implement, relative to rail-based urban public transport

systems such as metro; and (iii) bus operations have the flexibility to penetrate and respond to

where and when the passenger demand is (Pei et al., 2019). However, many of the urban bus

systems suffer from poor images of unreliability, crowding, bus bunching, and generally low

level of services (Berrebi et al., 2015; Bordagaray et al., 2013). One of the important factors

affecting their level of services and reliability is the temporal and spatial variability in the bus

ridership distributions (Liu and Sinha, 2007; Sorratini et al., 2008). Understanding the factors

driving the bus passenger behaviour and accounting for them to accurately estimate bus

ridership are therefore the basic foundation for planning and operating a good public transport

system (Hollander and Liu, 2008; Ibarra-Rojas et al., 2015; Wu et al., 2016, 2017; Wu et al.,

2019b).

Bus ridership, or the origin-destination matrix of bus travel demand, is affected by many

factors. Existing studies in the literature have tended to focus on the population density and bus

service provision of the area (Johnson, 2003; Xie et al., 2019b), the socio-economic-

employment characteristics of the traveller such as their car ownership, income, etc. (Paulley

et al., 2006; Xie et al., 2019a). Bus passengers are exposed to outdoor weather environment

during their travel, much more possible than car drivers and metro train users are. As a result,

people may choose destinations and routes differently under different weather conditions (e.g.

small but closer shop versus larger but farther supermarket; going straight home versus

stopping at an intermediate location to run an errand; route ‘without transfer’ but long walk

versus ‘with transfer’ but no walking, etc.). In terms of empirical evidence, there have been

recent interests in the weather impact on bus ridership on the demand side, and how bus

operating strategies should respond to weather conditions on the supply side(see the review

by Böcker et al., 2013).  For example, adverse weather is found to reduce the level of services

of the bus system, while extreme weather (such as rainstorm and flood) could cause significant

disruption  to  bus  service  (Hofmann and O'Mahony, 2005; Yin et al., 2016). Similarly,
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passengers’ travel behaviour, in terms of whether to travel, trip timing, route, and destination,

could also be influenced by the different weather conditions.Arana et al. (2014) show that

wind and rain reduce trip-making, while mild temperature encourages passengers to travel.

Aaheim and Hauge (2005) report that heavier precipitation and lower temperature shorten the

distance people travel.Sabir (2011) points out that weather may change people’s decision in

the travel destination, especially for leisure travel.Liu et al. (2015) find that, in Sweden, both

commuters and non-commuters are more willing to choose a closer destination in heavier rain.

Hereby, we speculate that the passengers may change their alighting stops due to the different

weather conditions, and we consider the ambient weather variables in our estimation.

Big data sources from the automatic data collection system can be utilised to support

public transport planning and operation (Zannat and Choudhury, 2019; Zhang et al., 2018). For

example, the automatic fare collection and automatic vehicle location systems offer new

opportunity to understand the behaviour and patterns of bus ridership. With automatic data

collection, the methods to estimate the ridership have been gradually shifted from the

traditional manual survey, such as point check and ride check (Ceder, 2007), to data mining

using readily available and large automatically collected data. There have been remarkable

research interests recently in ways to extract the relevant and useful information from

automatically collected data. Public transport users’ smart card data from the automatic data

collection system has been widely used as the most attractive resource to estimate bus ridership

(Bagchi and White, 2005). Many of the bus systems, however, operate as asingle-tap or open

system, where passengers tap/swipe smart cards only at boarding, and thus we do not have

information about their alighting. This raises challenges in using smart card data to directly

derive bus origin-destination demand information, more specifically bus passengers alighting

stops. Most of the existing research on this topic has so far only been able to estimate the

alighting stops of regular commuter bus passengers, by approximating the alighting stops of

their morning commuting bus journey as being the boarding stops of their evening return bus

trip. In this paper, we attempt to provide a machine-learning-based framework to estimate the

alighting stops for general bus trips, including regular and non-regular bus journeys.

The remainder of this paper is structured as follows. Section 2 reviews the methods in

estimating the bus ridership and introduces machine learning techniques used in mining

automatically collected data. A review of the weather factors affecting bus ridership is also

presented. Section 3 introduces the case study network and the open smart card data used in

this paper and highlights the limitation of applying the existing methods (trip chaining, for

example) to our case. A machine learning approach based on the recently developed gradient
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boosting decision tree (GBDT) algorithm is proposed in Section 4 to solve the multi-class

classification problem of estimating the alighting stops for the trips. Section 5 describes the

trip features used in the model and designs the experiments whose results are presented in

Section 6. Finally, Section 7 summarises our findings and suggests future research interests.

2 Literature review, research gaps and proposed improvements

2.1 Bus ridership and alighting stop estimation using open smart card data

Passengers’ travel history can be tracked by the smart card data and then used for inferring

their travel behaviour and ridership (Pelletier et al., 2011). In the literature, there are two main

approaches to estimate bus ridership from the open smart card data: attraction rate and trip-

chaining model(see the review by Li et al., 2018).

Briefly speaking, the attraction rate modelling estimates the attractiveness of a bus stop

to the passenger, considering its boarding stop, the bus line of travel, and other relevant factors.

Dou et al. (2007) propose a method to calculate the alighting probability at bus stops from the

travel distance and passenger numbers. Another method in the attraction rate model is the

reverse ridership method (Hou et al., 2012), which proposes that the proportion of the boarding

passengers is equal to the proportion of the alighting passengers at the same stop in the reverse

bus service. The attraction rate model can hence approximate the total bus passenger origin-

destination ridership over a day, which is useful for long-term bus planning purposes. It is not,

however, suitable to estimate the within-day (such as hourly) ridership which is critical for

short-term or real-time bus operation and management. It is also not suitable for application at

the individual smart card user level, which can be useful for policy testing purposes (e.g. testing

the implication of a policy to provide fare discount for frequent travellers).

The second approach, trip-chaining model (Barry et al., 2002), uses open smart card

data to estimate linked trips and uses the results to establish the associated alighting stops. This

method has been applied in extensive studies in New York (Barry et al., 2002), Chicago (Zhao

et al., 2007)  and  London  (Gordon et al., 2013). The trip-chaining model makes two strong

assumptions: (i) each passenger gets on-board at the station where he/she alighted at the last

trip; and (ii) each passenger’s daily final alighting stop is the same as his/her first boarding stop

of the day (Barry et al., 2009). These assumptions put a limit on the applicability of the method.

As summarised byLi et al. (2018), such a naïve trip-chaining model is not applicable to the

following groups of passengers: (i) who use an untraceable mode of transport, for example

taking a taxi on a leg of the journey; and (ii) who do not return to their origin stops. Since then,
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various studies have been making improvements to this naïve trip-chaining model. For the

unlinked trips (e.g. those which involve a different untraced mode of transport in between bus

trips), Trépanier and colleagues (He and Trépanier, 2015; Trépanier and Chapleau, 2006)

suggest using passengers’ historic travel pattern, and they propose a density-based method

using arrival time and distances corresponding to each potential stops to identify the probability

of alighting at that stop. For the daily trips which do not go back to the first boarding stop,

Munizaga et al. (2014) find that many midnight trips (between 0-2 am) belong to trip chains

on the previous day, and they suggest distinguishing the day at 4 am to reduce missed trips in

recognising the trip chains.

One of the key processes in trip-chaining based models is to identify the most likely

alighting stop among possible stops in close proximation.Trépanier et al. (2007) search the

possible alighting stops by minimising the distance to the boarding stop of the next trip.Nunes

et al. (2016) define a threshold of distance by the transaction fares system with distance-based

fare structures.Munizaga and Palma (2012) replace the distance by a generalised time, while

Nassir et al. (2011) combine smart card records with a range of additional data sources,

including bus timetable, automatic passenger counter and automatic vehicle location system,

to identify the alighting stop of the last trip.

A common feature in these improved trip-chain models is that they rely on historical

data to find the next boarding (alighting) stops. Studies using the attraction rate and trip-

chaining  models  have  so  far  been  mainly  based  only  on  the  smart  card  data,  with  some

incorporating the network characteristics into the studies. In reality, there are many other

factors that can affect the ridership choices made by the passengers, such as the effect of

weather on passengers’ habitual travel behaviour (see section 2.3 for details), special events,

etc. This paper attempts to incorporate such weather-related factors in the estimation of bus

ridership to address this research gap.

2.2 Data mining using machine learning technique

Although the development of automatic data collection system offers detailed data on various

aspects of the public transport system, the abundance of available data challenges the

traditional data mining methods such as classification, clustering, and regression analysis.

Machine learning as a data mining method is shown to be able to handle high-dimensional and

multivariate data in a complex, dynamic and even chaotic system, and to identify the patterns

in the data and the relevant influential factors (Witten et al., 2016; Wu et al., 2019a; Wu et al.,

2016).
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Recently, there has been an increase in the number of studies trying to bring machine

learning to the analysis of public transport data (see examples listed in Table 1). For example,

Yu et al. (2011)apply several machine learning models: support vector machine, artificial

neural network, k nearest neighbours algorithm and linear regression to predict the bus arrival

time from the bus running time on different routes.Corman and Kecman (2018) build Bayesian

networks to predict train delays in real-time from a live data stream. Meanwhile, how to use

the data in the automatic fare collection system is also an interesting topic for many studies.

There are two types of automatic fare collection systems: theclosed automatic fare

collection system, which records both the boarding and alighting information, and theopen

automatic fare collection which records only the boarding information. For the closed (mostly

metro) automatic fare collection system, there have been extensive studies applying machine

learning to forecast the metro passenger flow from smart card data via the networks of hybrid

empirical mode decomposition and back-propagation neural network (Wei and Chen, 2012),

multiscale radial basis function network (Li et al., 2017) and long short-term memory neural

networks (Liu et al., 2019).

There are relatively limited studies of machine learning application to open automatic

fare collection systems.Toqué et al. (2016) infer the alighting stops using the trip-chaining

model to predict the origin-destination matrices at stop level in 15-minute windows using long

short-term memory neural networks.Jung and Sohn (2017) develop a deep learning model to

predict the alighting stops for each transaction, taking account of variables on the land-use near

the boarding and candidate alighting stops. The key literature on machine learning applications

on public transport research is summarised in Table 1.

Table 1 Selected literature on the applications of machine learning on public transport research.

Literatures
Public

transport
modes

Targets
Machine
learning
models

Data resources

Yu et al. (2011) bus arrival time SVM, ANN,
k-NN, LR real-time traffic data

Corman and
Kecman (2018) train delay

Bayesian
network scheduled and real timetable

Liu et al. (2019) metro passenger
flow LSTM closedsmart carddata;

weather and holiday events

Li et al. (2017) metro passenger
flow

MSRBF closed smart card data

Wei and Chen
(2012) metro passenger

flow EMD - BPN closedsmart carddata;
(holiday events)
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Literatures
Public

transport
modes

Targets
Machine
learning
models

Data resources

Toqué et al.
(2016) bus

origin-
destination

matrix
LSTM open smart card data

Jung and Sohn
(2017) bus destination Deep learning

opensmart carddata;
land-use

This study bus
alighting

stops GBDT
opensmart carddata;

travel history;
weather conditions

Abbreviations: support vector machine (SVM), artificial neural network (ANN), k nearest neighbours
(k-NN) algorithm, linear regression (LR), long short-term memory neural networks (LSTM),
multiscale radial basis function network (MSRBF), empirical mode decomposition (EMD), back-
propagation neural network (BPN), gradient boosting decision tree (GBDT)

Our study proposes a machine learning method to estimate bus passengers’ alighting

stops from open smart card data where only the boarding stops are observed. Compared to the

existing literature on the subject (Table 1), we employ an innovative new data mining approach,

the gradient boosting decision tree (GBDT) model, to estimate the alighting stop for every bus

trip recorded in the smart card data. Furthermore, we incorporate passengers travel history and

their travelling environment – in terms of the ambient weather conditions, into the estimation.

We examine the impact of these additional variables on the performance of the estimation.

2.3 Weather impacts on bus ridership

As noted in the Introduction, there has been existing research that established relationships

between the varying weather conditions and overall bus ridership. Table 2 summarises the key

literature that examines the weather impact on public transport ridership. Generally,

precipitation is found to be one of the most important factors affecting bus ridership.Hofmann

and O'Mahony (2005) show that the number of smart card trip records decreases with rainfall.

Similar conclusion, drawn bySaneinejad et al. (2012), is that commuting trips of all modes,

including buses and private cars, is negatively affected by precipitation. In contrast,Singhal et

al. (2014) find that urban transit ridership increases on snowy days as the poor driving

conditions tend to shift people from private cars. Additionally,Guo et al. (2007) investigate

how rain and snow affect the public transport ridership and report that rain and snow tend to

reduce the ridership for both bus and rail, but heavy snow might actually increase the rail

ridership. The temperature and wind are other important sensory weather variables.Stover and

McCormack (2012) report that in a cold climate, the ridership decreases as the temperature

dropped and increases on warmer days. Similarly,Guo et al. (2007) discover a significant



 9

positive impact of temperature on transit ridership in warm weather but find no correlation

between ridership and temperature in cold weather conditions. They speculate that the impacts

are not caused by the prevailing temperature but the temperature changes and human

perceptions.Kashfi et al. (2015) report that temperature has an insignificant effect on the daily

bus ridership. For the impacts of wind,Arana et al. (2014) show that the wind, together with

rain, leads to a reduction in transit ridership.Singhal et al. (2014) also find a negative effect of

wind on hourly subway ridership, but the effect is not significant on daily ridership.Guo et al.

(2007) note that increasing wind speed reduces bus ridership, but it has a negligible impact on

rail ridership. Besides these three weather variables (temperature, rainfall and wind),Zhou et

al. (2017) analyse  the  impact  of  weather  condition  on  bus  and  metro  system together  with

relative humidity and air pressure. Their study reports that increase in humidity, wind and

rainfall is generally associated with a certain degree of transit ridership decrease while their

degree and the significance of the impact vary from one weather variable to another, and

between weekday and weekend.Wei et al. (2019) consider the weather impact on weekday and

weekend travel by bus, train and ferry. They find that, unsurprisingly, ferry is mostly affected

by bad weather. Poor weather conditions do not appear to affect train journeys during the

weekdays, but to reduce train journeys made during weekends. They find that bus trips are

negatively affected by rainfall, but not affected by temperature.

The most common method to quantify the impact of weather on public transport

ridership in these studies is regression modelling, and the most commonly used independent

weather variables are temperature and precipitation.Guo et al. (2007) take into account

discretised weather variables, such as heavy or light precipitation, and warm or cool

temperatures.Zhou et al. (2017) replace the absolute value of weather variables by its deviation

to the average condition.Wei et al. (2019) consider the interplay of different weather variables

in the model to formulate the complex impact of weather conditions on the ridership.

Table 2 Correlations between public transport travel demand and weather conditions.

Literatures Public transport
modes

Precipitation Temperature
Wind

Warm Cold Warm Cold
Hofmann and

O'Mahony (2005) Bus �; × ×

Saneinejad et al. (2012) All �; �9 ×

Singhal et al. (2014) Metro �9 �í (daily)
�9 (hourly)

�í (daily)
�; (hourly)

Stover and McCormack
(2012) Bus �; �9 (winter) �; (except

summer)
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Literatures Public transport
modes

Precipitation Temperature
Wind

Warm Cold Warm Cold

Guo et al. (2007)
Bus

�;
�;

�9 �í
�;

Rail �9 (heavy
snow)

�í

Kashfi et al. (2015) Bus �í �í ×

Arana et al. (2014) Bus and train �; �9 �;

Zhou et al. (2017) Bus and metro �; �; �;

Wei et al. (2019)

Bus �; �í �í

Train �í (weekday)
�; (weekend)

�í (weekday)
�;(weekend)

�í

Ferry �;
�9 (weekday)
�í (weekend) �í

Note:�;: the negative correlation;�9: the positive correlation; �í: no correlation; ×: not discussed.

In this paper, we employ a machine learning method to independently evaluate the

relative importance of different weather variables on bus ridership and consequently

incorporate the important weather effects in the bus ridership prediction.

3 Data sources

3.1 Network description and data sources

In this study, we estimate the alighting stops of individual bus trips made using the smart card

in the city of Changsha. The city, in the central south of China, is separated by the Xiangjiang

River:  the  city’s  Central  Business  District  (CBD)  lies  east  of  the  river,  while  the  west  is

principally residential zone. There are more than 200 bus lines in Changsha, operated by three

bus companies. The study network, shown in Figure 1, is a subset of the Changsha bus network

and includes seven bus lines, all operated by the same bus company. Despite it being only a

sub-network of the city, the case network covers the key public transport interchanges in the

city:  the  three  bus  terminals  and  two  rail  stations,  as  well  as  the  three  river  crossings  that

connect the major geo-economical centres of the city. The seven bus lines are also

representative in service characteristics, including long-distance and sparse-stop lines (Line

063 and 168), long-distance and dense-stop lines (Line 147), short-distance and sparse-stop

lines (Line 006 and 007) and short-distance and dense-stop lines (Line 123 and 150).
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Figure 1 The case study bus network in Changsha, China.

Changsha’s smart card system is a typical open automatic fare collection system, where

passengers swipe cards only at boarding. The system records information on smart card ID,

boarding time, line and the bus vehicle boarded. All buses in Changsha are fitted with GPS

trackers, which record the vehicle ID, the longitude and latitude of the vehicle location every

10 sec.

Six months (April to September 2016) of smart card data is made available to this study,

in which 12 days’ data was missing. There are 17,159,076 smart card records in total or roughly

80000 records per day on average. The number of daily smart card records for the study period

is shown in Figure 2.  It shows that the ridership in holidays is markedly lower than that in

working days. It is also noticeable that the four weeks between the end of July and mid-August

have low ridership when the city typically experiences heatwaves with an average temperature

around 35ºC and maximum temperature of 40 ºC. Besides the high temperature, July and

August are also the school summer holiday, which may also contribute to a decrease in bus

ridership.
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Figure 2 The number of smart card trips by day.

As part of a wider study of bus patronage, we are also interested in the effect of weather

on passengers’ travel demand. We acquired weather data for those six months. The weather

data includes hourly measurements of temperature, precipitation, pressure, humidity, visibility,

wind speed, and an indicator/register of the type of weather event of the hour. The weather

events registered include, for example, clear, cloudy, thunderstorm, rain, etc. Figure 3

illustrates the hourly changes in weather events, overlaid with the number of smart card trips

during that day (and separated for weekdays and holidays). What is also overlaid is the ‘global’

daily bus ridership, averaged over all the six months of the study period. It can be seen that, on

clear days, the number of smart card trips is smaller than the global average. Combining the

pattern in Figure 2, the high temperature and blistering sun may reduce trip-making. Before

sunrise and after sunset when the temperature is lower, the ridership on those individual days

is similar to the global average. On cloudy days, the ridership during the morning and afternoon

peaks of the weekday is lower than the global average, while the ridership on the holiday day

is delayed by two hours.  Fog and haze have little or no impact on the bus passengers’ travel

behaviour in the working day, while the ridership on holiday is consistently reduced. Rain

appears to have reduced bus ridership on both holiday and working days. In Section 3.2, we

present a statistical analysis on the significance of the different weather events on ridership.
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Figure 3 Hourly ridership in a week for the typical weather events.

3.2 Data pre-processing

We consider a passenger’s travel from origin to destination as a journey, and each leg of their

journey as a trip. To simplify the problem and clarify the data analysis process, the following

assumptions are made: (A1) each passenger owns only one smart card, and each card can be

only used by its owner; (A2) a journey that requires transfer among different lines is regarded

as separate trips, each with its boarding and alighting stops. Although in practice, the same

smart card may be used by family members or friends, by assuming (A1), we take each smart

card user’s travel history into consideration in estimating his/her alighting stops. With the

above definition and assumptions, a trip is composed of a single pair of boarding and alighting

stops.

The smart card records are firstly cleaned up based on the assumption (A1). If there are

two or more records appear in the same vehicle at the same station in a very short time interval

(defined as within 1 minute), the data is registered as repetitive records and counted only once

(the first record) in this study. 6.3% of the data is recorded as repetitive. The remaining smart

card records are combined with the GPS tracking of bus vehicles to obtain the passengers’

boarding bus stops. 9.9% of trips cannot be matched with the GPS record of the vehicle number,

perhaps due to poor quality of the data. Then, we capture the timestamps when a bus enters and

exists a bus stop, and match the boarding time with these timestamps to find out the boarding

stops. Based on this boarding-stop inference method, an additional 15.5% of trips whose
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boarding stops could not be inferred. In total, 31.7% of the original smart card records are not

useful, and the remaining 68.3% of the data (with 11.7 million smart card records) is applied

in this study.

In our proposed machine learning approach, the training set utilises the alighting stops

as the label to teach the model how to do the classification, and the testing set also requires

their alighting stops to validate the accuracy and performance of the model. However, with the

open automatic fare collection system, the smart card records we have do not contain any

alighting information. Here, we use the trip-chaining method (Wang et al., 2011) to

synthetically generate the alighting stops for the trips in training and testing datasets and

assume these as the ‘real’ alighting stops for our proposed method. Following this naïve trip-

chaining method, the trips are categorised into the following four types:

�x Trips in a chain (X1);

�x Segments in transfer journey excluding last one (X2);

�x Last segment in the transfer journey (X3); and

�x Other trips (X4).

As presented in Table 3, types X1 and X2 trips account for 26.7% of the overall records.

This percentage is much lower than the cases in previous studies, for example, 75% in London

(Gordon et al., 2013), 70% in Chicago (Zhao et al., 2007) and 90% in New York (Barry et al.,

2002).  One  possible  reason  for  the  low  share  (of  X1  and  X2  trips)  could  be  that  our  study

network is a subset of the Changsha bus network, covering only seven bus lines. It is quite

possible that there are more trips of X1 and X2 types made using other bus lines (operated by

different bus companies) that are not counted in our sample. This reflects the practical

constraints imposed by the bus operating framework in Changsha, as well as in many other

cities, where there is more than one bus company operating different bus lines in the city, and

there is no central governing body (such as Transport for London) to combine and share the

smart card data generated by the different companies. A consequence of not having full access

to all smart card data in a city would lead to breaks during the trips chains and lower percentage

of X1 and X2 types of trips.

Table 3 The smart card data records for the study network.

Type The number of trips Percentage

Invalid data

Repetitive trips 1085500 6.3%

No GPS data 1698515 9.9%

No boarding stop 2661630 15.5%
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Type The number of trips Percentage

Cannot infer the alighting stops
X4 6580433 38.3%

X3 548182 3.2%

Database for this study
X2 746202 4.3%

X1 3838614 22.4%

Total 17159076 100.0%

Earlier, we saw in Figure 3 illustrations of the different weather events and their effect

on overall bus ridership. Here, we examine statistically the significance of weather events on

ridership of each type of trip (chain). We use the one-way analysis of variance to examine the

significant differences in the number of trips made under different weather events; the results

of the statistical analysis are presented in Table 13 in Appendix A. We find that the all the p-

values are less than 0.05,  except  those for  the X3 and X4 types of  trips,  which proves that

passengers, regardless of taking transfer trips or chaining trips, have a significantly different

travel behaviour under different weather events. The results further support the hypothesis that

the weather has a significant impact on trip chaining (X1 trips), and on trips that involve

transfers (X2+X3, and X1+X2+X3).

Following the trip-chaining method byWang et al. (2011), the alighting trips can be

only inferred for trips of X1 and X2 types. It may be noted that some of the types X3 and X4

trips can also be used by the method proposed byHe and Trépanier (2015).  For consistency,

however, only the trips in X1 and X2 are used in our study with the machine learning model.

4 A GBDT-based machine learning approach for alighting stop

estimation

In this section, we propose a machine learning classification approach to identify the alighting

stop of the trip from an open automatic fare collection system, where the alighting information

of the passenger is not recorded. We incorporate each smart card user’s travel history and the

weather conditions into the machine learning estimation framework.

4.1 Notations

The following notations are adopted in this paper (Table 4).
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Table 4 Table of notations.

Notations Description

trip Vector containing the features and alighting stop of a trip

r A feature representing a characteristic of the trip

r The vector including all the features associated with the trip

V The number of features employed in the model

d Alighting stop of a trip

k Index of an alighting stop

K The number of alighting stops in the network

merror Estimation error

Mwrong The number of trips that estimate to the wrong alighting stops

Mtotal The total number of trips in the dataset

t Index of iteration

T Maximum iteration

Sa Training set

m The number of data in the training set

h(·) Probability function of alighting at stops

R Disjoint region that collectively covers all the trips

j Index of the region

J The number of regions

c Coefficient corresponding to regions and defining the boundaries of regions

f(·) Boost tree model

L(·) Loss function

p(·) Symmetric multiple logistic transform of the probability of alighting at stops

g Decent direction

4.2 The machine learning estimation framework

Machine learning approach works by training the algorithm to optimise a certain performance

criterion using large data samples (Alpaydin, 2014). In machine learning languages, one data

record is called an ‘instance’. An instance contains many observed (or model) ‘features’, and

one ‘target label’ (or a class) to be estimated. The set of the observed features is called a ‘feature

vector’. The observed features considered in our estimations are described in Section 5.1. In

our study, the target label is the alighting stop we want to estimate. The instance, which in our

study represents a bus trip, is mathematically represented as:
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trip � r ,d�� �� (1)

wherer denotes the vector of V observed features of the trip:

1 2{ , , }, Vr r r�  r � � (2)

and d denotes the target label, i.e. the alighting stop of the trip:

(3)

where the set of dk represents all  the possible alighting stops (or classes), and K is the total

number of stops (which is 306 in our case study). Thus, our problem of predicting alighting

stops is a multi-class classification problem.

The first step in machine learning is to separate all the trips in smart card data into three

datasets: training, verification and testing datasets. The training set is used to obtain a trained

model; verification set is used to evaluate our trained model in the training process, while the

trained and verified model is applied to the testing dataset to predict the alighting stops of the

trips in the dataset. The performance of a trained model is measured in terms of an estimation

error (merror), defined as:

merror � 
Mwrong

M total

(4)

where Mwrong is the number of trips that is estimated to the wrong alighting stop and Mtotal is

the total number of trips in the dataset. We calculate themerrors for each of the training and

verification dataset, which are used as the stopping criterion after each iteration of the training

process.

Each model is trained with a set of hyper-parameters of the machine learning model. A

range of initial hyper-parameter values is tested, resulting in a range of different trained models

and model estimation errors. The final selected trained model is the one with the minimum

estimation error, which is then applied to the testing dataset for estimating the alighting bus

stops for the individual trips in that dataset.

4.3 A multi-class GDBT algorithm

4.3.1 General framework

The training algorithm introduced in this study is the gradient boosting decision tree (GBDT)

algorithm. Firstly proposed byFriedman (2001), the algorithm is based on the integration of

statistical and machine learning methods. More specifically, since a single tree(as used in

Friedman, 2001) is too weak to lead to an accurate result, GBDT uses a set of simple trees, in
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the form of a classification and regression tree, to calculate the results and draws the conclusion

(i.e. to estimate the alighting stop of each trip in our model) together.

Unlike most of the applications of GBDT which have only a binary choice, the problem

of  alighting  stop  estimation  belongs  to  the  multi-class  classification  problem  (MCCP).  We

outline in Figure 4 the main processes for such a multi-class GDBT algorithm. Since there are

306 possible  stops in  the label,  we consider  the alighting stops one by one.  The multi-class

classification problem of estimating the alighting stops is then transformed to a set of regression

problems and used to build the classification and regression tree which calculates the alighting

probability at each stop. The bus stop with the highest alighting probability is chosen as the

final estimation result, i.e. the most probable alighting stop.

Figure 4 The processes of a multi-class GBDT.

4.3.2 Gradient boosting decision tree algorithm

The GBDT model combines a decision tree algorithm, a gradient updating algorithm, and a

boosting algorithm, in an iterative process (outlined in Figure 5) to improve the training results.
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Figure 5 The detailed algorithm of GBDT model for a single stop k.

The classification and regression tree algorithm in GBDT is the most widely used

decision tree model. Each internal node on the tree represents a test on a feature of the trip,

while the branch represents the test output (represented in probability terms). The terminal

nodes of the tree represent the alighting probability at the bus stop along the branch. Let hkt(r)

denotes the estimation result for a tripr from a simple regression tree for stop k at the tth

iteration. The probability of alighting at the stop k at the tth iteration is measured as the additive

form:

h
kt

r� � � ��  c
jkt

I r �• R
jkt�� ��

j � 1

Jkt

�¦ (5)

where Rjkt is the disjoint region j that collectively covers all the trips for stop k at iteration t, and

Jkt is the number of regions for stop k at iteration t. These regions are represented by the terminal

nodes of the tree. cjkt is a coefficient corresponding to region jfor stop k at t iteration t, which

defines the boundaries of the regions. The indicator function I(·) has the value 1 if the argument

is true, and zero otherwise.

The idea of boosting is to identify ways to improve the simple trees. Let ft(r) denotes

the estimation result of the boosted tree model after iteration t. Hence, the boosted tree model,

or fT(r), can be obtained from:

fkT r� � � ��  hkt r� � � �
t�  1

T

� ¦ (6)

To increase the accuracy of the estimates, a loss function is being minimised step by

step in the iterative GBDT process. A gradient algorithm is used to calculate the direction where

the loss function decreases the most, and the gradient of numerical decent. The negative
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direction of the gradient refers to the direction where the loss function decreases the most. In

GBDT, the loss function employs the log-likelihood loss function (Friedman, 2002):

L dk , fk r� � � �� � � ��  � � dk log10 pk r� � � �
k�  1

K

� ¦ (7)

where d denotes the real alighting stop; fk(r), calculated from Equation (6),  is the probability

of the trip estimated to alight at stop k; and dk is the probability of the trip belonging to alighting

stop k, where dk equals to 1 if k is the real alighting stop, otherwise, 0.

Following the method ofFriedman et al. (2000), we use the symmetric multiple logistic

transform:

pk r� � � ��  
exp f

k
r�� ���� ��

exp fl r� � � �� � � �
l �  1

K

� ¦
(8)

Then the decent direction of trip m at stop k and iteration t can be calculated as:

�� ���� ��
� � � �

� � � � � � � �
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Equation (9) states that the error is the difference between the real probability of the

alighting stop k that trip m maps and the corresponding estimated probability at iterationt-1.

Next, a new tree can be generated by following Equation (5), where the coefficient can

be optimised as:

(10)

Following Friedman et al. (2000), Equation (10) is approximated as:

c
jkt

� 
K �� 1

K

g
kt
m

r m�•Rjkt

�¦

g
kt
m 1�� g

kt
m�� ��

r m�•Rjkt

�¦
(11)

With Equation (11), a new regression tree for each stop can be generated by Equation

(5), and the boosted tree model can be updated by using Equation (6):

f
kt

r� � � ��  f
k,t� �1

r� � � �� � c
jkt

I r �• R
jkt�� ��

j � 1

Jkt

�¦ (12)

The iterative process continues until an empirical stopping criterion is met by

comparing themerrors of training and verification dataset from Equation (4). In our case, a

pre-specified number of iterations is reached.
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Unlike many other machine learning methods, GBDT is able to evaluate the relative

importance of the independent features of the trip. Since the depth of the tree is constrained by

the hyper-parameter, the simple tree that is used in each iteration only includes a randomly

chosen set of features (as opposed to all features). Hence, the frequency of the features used

across all trees can be used to measure the relative importance.

4.4 Model evaluation

One measure of the performance of the model is the estimation errormerror from Equation (4).

However, it is a far too simple measurement to evaluate the machine learning models.

Generally, a confusion matrix of measures, composed of True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN), is used to evaluate the performance of the

binary classification model (Stehman, 1997). For our multi-class classification model, we

introduce a confusion matrix for the estimated results of each alighting stop and then calculate

evaluation indexes (Powers, 2011; Zhou, 2016). Table 5 presents the confusion matrix for a

single alighting stop.

Table 5 The confusion matrix for the estimated results of a single alighting stop k

Real alighting stop
Estimated alighting stop

k
(positive)

Other stops except for k
(negative)

k
(positive)

TPk FPk

Other stops exceptfor k
(negative)

FNk TNk

Our evaluation indexes then include precision (macro P), recall (macro R) and F1 score

(macro F1), as defined in equations (13 – 15). Precision and recall  reflect the quality of the

model in terms of the reliability for the results and the applicability for the sample. The F1

score, the harmonic mean of the precision and recall, measures and provides an overall

performance of the model. The higher F1 scores indicate more superior models.

1

1 K
k

k k k

TP
K TP FP

macroP
� 

� 
���¦ (13)

1

1 K
k

k k k
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K TP FN

macroR
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5 Feature selection and experiment designs

In this section, we introduce the features selected that characterise the trips, and the machine

learning experiments designed to evaluate the relative performances of the algorithms and data

features.

5.1 Feature selection

Each trip in this study contains 18 observed features, denoted as r1 to r18 in Equation (2), and

the one target label, d; these are listed in Table 6. The observed features contain three groups

of data: (i) the basic bus trip information as recorded by the smart card and the boarding

information as inferred from the GPS records of the bus services; (ii) the smart-card user’s

recent travel history, also extracted from the historical smart card data; and (iii) the ambient

weather data for the trips taken in (i).  The temporary features and boarding stops are the

necessary information from the smart card data and often used in the previous studies for the

bus ridership estimation. To investigate the regularity of travels and describe the travelling

preference, we introduce features about the passengers' recent travel history. As noted in the

Introduction, weather can impact on the travel destinations(Sabir, 2011), we introduce

independent weather variables in the estimation of alighting stops.

Table 6 The selected model features and the target label.

Feature groups Features Types Investigated range

Basic smart card
information

Month Discrete 4 - 9 [for April to
September]

Day Discrete 1, 2, …, 31 [day]

Hour Discrete 0, 1, 2, …, 23 [hrs]

Days of week Categorised Mon., Tues., Wed.,
Thurs., Fri., Sat., Sun.

Holiday Binary
0: working day;

1: holiday
Boarding stop ID Nominal 060101, 060102, etc.

Boarding line Nominal 6, 7, 63, 123, 147, 150,
168

Travel history

Number of trips ontheprevious
day Discrete 0, 1, 2, …

Number of trips in the same hour
on the previous day

Discrete 0, 1, 2, …

Number of tripson all the previous
7 days Discrete 0, 1, 2, …

Number of tripson the same day of
the last week

Discrete 0, 1, 2, …

Number of trips in the same hour
on the same day of last week Discrete 0, 1, 2, …
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Feature groups Features Types Investigated range

Weather
conditions

Temperature Continuous -6 - 40 [�qC]
Precipitation Continuous 0 - 58mm

Humidity Continuous 0 - 100 [%]

Visibility Continuous 0 - 10 [km]

Wind speed Continuous 0 - 10 [mph]

Weather events Categorised
Clear, rainy, misty,
cloudy, overcast,

unknown.
Model label Alighting stop IDs Nominal 060101, 060102, etc.

5.2 Experimental design

As GBDT is a relatively new machine learning algorithm, we adopt two other classic

algorithms, multinomial logistic regression (MLR) and neural network (NN), to compare their

relative performances. MLR and NN are the two most popular algorithms used in machine

learning approaches. Both have been used in a variety of transport applications, e.g. traffic

forecasting, travel mode choice modelling and trip distribution modelling (Karlaftis and

Vlahogianni, 2011). The hyper-parameters of the GBDT and NN algorithms are set as inputs

for the machine learning model. Table 7 displays the different initial settings of the hyper-

parameters for the algorithms during the training process.

Table 7 The initial setting of the hyper-parameters during the training process.

Hyper-parameters GBDT NN

Learning rate or step-size 0.0005,0.001, 0.005, 0.01,
0.05, 0.1

0.0005,0.001, 0.005, 0.01,
0.05, 0.1

Maximum depth of each tree 3,5,8,10,12,15 -
Fraction of data for training

next tree 0.2, 0.4, 0.6, 0.8 -

Note: The next two groups of experiments with GBDT follow this initial setting.

We conduct six experiments, with increasing total number of trips in the training and

verification set, while keeping the same dataset as the testing set. Table 8 lists the details of the

training and verification datasets used for the six experiments. All the six experiments employ

the same testing dataset, the trips made on 30th September 2016. The other data are combined

and used as training and verification data (depending on the sample sizes). In each of the six

samples,  30%  of  the  combined  training  and  verification  data  is  chosen  randomly  as  the

verification data and the rest 70% as the training data. From Samples 1 to 6, the number of days

and data in the combined training and verification data increases. These experiments are
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designed to illustrate the relationship between the size of the training set and the accuracy of

the results.

Table 8 Data sample for the experiments.

Experiments
The training and verification data The testing data

Days Number of
records Day Number of

records
Sample 1 01-29/09/2016 (23 days) 807136

30/09/2016
(1 day)

22602

Sample 2 01/08 - 29/09/2016 (54 days) 1576132

Sample 3 01/07 - 29/09/2016 (85 days) 2324989

Sample 4 08/06 - 29/09/2016 (108 days) 2954072

Sample 5 08/05 - 29/09/2016 (123 days) 3388117

Sample 6 08/04 - 29/09/2016 (143 days) 3983788

Note: Sample 4 – 6 exclude days when the data was missing.

As introduced in Section 1, in this study, we are interested in the weather conditions

and travel history of passengers’ behaviour. To test the hypothesis, we set up several GBDT

models with four different combinations of feature groups (dubbed as FG 1 to 4). The feature

groups and the setting of hyper-parameters are displayed in Table 9. All four experiments use

the dataset of Sample 6 experiment. FG 1 uses only the basic smart card information, similar

to many previous methods. FG 2 adds only the travel history to FG 1, and FG 3 adds only the

weather variables to FG1, while FG 4 includes the full set of features proposed in Table 6 (i.e.

adds both travel history and weather conditions to FG 1). The experiments are designed to help

us understand the effect of different groups of features.

Table 9 Experimental designs with different feature groups (FG).

Experiments Basic smart card information Travel history Weather conditions

FG 1 �3

FG 2 �3 �3

FG 3 �3 �3

FG 4 �3 �3 �3

6 Model results

6.1 Model comparison

Sample 6 and feature group FG 4 are applied to the GBDT model introduced in this paper, and

to the MLR and NN models. For the GBDT and NN model, the final set of the hyper-parameters

are displayed in Table 10.
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Table 10 Values of the hyper-parameters in GBDT and NN.

Hyper-parameters GBDT NN

Learning rate or step-size 0.005 0.001

Iteration 150 30

Maximum depth of each tree 8 -

The fraction of data for training next tree 0.4 -

Number of nodes in layers - (342,333,333,306)

Activation function for hidden layers - Sigmoid

Dropout rate - 0.3

Activation function for output layer - SoftMax

The relative estimation power of the three models, as measured by their precision

(macro P), recall (macro R) and F1 score (macro F1), are illustrated in Figure 6. The F1 score

of a random classification is used as the baseline for comparison, as is indicated as the ‘baseline’

in Figure 6. It can be seen that the F1 scores of all these three algorithms are higher than that

of the baseline, suggesting all three models are theoretically acceptable, while GBDT has the

best performance according tomacro P andmacro F1. Looking at the precision and recall of

the model estimations, we can see that the values ofmacro P are always higher thanmacro R

for their respective machine learning algorithm. This suggests that the estimation accuracy in

all three models is better than their recall power. GBDT has the highest prevision accuracy,

while NN has slightly higher recall power than GBDT. Overall, GBDT performs the best, and

its prediction power is higher in accuracy than in its comprehensiveness.

Figure 6 Comparison of the performance of the three training algorithms.
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6.2 Effect of the training data size

The different training datasets, as defined in Table 8, are applied to the GBDT model with

feature group FG 4. The values of hyper-parameters are displayed in Table 11.

Table 11 Values of the hyper-parameters in Sample 1 to Sample 6.

Setting Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Learning rate 0.001 0.001 0.001 0.005 0.001 0.005

Iteration 70 70 100 120 110 150
Maximum depth of

each tree 6 8 8 5 7 8

Fraction of data for
training next tree

0.5 0.7 0.6 0.7 0.5 0.4

The prediction measures are shown in Figure 7. We can see that, in general, increasing

the training data size improves the prediction power. The most significant improvement

happens between experiment Sample 1 and Sample 2, while the improvements gradually

become smaller as the total sample sizes get larger. The level of precision is universally higher

than the recall. It indicates that this model does better in the precision estimation than in the

extensive estimation.

Figure 7 The performance measurements of the model in different size of the training set.
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6.3 Impact of weather condition and travel history

We illustrate the impacts of including the weather variables and historical trips on our models

by comparing the results of the four groups defined in Table 9. The final value of the hyper-

parameters of each group is presented in Table 12.

Table 12 Values of the hyper-parameters for the experiments with different feature groups.

Experiments

FG 1 FG 2 FG 3 FG 4

Basic smart card
information

FG 1 +
travel
history

FG1 + weather
conditions

FG1 + travel history
+ weather conditions

Learning rate 0.05 0.05 0.005 0.005

Iteration 80 80 120 150
Maximum depth of

each tree 3 5 5 8

Fraction of data for
training next tree 0.6 0.5 0.6 0.4

In Figure 8, from FG 1 to 4, as reflected in the F1 scores, we see improvements in the

performances of the models. Between FG 2 and 3, the improvement from adding historical

trips is less compared to the improvement resulted from adding the weather conditions. We

speculate that this is because the information about historical trips captures the regularity of

the behaviour, but the travel behaviour of the passengers are affected more by the changing

weather conditions. FG 4 has the best F1 scores indicating that including both travel history

and weather leads to the best performance.

Looking at the precision and recall sides of each model, the main increase from FG 1

to 2 is in the recall index (macro R). The similar situation occurs from FG 3 to 4. When we

remove the historical trips out of the model (from FG 2 to 3), the recall ability of the model

reduces slightly. However, there is a significant increase in precision from FG 2 to 3. The

results suggest that the two groups of features can improve the model in different ways.

Principally, the features about the historical trips improve the comprehensiveness of the model

and the weather variable makes the estimation more accurate.
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Figure 8 Evaluation of the impacts of different feature groups.

6.4 Relative importance of feature variables

We capture the relative importance of the features in models FG 1 to 4 in Figure 9. It can be

seen in Figure 9(a) that, for FG 1(when only considering smart card data), the boarding stops

is the most significant feature. The month and day are not significant features. The feature of

holiday is the least significant feature, for which the day in a week contains the information on

holiday to some extent.  For FG 2 (as seen in Figure 9(b)), almost all the features about

historical trips score low on impact. In Figure 9(c) for FG 3, the boarding stop scores the highest

followed by the weather events with the temperature being the most important of the group.

However, the importance of other quantitative weather features, i.e. wind speed, humidity,

visibility and precipitation, is not as significant. This may imply that where passengers decide

to alight is not influenced by their qualitative cognition (e.g. whether it is rainy or not) than by

the quantitative information (e.g. how much the precipitation is). This is also reflected in

practice how bus companies adjust their service frequency under different weather event, i.e.

they provide more frequent bus services on a rainy day regardless of the level of precipitation.

Even if the bus company cannot respond to individual weather variables, e.g. humidity and

visibility, our study suggests that the simple register of a ‘weather event’ would improve the

origin-destination demand estimation and better (re)scheduling of their bus services. In Figure

9(d) for FG 4, we can see that the weather condition is a much more important group of features

than the travel history in the model. This reinforces the findings drawn in Section 6.3. Thus
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based on the importance analysis and performance measurement, FG 4 (the model including

all the features) is demonstrated as the best model.

Figure 9 Ranking of the feature importance in different feature group experiments.

6.5 Ridership estimation

For bus planning, the overall demand (and distributions) of bus ridership is the most critical

factor to consider. In this section, we apply our two trained models with and without weather

features (FG 4 versus FG 2) to the test dataset, to predict the following aggregated bus ridership:

�x The number of alighting passengers at each station,

�x The load-profile and max load on each line.

The models with feature groups FG2 and FG4 are used in the prediction, and the

predicted alighting stops are compared with the ‘true’ alighting stops as inferred from the trip-

chaining model (Wang et al., 2011).  We utilise the GEH Statistic (DfT, 1996) to compare the
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difference between the estimated and true alighting numbers at bus stops, which is formulated

as:

GEH �  � r
2 N

e
� �N

r� � � �2

Ne � �Nr

(16)

where Ne and Nr represent the number of correctly estimated and true alighting stops,

respectively. Additionally, we add the signs to represent when Ne > Nr (positive) and when Ne

< Nr (negative). Figure 10 presents the GEH statistics for seven bus lines (in both directions).

In general, an absolute value of GEH less than 5 is considered acceptable (DfT, 1996).

Overall, 98% of the alighting stops have a GEH value less than 5, suggesting that the

estimation accuracy is high. There are six stops for FG 2 and seven stops for FG 4 with GEH

value between 5 and 10, while four stops in both FG 2 and FG 4 have GEH values greater than

10. We find that most of those stops (with GEH higher than 5) are the last stop of the bus route.

It is possible that the accumulation of the errors at intermediate stops leads to those large errors

at the last stops. Besides, in the middle of Line 150 outbound services, there are two stops with

high  GEHs.  We  take  Stop  16  in  the  model  with  FG  4  as  an  example:  the  true  number  of

alighting is 7, while the weather-included model (FG 4) estimates that the number of alighting

at this stop is 36. So, a small base number might cause a higher GEH value. Another possibility

is that the trips alighting at this stop only make up 1.8% of the total training data. This load

imbalance might also cause inaccuracy in the estimation. It is worth noting that the GEHs of

Line 63, 123, 147 and 168 are near 0, suggesting that both of the models with FG 2 and FG 4

produce accurate matches in the alighting numbers at bus stops along these four bus lines.

Furthermore, comparing the two models, 60% of stops have lower GEH in FG 4 than in FG 2,

suggesting that including weather conditions help our machine learning model estimate more

accurate alighting stops.

Figure 11 shows the ground truth and estimated ridership with FG 4 and FG 2, the two

trained machine learning models with and without weather variables. As seen in the figure, the

estimated load-profile has similar profiles as the ground truth and correctly matches the max-

load stop in the ground truth with little differences in the absolute value of the maximum load.

This is especially the case for Line 63, 123, 147 and 168, which have fewer passengers and

which get an almost perfect matching. Although both models reflect the ground truth

reasonably well, the model containing the weather variables (FG 4) is closer to the ground truth.

Again, this comparison confirms that including weather variables makes the ridership

estimation more accurate.
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Additionally, the significant errors occur at the downstream stops of each bus services,

which can be attributed to accumulation effects. We take a closer look at the outbound services

of Line 6 and 147 to gain better insights about the accumulation errors. Line 6 has the largest

error, while there are few errors in the latter one. Having a look at these two services in Figure

10, most stops in Line 6 has negative errors, and the only two positive errors are in the middle

and at the end, respectively. With accumulating the negative error, the increasing number of

passengers are counted on board. So, the estimated ridership increases by these errors. The

difference becomes larger and larger until the final positive error corrects the previous

accumulated negative errors. However, the situation in Line 147 is different. The negative and

positive errors occur alternately so that the following error can correct the previous errors in

time, and the errors are not accumulated.
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1
Figure 10 The GEH statistic of the alighting number at each station.2
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3
Figure 11 The load-profile of each service in ground truth, weather-included model and weather-excluded model.4
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7 Discussion and Conclusion

Developing smart public transport system is a vital task in building sustainable cities.

Understanding passengers’ origin-destination and travel pattern are of great importance to

improve the level of services and attractiveness of buses.

This study proposes a machine learning model with advanced gradient-boosting

decision tree (GBDT) solution algorithm to estimate the alighting stops from the smart card

logs of an open automatic fare collection system. We explicitly incorporate features that

represent weather conditions and information of the individual’s travel history in the model, so

the estimation is not only based on the characteristics of the trip itself but also referring to the

impacts of the ambient environment and the passengers’ habitual travel behaviour.

To illustrate the performance of our proposed method, we conduct three comparative

studies: (i) GBDT method vs two commonly used machine learning models; (ii) the size of the

training dataset; and (iii) the inclusion (or not) of weather conditions and travel history in the

estimation model. The results show that the machine learning method can accurately estimate

the alighting stops from smart card data and that GBDT performs better than NN and MLR

overall, and in particular from the view of precision. Intuitively, increasing the size of training

dataset improves the estimation accuracy. However, we discover that there is less improvement

after a certain point (in our case, 3-month data in training dataset). The results also confirm that

we can obtain a more accurate estimation when considering more features in the model,

although the effect of the features varies. Weather conditions improve the accuracy (in

precision), and historical trips improve the comprehensiveness (in recall). Additionally, the

high ranking of the feature, weather events, and its significant contribution in increasing the

precision of the GBDT model highlights that the effect of this variable is worthy of detailed

testing when analysing and predicting passengers’ decision of alighting stops.

Whilst  the  model  trained  in  this  paper  with  smart  card  data  from Changsha  is  only

applicable to this specific study network, the proposed GDBT framework is generic and can be

applied to other smart card systems (open or closed): firstly using the smart card data to obtain

a trained model, and then apply the trained model to predict bus ridership in the near future

where travel conditions (such as weather conditions) can be readily predicted. Even the

application in different cities can customise their model by easily adding or deleting the

features in the model.

This study can also be used to predict the alighting stops in short-term as opposed to

long-term trend prediction. The short-term prediction emphasises on the detailed value and
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minor changes (dynamics) and leverages the availability of accurate short-term weather

forecasts. The target application is to make minor adjustments in the schedule of high-

frequency bus services.

Overall, this paper makes new advances in these main aspects. Firstly, we employ a

machine learning model with that GBDT algorithm in bus data mining, a novel technique in

processing the massive smart card data. Secondly, our method is general and applicable to

individual bus trips made by regular and irregular passengers as recorded in smart card data

and fills the gap of the trip-chaining model, which requires the identification of an unbroken

trip chain for every smart card user. Third, we incorporate the impacts of weather conditions

and travel history in the estimation of detailed origin-destination and ridership. Our model

estimates the alighting stops for each smart card log, making it possible to readily compute the

origin-destination-based load-profile for each bus line, important baseline information for

planning more attractive bus services for the public.

We conclude this paper by critically examining the limitations of the current study. By

its very nature, the true alighting stops of the open smart card system are not known, and we

did not have access to an alternate source of ground truth data. Rather, we only have access to

smartcard data from one bus company and use the naïve trip-chaining method to

generate/obtain an estimated ‘ground-truth’. Lack of validation from the real data is a limitation

of this study. Validation against true alighting stops collected from surveys and/or inferred

from other data sources (e.g. video recordings) will help verify the assumption and support the

machine learning model estimation process. Additionally, this paper, in fact, applies the

proposed machine learning model on the trip chains (X1) and part of transfer trips (X2) and we

are not able to consider travellers who change their travel modes under different weather

conditions. This could potentially lead to survivor bias for the model, as a result of the limited

availability of data sources. As more multi-source data, such as bus video recordings and

automatic passenger counted data, becomes readily available in the future, they open

opportunities for data fusion and new models for estimating bus ridership.

Further, due to the limitation of data accessibility, our case study is a subset bus network

in Changsha, which may have caused the underlying self-selection bias. As stated in Section

3.2, it is common for more than one bus companies to operate in a city and they do not share

their data. In our study, we try to reduce the bias by selecting representative bus lines in the

city (discussed in Section 3.1). However, this still leaves a certain level of self-selection bias,

which we cannot completely avoid. It is worth further investigation to compare the deviation

of the models trained by the data from the whole and subset network.
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Our model has 306 stops in the study sub-network of Changsha. In larger networks, the

number of bus stops can be very big. A large number of stops can cause difficulty in training a

good model; this is a general challenge for multi-class machine learning problem. As far as we

are aware that machine learning methods have only been applied to cases with limited stops

(classes), for example,Jung and Sohn (2017) consider only five candidate alighting stops in

their model. One possible advance might be to separate the trips by bus lines and to build

machine learning models line by line. This reduces the number of candidate stops (classes) in

each model. However, the increased number of models are likely to make it more difficult for

bus companies to use them, and to coordinate the different changes in service schedule at a

network level.

The current study is only the first step in applying machine learning techniques to

estimate bus ridership form open smart card data. We believe that there will be more efforts

and gain can be made from using machine learning techniques to gather passenger origin-

destination demand and ridership information to support developing a sustainable public

transport system.
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Appendix A

Table 13 Results of the one-way analysis of variance of trip types vs feature ‘weather event’.

Total number of trips in categories Trip types Homogeneity of test p-value

Trips in a chain X1 0.737 0.023

Segments in transferjourney excluding
last one

X2 0.338 0.004

Last segment in the transfer journey X3 0.403 0.112

Other trips X4 0.483 0.068

Transfer trips X2+X3 0.559 0.020

Trips chains and transfer trips X1+X2+X3 0.889 0.018

All the trips X1+X2+X3+X4 0.588 0.032

Trips used in the paper X1+X2 0.777 0.017
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