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Abstract: 

Effective grain size is a direct indicator of the high angle grain boundary (HAGB) 

density of microstructures. A small effective grain size suggests a high density of 

HAGBs, which provide effective barriers to cleavage fracture. There have been many 

investigations concerning the effect of processing parameters on the effective grain 

sizes of steel microstructures. However, contradicting results were found for the 

influence of austenite deformation. In this research, to understand the influence of 

austenite deformation on effective grain size refinement, a low carbon Nb 

microalloyed steel was subjected to different austenite deformation conditions and 

was continuously cooled at a wide range of cooling rates (0.5~50˚C/s). Characteristics 

of transformed microstructures from recrystallised and deformed austenite were 
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analysed through optical microscopy observation and EBSD mapping. In the whole 

cooling rate range adopted in this research, effective grain sizes were found to be 

refined by austenite deformation. However, with the rise of cooling rate higher than 

10˚C/s. With the rise of the cooling rate higher than 10˚C/s, effective grain sizes are 

reduced for recrystallised austenite, while increasingly large effective grain sizes were 

found for deformed austenite. According to these experimental results, the influence of 

austenite deformation on effective grain size in a wider cooling rate range was 

proposed to be cooling rate dependent, and possible explanations for the contradicting 

results in the literature were discussed based on that. 

 

 

1 Introduction 

 
It is well acknowledged that high angle grain boundaries (HAGBs), which have 

misorientation angles greater than 15˚, are one of the factors affecting a steel’s 

toughness. A high density of HAGBs provide effective barriers to cleavage fracture by 

arresting cleavage cracks or deviating their propagation directions [1, 2]. Increasing 

the HAGBs density of steel microstructures could enhance their toughness [3]. The 

average size of grains surrounded by HAGBs, which is usually called the effective 

grain size, is a very important microstructural parameter because it is an indicator of 

the density of HAGBs [4, 5]. 

 

There have been many investigations concerning the effect of processing 

parameters on the effective grain sizes of steel microstructures [6-11]. However, some 

of the results are still controversial, especially for the influence of austenite 

deformation below the austenite nil-recrystallisation temperature (Tnr). Austenite 

deformation below Tnr is the essence of thermomechanical processing [12]. After 

deformation, several changes in the austenite state are made, including grain shape, 

texture, substructure density, annealing twin boundaries and bulging of austenite grain 

boundaries [13]. This austenite conditioning strongly affects the transformed 

microstructures [14, 15]. 

 

For Nb microalloyed steels, Beynon and Sellars [16] found that the mean grain 



3 

 

 

size of ferrite is reduced by austenite deformation. In our previous investigation [10] 

for a low carbon Nb microalloyed steel cooled at 20˚C/s, the effective grain size is 

decreased from 5.7 µm to 3.1 µm with the austenite strain rising from 0 to 0.5. In 

research [17], on a low carbon Nb-V microalloyed steel, it was found that the 

effective grain size of microstructures transformed from deformed austenite is smaller 

than those of microstructures transformed from recrystallised austenite in a wide 

cooling rate range (0.2~30˚C/s), and this grain-refining effect of austenite deformation 

gradually becomes weak as the cooling rate increases. 

 

Contradicting these are the results found in the literature that austenite 

deformation leads to microstructure coarsening [11, 18-20]. It was shown that for a 

low carbon vanadium microalloyed Ni-Cu-Mo-Cr steel with an austenite grain size of 

47 µm, the effective grain size of bainite was increased from 3.2 µm to 3.8 µm when 

austenite was deformed by 30% and cooled at 50˚C/s [11]. For a low carbon  

vanadium microalloyed steel with a larger austenite grain size of 140 µm, the effective 

grain size was also increased from 5.1 µm to 5.3 µm when austenite was deformed by 

30% and cooled at 50˚C/s [18]. The block width of bainite transformed at 350 ˚C was 

found to be increased after an austenite deformation of 50% for Fe-9Ni-C alloys with 

carbon contents of 0.3 and 0.5 wt.%, respectively [19]. For a TRIP steel with 0.4 wt.% 

C, 1.5 wt.% Si and 1.5 wt% Mn, the quantity of bainite packets transformed at 400 ˚C 

in each austenite grain was found decreased after austenite deformation [20]. 

 

Given these contradicting results found in the literature, the influence of austenite 

deformation on the effective grain size of transformed microstructures was 

investigated in a wide cooling rate range for a low carbon Nb microalloyed steel. 

Explanations for different grain-refining effects of austenite deformation are provided 

in respect of the transformed microstructure’s characteristics. 

 
2 Experimental 

 
The chemical composition of the steel used is shown in Table 1. In order to fully 

dissolve the Nb-containing precipitates and shorten the preheating time during testing, 
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all specimens were subjected to a solid-solution heat treatment at 1250˚C for 30 

minutes with argon atmosphere protection, and were water quenched directly from 

1250˚C to room temperature. 

 

 
Table 1 Chemical Compositions (wt%) 

 

C Mn Si S P Nb Cr Ni Cu Ti N 
 

0.045 1.43 0.14 <0.003 <0.01 0.09 0.21 0.12 0.21 0.01 0.0039 
 

 

 
 

Plane strain compression and subsequent controlled cooling tests were carried out 

on the servo-hydraulic thermomechanical compression (TMC) machine at The 

University of Sheffield. The processing route is schematically illustrated in Figure 1. 

The solid solution heat treated specimens were reheated to 1200˚C at a rate of 10˚C/s, 

held 2 minutes for equilibration, and then cooled at a rate of 5˚C/s to 1100˚C for a 

roughing deformation (strain1) of 0.3 at a constant true strain rate of 10s-1. After the 

roughing deformation, the specimens were cooled immediately to 950˚C at a rate of 

5˚C/s for the second deformation with strain2 of either 0 or 0.5. As the typical Tnr for 

HSLA steels containing 0.1 wt% niobium is close to 1050˚C [19], the second 

deformation temperature was selected as 950˚C. This second deformation was also 

performed at a constant true strain rate of 10s-1, and was followed by a controlled 

cooling from 950˚C to 500˚C at rates of 0.5˚C/s, 1˚C/s, 5˚C/s, 10˚C/s, 20˚C/s and 

50˚C/s, respectively. After that, specimens were slowly cooled from 500˚C to 350˚C 

at a rate of 1˚C/s, and finally were water quenched from 350˚C to room temperature. 

Going  through  the  same  processing  route,  another  two  samples  were  water 

quenched  directly after  strain2  of 0  and  0.5,  respectively,  to examine the austenite 

morphology. 
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Figure 1 Schematic illustration of the thermomechanical testing profile. 

 

 
Samples for metallographic observation were cut in the rolling direction (RD)– 

normal direction (ND) plane and polished. A 2% nital solution was used to show the 

transformed microstructure and a saturated aqueous picric acid solution was used to 

reveal the prior-austenite grain boundaries (PAGBs). The prior-austenite grain size 

was measured optically by the linear intercept method. Optical microscopy (OM) 

observations were carried out on a Nikon Eclipse LV150. 

 

To prepare specimens particularly for EBSD mapping, after grinding and 

polishing the specimens were then polished further with a colloidal silica suspension 

for additional 2 minutes. EBSD mappings were performed on a FEI Sirion electron 

microscope with a HKL Nordlys detector. Orientation maps with an accelerating 

voltage of 20kV were obtained on the RD-ND plane for each sample. The step size 

for the transformed microstructures with cooling rates of 0.5˚C/s and 1˚C/s was set at 

0.5 µm because coarse PF/QF grains dominate these transformed microstructures. The 

step size for the rest of the cooling rates was set at 0.2 µm. To reduce the mis-indexing 

of phases in these complex microstructures, α iron (BCC) was chosen as the only 

matching unit. Following a recommended method [38], noise points of raw data were 

removed and non-indexed points were filled with the common orientation of their 

neighbours using HKL Channel 5 Tango software. 
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3 Results 

3.1 Prior-austenite microstructures 

 

Micrographs of the prior-austenite grains with strain2 of 0 and 0.5 are shown in 

Figure 2 a~b, respectively. As can be seen from these two figures, with strain2 of 0, 

the prior-austenite grains are recrystallised and the mean linear intercept length 

measured grain size is 37.0 µm, while with a strain2 of 0.5, the prior-austenite 

microstructure remains in a deformed condition. Based on that, the selected austenite 

deformation parameters are considered suitable to investigate the effect of austenite 

deformation on the effective grain size of transformed microstructures. 

 

  

Figure 2 Optical micrographs depicting prior austenite grain boundaries of water 

quenched sample from 950˚C: (a) after strain2=0 and (b) after strain2=0.5. 

 

 

3.2 Transformed microstructures 

 

During the continuous cooling of HSLA steels, various transformation products 

can be formed and specific terms have been introduced to describe these products. 

The classification of ferritic microstructures proposed by Araki et al. [21] and Krauss 

et al. [22] was used in this research, including polygonal ferrite (PF), quasi-polygonal 

ferrite (QF), granular bainite (GB), acicular ferrite (AF) and lath bainite (LB). 
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PF and QF are reconstructive transformation products. PF forms at the slowest 

cooling rates and the highest transformation temperatures. It nucleates at austenite 

grain boundaries and grows into an equiaxed shape [22]. QF often forms in very-low-

carbon steels under rapid cooling. In this condition, single-phase austenite can 

transform into single-phase ferrite without a composition change, and the QF grains 

formed by massive transformation are usually coarse and have irregular and jagged 

grain boundaries [23]. 

 

At low transformation temperatures, AF, GB and LB transformations become 

dominant [24, 25]. AF was defined by Smith et al. [26] in 1972 as “a highly 

substructured, non-equiaxed ferrite that forms upon continuous cooling by a mixed 

diffusion and shear mode of transformation that begins at a temperature slightly higher 

than the upper bainite transformation range”. It has distinct morphology characteristics 

like small grain sizes, irregular grain shapes and a chaotic grain arrangement [26-28]. 

GB is usually formed at relatively higher temperatures and mainly consist of wide 

parallel laths [7]. It is difficult to observe these lath boundaries and only its packet 

boundaries can be revealed clearly [9], which makes GB packets looks like grains with 

an almost entirely granular aspect [10]. Differently, LB packets form at relatively lower 

temperatures and consist of fine parallel laths [11]. As these lath boundaries can be 

shown clearly after etching, LB has a clear lath-like morphology [9]. Despite the 

difference in morphology, GB is not different from LB in terms of the transformation 

mechanism, and both of them mainly consist of parallel laths and contain a high density 

of dislocations [10]. Therefore, in this research, both GB and LB are termed as bainitic 

ferrite (BF). Microstructures transformed from the recrystallised austenite (strain2=0) 

with different cooling rates are shown in Figure 3. 
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Figure 3 Optical micrographs depicting microstructures transformed from 

recrystallised austenite (strain2=0) with different continuous cooling rates: (a) 0.5˚C/s, 

(b) 1˚C/s, (c) 5˚C/s, (d) 10˚C/s, (e) 20˚C/s and (f) 50˚C/s. 

 
 

At cooling rates of 0.5˚C/s and 1˚C/s, Figure 3a~b, a mixture of PF/QF grains and 

BF packets was found in the transformed microstructures, and with the increase of 

cooling rates, the volume fraction of BF rises and the grain size of PF/QF becomes 

smaller. 

 

At cooling rates higher than 1˚C/s, Figure 3c~f, a parallel morphology of the 

transformed products can be seen clearly in all microstructures. PAGBs remain, and 

the parallel laths developed from the PAGBs extended into the austenite grains, 

sometimes across the whole grain, which is a typical BF morphology. Therefore, BF 

dominates the transformed microstructures continuously cooled at 5~50˚C/s without 

austenite deformation. At the cooling rate of 5˚C/s (Figure 3c), the microstructure 

mainly consists of coarse BF laths and some of the lath boundaries can only be seen 

vaguely. Differently, at the cooling rate of 50˚C/s (Figure 3f), BF laths become thinner 

and the lath boundaries are clearer. With the increase of cooling rate from 5˚C/s to 

50˚C/s, the transformed microstructure gradually changes from coarse BF laths to thin 

BF laths, and the boundaries between laths are increasingly clear. 

 

Microstructures transformed from deformed austenite (strain2=0.5) with different 
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cooling rates are shown in Figure 4. At cooling rates of 0.5˚C/s and 1˚C/s (Figure 

4a~b), a mixture of PF/QF grains and dark phases was found, and increasing the 

cooling rate, the grain size of PF/QF becomes smaller. The phases appearing dark in 

the optical micrographs could be conventional bainite with carbides or degenerated 

pearlite, and a detailed TEM observation of thin foils is required to give a definite 

answer, which is outside the scope of this study. In contrast to the microstructures 

transformed from recrystallised austenite, under these low cooling rates, parallel BF 

laths no longer exist in the microstructures transformed from deformed austenite. 

 

With cooling rates between 5~20˚C/s (Figure 4c~e), the transformed 

microstructures mainly consist of AF laths, together with a small fraction of PF/QF 

grains at the lower cooling rate (5˚C/s) or parallel BF laths at the higher cooling rates 

(10~20˚C/s ). Increasing the cooling rate further to 50˚C/s, a parallel morphology of 

the transformed product becomes evident and many laths developed across the entire 

austenite grains, which is a typical BF dominant microstructure.  

 

 

 

 

 

 

 

Figure 4 Optical micrographs depicting microstructures transformed from 

deformed austenite (strain2=0.5) with different continuous cooling rates from 950˚C 

to 500˚C: (a) 0.5˚C/s, (b) 1˚C/s, (c) 5˚C/s, (d) 10˚C/s, (e) 20˚C/s and (f) 50˚C/s. 
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3.3 EBSD Mappings 

 

Following the noise reduction procedures illustrated in reference [38], a small area of 

each EBSD data set was used to plot an inverse pole figure (IPF) coloured orientation 

map and a boundary map. For the statistical analysis of the boundary intercept length, 

the entire data set was used. 

 
The selected area IPF coloured orientation maps and corresponding boundary 

maps of the microstructures transformed from recrystallised and deformed austenite 

with different cooling rates are shown in Figures 5 and 6, respectively. 

 

If transformed from recrystallised austenite, increasing the cooling rate from 

0.5˚C/s to 1˚C/s (Figure 5a~b and Figure 5g~h), the grain size of PF/QF decreases and 

the area fraction of BF w ith a high density of low angle grain boundaries (LAGBs) 

rises, which corresponds very well with the optical micrographs (Figure 3). With the 

cooling rate increasing from 5˚C/s to 20˚C/s (Figure 5c~e), the change in the effective 

grain size is not evident. It can be seen that these transformed microstructures mainly 

consist of coarse BF packets, and HAGBs mainly exist between packets instead of 

between laths within packets. Furthermore, from the corresponding boundary maps 

(Figure 5i~k), it can be found that within each packet LAGBs were generated and the 

influence of cooling rate on the densities of both HAGB and LAGB is not evident. 

However, increasing the cooling rate further to 50°C/s, the densities of both HAGB and 

LAGB are increased significantly and HAGBs exist not only between packets but also 

between laths within packets, forming straight and parallel HAGBs in Figure 5l. 
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Figure 5 EBSD maps of the microstructures transformed from recrystallised austenite 

(strain2=0) with different continuous cooling rates from 950˚C to 500˚C: (a~f) 

inversepole figure coloured orientation maps corresponding to microstructures with 

cooling rates of 0.5˚C/s, 1˚C/s, 5˚C/s, 10˚C/s, 20˚C/s and 50˚C/s respectively, where 

black lines represent high angle boundaries with misorientation angles greater than 15˚; 

(g~l) boundary maps corresponding to the same area in (a~f) respectively, where blue 

lines represent low angle boundaries with misorientation angles between 2˚ and 15˚ 

whilst red lines represent high angle boundaries with misorientation angles greater than 

15˚. 

 
If transformed from deformed austenite, increasing the cooling rate from 0.5˚C/s 

to 1˚C/s (Figure 6a~b), the grain size of PF/QF decreases. With the cooling rate rising 

from 5˚C/s to 10˚C/s (Figure 6c~d), the density of HAGBs is increased because the 

relatively coarse PF/QF grains in Figure 6c are replaced by the fine AF laths in Figure 

6d. But raising the cooling rate from 10˚C/s to 50˚C/s, the area of coarse effective 

grains increases and finally leads to a quite inhomogeneous microstructure at the 

cooling rate of 50˚C/s. Meanwhile, the density of LAGBs increases constantly with 

the cooling rate rising from 5˚C/s to 50˚C/s as shown in Figure 6i~l. 
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Figure 6 EBSD maps of the microstructures transformed from deformed austenite

(strain2=0.5) with different continuous cooling rates from 950˚C to 500˚C: (a~f) 

inverse pole figure coloured orientation maps corresponding to microstructures with

cooling rates of 0.5˚C/s, 1˚C/s, 5˚C/s, 10˚C/s, 20˚C/s and 50˚C/s respectively, where 

black lines represent high angle boundaries with misorientation angles greater than 

15˚; (g~l) boundary maps corresponding to the same area in (a~f) respectively, where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

blue lines represent low angle boundaries with misorientation angles between 2˚ and 

15˚ whilst red lines represent high angle boundaries with misorientation angles greater 

than 15˚. 

 
 

To quantify the microstructure’s refinement, misorientation angle threshold values 

should be selected. Misorientation angles of 4˚ and 15˚ are typical threshold values to 

define the microstructural unit sizes responsible for strengthening and toughening, 
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respectively [4, 5]. Grain sizes defined by different misorientation threshold values of 

4˚ and 15˚,respectively, were measured by a linear intercept method with the Channel 

5 software. The geometric means of the linear intercept lengths in both horizontal and 

vertical directions were calculated as in reference [38] and are shown in Figure 7. 

 

Figure 7 Microstructure size parameters measured as the geometric mean of the linear 

interception lengths in horizontal and vertical directions from the EBSD maps of the 

microstructures transformed from (a) recrystallised austenite and (b) deformed 

austenite, where error bars represent 95% confidence levels of the measurement. 

 

For transformed microstructures from recrystallised austenite, the grain sizes 
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defined by both misorientation threshold values of 4˚ and 15˚, are reduced with the 

cooling rate increasing from 0.5˚C/s to 50˚C/s. The changes of grain size between 

cooling rates of 5˚C/s to 20˚C/s, however, are not statistically significant as there are 

very large overlaps of their 95% CL error bars, but they correspond very well with the 

results obtained from EBSD maps in Figure 5. 

 

Differently, for microstructures transformed from deformed austenite, the change 

of grain size with cooling rate is more complicated. For the grain size defined by the 

misorientation threshold value of 4˚, the grain size is firstly reduced from 5.0 µm to 

1.8 µm with the cooling rate increasing from 0.5˚C/s to 10˚C/s, and then the grain size 

is raised to 1.9 µm although this increase is not statistically significant. Finally, when 

the cooling rate reaches 50˚C/s, the grain size is further lowered to 1.7 µm. While for 

the grain size defined by the misorientation threshold value of 15˚, the effective grain 

size firstly is reduced from 5.7 µm to 2.9 µm with the cooling rate increasing from 

0.5˚C/s to 10˚C/s, and then the effective grain size is increased continuously from 2.9 

µm to 3.5 µm as the cooling rate is raised from 10˚C/s to 50˚C/s, although the 

effective grain size change between 10˚C/s and 20˚C/s is not statistically significant. 

 

4 Discussion 

4.1 Transformed microstructures at slow cooling rates 

 
4.1.1 Transformed from recrystallised austenite 

 
Without austenite deformation, the transformed microstructures cooled at 0.5˚C/s 

and 1˚C/s consist of PF/QF grains and BF packets. The appearance of the BF packets 

can be attributed to the effect of niobium on the steel’s hardenability. It has been 

found by many researchers [29-31] that the addition of niobium in solution can 

suppress the allotriomorphic ferrite transformation by lowering its nucleation rate at 

austenite grain boundaries and promote bainitic transformation microstructures. In 

microalloyed steels, the concentration of niobium is normally lower than 0.1% [32]. 

This indicates that the effect of niobium on the steel’s hardenability should be very 
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limited. However, niobium atoms in solution do not evenly distribute in austenite but 

segregate at austenite grain boundaries. The segregation of niobium atoms at austenite 

grain boundaries has been observed through atom probe tomography (APT) in 

investigations [33, 34], which stabilises austenite grain boundaries and reduces their 

boundary energy [35]. 

4.1.2 Transformed from deformed austenite 

 
Differently, subjected to an austenite deformation below Tnr, the transformed 

microstructures cooled at 0.5˚C/s and 1˚C/s consist of finer PF/QF grains. The BF 

packets shown in Figure 3a~b disappear in Figure 4a~b. The PF/QF grain refinement 

and the disappearance of BF packets after austenite deformation can be explained as 

follows. 

 

Firstly, austenite deformation increases the stored strain energy in austenite. 

During reconstructive transformations (PF/QF) under slow cooling rates, this strain 

energy can add to the driving force and make the decomposition of austenite begin at 

a higher temperature. Therefore, the low-temperature transformation product BF, 

disappears during the continuous cooling after austenite deformation. 

 

Secondly, austenite deformation can increase the austenite grain boundary area 

per unit volume and introduce deformation substructures within austenite grains, such 

as deformation bands or cell boundaries which can act as intragranular nucleation 

sites [36]. The increase of ferrite nucleation site density accelerates the ferrite 

transformation kinetics and refines the ferrite grain size. Therefore, the PF/QF grains 

become finer after austenite deformation. Another effect of austenite deformation is 

that the increased austenite grain boundaries and deformation substructures are also 

attractive to the nucleation of niobium carbides, leading to lowered niobium 

segregation levels at these defects. Therefore, the grain boundary stabilisation effect 

of niobium atoms is weakened, which reduces the volume fraction of low-temperature 

transformation products. 

 

Last but not least, strain-induced precipitation of niobium carbide or carbonitride 
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during austenite deformation below the Tnr reduces the niobium content in solution 

and thus weakens the austenite grain boundary stabilisation effect of niobium. 

 

Therefore, the effect of austenite deformation on the transformation at slow 

cooling rates can be explained in terms of increasing driving forces, raising nucleation 

site densities and weakening the effect of niobium in solution on the steel’s 

hardenability. 

 

4.2 Transformed microstructures at high cooling rates 

 

At higher cooling rates (5~50˚C/s), the transformed microstructures are either BF 

or AF dominant and they both are displacive transformation products [28, 37, 38]. As 

lath boundaries are not necessarily HAGBs for displacive transformation products, the 

effective grain size refinement should be analysed from two aspects, the density of 

lath boundaries and the fraction of HAGBs. A high density of lath boundaries and a 

high fraction of HAGBs means a high density of HAGBs and a small effective grain 

size. The effective grain sizes of the microstructures transformed from recrystallized 

and deformed austenite are discussed separately. 

 

4.2.1 Transformed from recrystallized austenite 

From recrystallised austenite, the transformed microstructures cooled at 5~50˚C/s 

mainly consist of BF (Figure 3). As the cooling rate is increased, the effective grain 

size decreases gradually (Figure 7) and the distribution of both HAGBs and LAGBs 

are changed (Figure 5). These changes in grain refinement and the distribution of 

HAGBs and LAGBs can be explained from the point of view of variant selection. 

  

As one kind of displacive transformations, BF transformation cannot cross 

austenite grain boundaries, and BF laths and their parent austenite grains are 

crystallographically related by an orientation relationship (OR) [2]. Owing to this OR 

and the symmetry of austenite, there are 24 possible BF orientation variants for each 
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austenite grain. During BF transformation, some or all of the variants are formed in an 

austenite grain, and the selection of variants during transformation has a profound 

influence on the morphology and grain refinement of the final microstructure. 

 

In this research, although the differences of BF microstructures with cooling rates 

between 5˚C/s to 20˚C/s are very small, these BF microstructures are quite different 

from the one cooled at 50˚C/s. Therefore, to further investigate the differences in 

grain refinement from a crystallographic perspective, a comparison is made between 

BF microstructures cooled at 5˚C/s and 50˚C/s. A prior-austenite grain was identified 

in each EBSD maps of these two BF microstructures. The {100} pole figures of the 

BF orientations of these two prior-austenite grains are shown in Figure 8a and c, and 

the IPF coloured orientation maps of them are illustrated in Figure 9a and d, 

respectively. 
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Figure 8 {100} pole figures of the BF orientations in single parent recrystallised 

austenite grains with cooling rates of (a) 5°C/s and (c) 50°C/s; {100} pole figures of 

the calculated austenite orientations and corresponding BF orientation variants with 

cooling rates of (b) 5°C/s and (d) 50°C/s, respectively.  
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Figure 9 IPF coloured orientation maps (a) and (d), close-packed plane group maps (b) 

and (e) and Bain group maps (c) and (f) for BF microstructures in single parent 

recrystallised austenite grains with cooling rates of 5˚C/s and 50˚C/s, respectively. 

 

To analyse variant selection, the choice of orientation relationship (OR) is critical, as it 

determines the accuracy of the parent austenite orientation calculation. Although for 

displacive transformations, various ORs have been proposed, using the OR determined 

from the inherited phases (e.g. martensite or bainite) increases the accuracy [39]. The 

method proposed in the study [40] based on boundary misorientations, was used to 

determine the OR between BF and austenite in this study. ORs are presented as the 

rotations between FCC and BCC in the form of Bunge Euler angles as shown in Table 

2. The angular deviations between close-packed planes (ΔCP) and close-packed 

directions (ΔCD) of austenite and BF are also listed in Table 2. 

 

Table 2 OR and angular deviations of CP and CD between BCC and FCC 

 

Cooling Rates (°C/s) Orientation Relationship (°) ΔCD(°) ΔCP(°) 
5 113.236 8.122 22.8952 2.5176 2.4881 

10 114.002 8.07593 22.1349 2.6148 2.4555 

20 113.346 8.11413 22.7846 2.5331 2.4847 

50 117.657 8.6182 18.7086 2.5265 1.68 
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It can be found that the change of ∆CD between different microstructures is very 

small and the ∆CP of microstructures cooled at 5~20˚C/s are very close. However, for 

the microstructure cooled at 50˚C/s, its ∆CP is significantly smaller than for the others. 

This matches the results revealed in the study [41] that the angular deviation between 

CPs of austenite and BF increases with transformation temperature, while the change 

in the angular deviation between CDs is small. The temperature dependence of plastic 

accommodation of the transformation strain in austenite was considered to be the 

reason behind this [41]. Based on that, the close ∆CP of the microstructures cooled at 

5~20˚C/s suggests that the transformation temperatures for these microstructures are 

very close, which of course leads to similar microstructures (Figure 5) and effective 

grain sizes (Figure 7). In contrast, the smaller ∆CP for the microstructures cooled at 

50˚C/s indicates that its transformation temperature is evidently lower than for the 

others. 

 

The ORs listed in Table 2 for 5˚C/s and 50˚C/s were adopted in this study and the 

method proposed by Tari et al. [42] was used to evaluate the orientations of these two 

parent austenite grains. The 24 BF variants of each austenite grain were also 

calculated. These results are shown in Figure 8 b and d, respectively, and good 

matches can be found between the pole figures of the experimental BF orientations 

and the calculated BF orientation variants. 

 

The 24 BF variants calculated can be divided into four close-packed plane (CP) 

groups, each of which consists of six variants sharing the same parallel relationship of 

close-packed planes with austenite. BF variants can also be discriminated into three 

Bain groups according to three distinctive variants of the Bain correspondence [24]. 

The sequence of the 24 variants and their corresponding CP and Bain groups in this 

investigation were adopted from Takayama et al. [25]. To reveal detailed 

crystallographic features, the colours in the orientation maps were changed to show 

different colours for different CP and Bain groups. These maps are termed as CP and 

Bain group maps and are shown in Figure 9 b and e, and Figure 9 c and f for the two 

BF microstructures, respectively. 
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It can be seen clearly from Figure 8 that more intense variant selection occurred at 

the cooling rate of 5˚C/s than at the cooling rate of 50˚C/s. Furthermore, the variant 

arrangements in these two microstructures are also quite different, as shown in Figure 

9. At the cooling rate of 5˚C/s, variants belonging to the same Bain group are formed 

adjacent to each other as shown in Figure 9c and those variants that may come from 

different CP groups are shown in Figure 9b. Differently, at the cooling rate of 50˚C/s, 

variants belonging to the same CP group are formed side by side as shown in Figure 

9e and these variants may come from different Bain groups, thus resulting in the 

typical packet morphology of BF. 

 

These differences in variant selection and variant arrangement are similar to the 

results shown in the study [41] for bainite transformed at different temperatures. It can 

be well explained by the influence of transformation driving force  and 

accommodation methods of transformation strain on variant selection. At the low 

cooling rate of 5˚C/s, BF transformation takes place at high temperatures. Owing to 

the low BF transformation driving forces at high temperatures, intense variant 

selection occurs and those variants which are more energetically favoured are selected. 

Moreover, variants belonging to the same Bain group are formed adjacent to each 

other to reduce the boundary energy between variants [41], as variant pairs from the 

same Bain group usually have smaller misorientation angles [25]. 

 

While at the high cooling rate of 50˚C/s, BF transformation occurs at low 

temperatures, and owing to the large BF transformation driving forces at low 

temperatures, variant selection is weakened. Moreover, due to the low transformation 

temperatures, the strength of austenite and BF are relatively high and the BF 

transformation strain cannot be relaxed easily by plastic accommodation. It needs to  be 

relaxed by self-accommodation through the formation of variants belonging to the same 

CP group but different Bain group in neighbours, as introduced in the study [43]. Since 

the boundaries between variants belonging to different Bain groups have misorientation 

angles higher than 47.1˚ [25], a higher fraction of HAGBs will be formed at the cooling 

rate of 50˚C/s than at the cooling rate of 5˚C/s and some of  these HAGBs exist within 

the BF packets. 
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To sum up, with the cooling rate increasing from 5˚C/s to 50˚C/s, BF laths 

become finer, leading to a higher density of lath boundaries. Meanwhile, a higher 

fraction of HAGBs were formed at the cooling rate of 50˚C/s than at the cooling rate 

of 5˚C/s due to the weakened variant selection and the self-accommodation of 

transformation strain as illustrated above. All these factors lead to a higher density of 

HAGBs and thus a smaller effective grain size at higher cooling rates. It is also 

reasonable to conceive that by further increasing the cooling rate and thus lowering 

the transformation temperature, the effective grain size will become increasingly 

small. 

4.2.2 Transformed from deformed austenite 

 
From deformed austenite, the transformed microstructures are AF dominant at the 

cooling rates between 5~20˚C/s (Figure 4c~e). At the higher cooling rate of 50˚C/s, 

the transformed microstructure becomes BF dominant with a clear parallel 

morphology (Figure 4f). This change suggests that with the increase of cooling rate, 

microstructures gradually transition from AF dominant to BF dominant. 

 

The reason for the transition from AF dominant to BF dominant was explored in 

our previous study [8]. A brief explanation is provided here. AF and BF both are 

bainitic transformation products, and they are formed under similar thermodynamic 

conditions [28, 37, 38]. However, the nucleation sites for AF and BF are different, 

austenite deformation substructures for AF and austenite grain boundaries for BF. 

Since austenite grain boundaries are more potent nucleation sites, BF laths nucleate 

firstly during cooling. If these BF laths develop across the whole austenite grain or 

impinge with other boundary nucleated BF laths, a BF dominant microstructure is 

formed. On the other hand, if these boundary nucleated BF laths are stifled 

prematurely and cannot take up the whole parent austenite grain, AF transformation 

happens during the subsequent cooling process. Therefore, the introduction of 

intragranular nucleation sites and the suppression of BF laths nucleated firstly on 

austenite grain boundaries are the two conditions that should be fulfilled for the 

occurrence of AF transformation. Austenite deformation introduces a high density of 

dislocations which can act as intragranular nucleation sites for AF. Besides, austenite 
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deformation substructures can also suppress the lengthening of BF laths through a 

mechanism called the mechanical stabilisation of austenite. The suppression of BF 

laths lengthening can only occur under relatively slow cooling rates or high 

transformation temperatures. This is because a high cooling rate results in a low 

transformation temperature which increases the driving stress for transformation 

interfaces to overcome austenite deformation substructures, which finally leads to a 

BF dominant microstructure [8]. Consequently, AF microstructure can only be 

formed at relatively slow cooling rates, and the transformed microstructure gradually 

transitions from AF dominant to BF dominant with the rise of cooling rates. 

 

Accompanying this microstructural transition, the effective grain size firstly is 

reduced from 3.2 µm to 2.9 µm with the cooling rate increasing from 5˚C/s to 10˚C/s, 

and then increased continuously from 2.9 µm to 3.5 µm as the cooling rate is raised 

from 10˚C/s to 50˚C/s, Figure 7b. 

 

The effective grain size is refined with the cooling rate changing from 5˚C/s to 

10˚C/s, because the relatively coarse PF/QF grains in Figure 6i are replaced  by fine 

AF laths in Figure 6j. For AF dominant microstructures (5~20˚C/s), due to the large 

density of intragranular nucleation sites and the suppression effect of deformation 

substructures on the growth of displacive transformation products, both AF and BF 

laths are greatly refined as shown in Figure 6a~c, compared with the BF 

microstructures transformed from recrystallised austenite in Figure 5a~c. Therefore, 

AF dominant microstructures have an intrinsic high density of lath boundaries. 

Furthermore, the introduction of intragranular nucleation sites weakens variant 

selection and thus more variants and more types of variant arrangements are generated, 

leading to a high fraction of HAGBs. This is because as illustrated in Section 4.2.1, at 

relatively slow cooling rates or high transformation temperatures, bainite 

transformation favours variants belonging to the same Bain group [41], resulting in a 

low density of HAGBs. While for AF, these laths mainly nucleate at intragranular 

nucleation sites, namely austenite deformation substructures, instead of 

sympathetically nucleating for a low boundary energy between variants as in BF. 

Consequently, AF dominant microstructures usually have a high density of HAGBs 
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and a small effective grain size. 

 

The rise of effective grain size from 2.9 µm to 3.5 µm with the cooling rate 

increasing from 10˚C/s to 50˚C/s can be attributed to the transition from AF to BF. 

With the increased cooling rates or the lowered transformation temperatures, the 

fraction of AF is decreased while that of BF is raised as shown in Figure 4d~f. For BF 

transformation, the main nucleation sites are austenite grain boundaries, and austenite 

deformation can only result in a very limited increase of austenite grain boundary area. 

Even worse, austenite deformation can result in a strong BF variant selection that BF 

variants with their habit planes parallel to the active slip planes during austenite 

deformation are favoured [44]. This variant selection can be manifested in Figure 4f 

that the traces of BF lath boundaries on the RD-ND plane are close to 45˚ away from 

the RD. Based on a Schmid factor analysis for the main ideal texture component of 

austenite during plane strain compression [45], the traces of active slip planes in the 

RD-ND plane are 19.5~45˚ away from the RD. Therefore, for deformed austenite and 

with the increased cooling rates, due to the raised BF area fraction and the strong BF 

variant selection, effective grain sizes become increasingly large as shown in Figure 

7b. More importantly, by increasing the cooling rates or lowering the transformation 

temperatures, the fraction of BF can be further increased as illustrated above, and thus 

the effective grain size will be continuously increased. 

 

Another difference between deformed and recrystallised austenite is that there 

are strain-induced precipitates of NbC or Nb(CN) in the deformed austenite, which 

effectively pin the austenite deformation substructures, leaving austenite grains 

pancaked. After austenite deformation, these precipitates still exist in the steel and 

their influence on the subsequent fcc to bcc phase transformation could be analysed in 

terms of nucleation and growth. 

 

As for the influence of precipitate on growth, Ashby [46] proposed that the area 

occupied by particles on the boundary must be recreated before the boundary moves, 

which is the energy pinning the boundary and referred to as Zener drag. When the 

Zener drag is higher or equal to the boundary moving driving force, boundary 
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movement is prevented [47]. By the strain-induced precipitation of NbC or Nb(CN), 

boundary movement involved in recrystallization and grain growth could be 

prevented, due to their relatively low driving force, 2~20MPa and 0.6~0.01MPa for 

recrystallization and grain growth, respectively [48]. However, for phase 

transformation in HSLA steels, its driving force could reach 7~35MPa and 42~84MPa 

for reconstructive and displacive transformations, respectively [49], which is 

significantly larger than those of recrystallization and grain growth. According to 

Ashby’s research [46], particles with a volume fraction of 20% and a size of 10nm 

could prevent the phase interface movement with a driving force in orders of 10MPa, 

which is not likely in microalloyed HSLA steels. Therefore, although NbC and 

Nb(CN) precipitates are effective in pinning austenite deformation substructures, their 

influence on phase transformation interface movement is negligible. 

 

As for the influence of precipitate on nucleation, although there have been 

investigations suggesting that titanium and vanadium bearing precipitates stimulate 

ferrite nucleation in steels [50, 51], there are few reports on the possible role of NbC 

and Nb(CN) precipitates. Further research is needed for clarifying the influence of 

NbC and Nb(CN) precipitates on the nucleation of fcc to bcc phase transformation. 

 

 
4.3 Cooling rate dependent effective grain refinement 

 

Having analysed the characteristics of the microstructures transformed from both 

recrystallised and deformed austenite, the influence of austenite deformation on 

effective grain size refinement could be understood. The whole cooling rate range 

may be divided into four regions as illustrated in Figure 10. 
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Figure 10 Effective grain size measured as the geometric mean of the linear 

interception lengths in horizontal and vertical directions from the EBSD maps of the 

transformed microstructures, where error bars represent 95% confidence levels of the 

measurement. 

 
 

In region 1, as described in Section 4.1, due to the low cooling rates (0.5˚C/s and 

1˚C/s), the transformation products consist of PF/QF and BF (from recrystallised 

austenite) or PF/QF and microphases (from deformed austenite). Because of the 

increase in driving force, the rise of nucleation site density and the weakening of the 

effect of niobium on hardenability, the effective grain size is refined by austenite 

deformation under these conditions. 

 

In region 2, the transformed microstructures are BF (from recrystallised austenite) 

or AF dominant (from deformed austenite). As introduced in Section 4.2.1, BF 

transformed at relatively slow cooling rates or high transformation temperatures has a 

low density of lath boundaries and favours variants belonging to the same Bain  group 



 

 

[41], resulting in a low density of HAGBs. In contrast, AF dominant microstructures 

have an intrinsic high density of lath boundaries and the intragranular nucleation 

characteristic of AF weakens variant selection, finally leading to a high density of 

HAGBs. Consequently, the effective grain size is also refined by austenite 

deformation in this region. 

 

In region 3, although it is evident that the effective grain size is refined by 

austenite deformation, the developing trends of effective grain sizes with the rise of 

cooling rate are very different for recrystallised and deformed austenite. For 

recrystallised austenite, a higher density of lath boundaries and a higher fraction of 

HAGBs are formed with the rise of the cooling rate as illustrated in Section 4.2.1, 

leading to a higher density of HAGBs and thus a smaller effective grain size at higher 

cooling rates. Based on that, it is reasonable to deduct that by further increasing the 

cooling rate, the effective grain size will become increasingly small. In contrast, for 

deformed austenite, due to the transition from AF to BF and the strong BF variant 

selection explained in Section 4.2.2, the effective grain size becomes increasingly 

large with the rise of cooling rate. It is conceivable that by further raising the cooling 

rate, the fraction of BF will be increased, and thus the effective grain size will be 

continuously increased. Another aspect needed to be addressed is that the 

transformation temperature for deformed austenite is higher than for recrystallized 

austenite at the same cooling rate, and, thus, if the microstructures are the BF 

dominant in both cases, the temperature-dependent variant selection in BF as 

illustrated in Section 4.2.1, will result in a decreased fraction of HAGBs for deformed 

austenite. 

 

According to the developing trends and explanations given above, it is reasonable 

to conceive that the two solid lines in Figure 10 may intersect at a certain cooling rate 

higher than 50˚C/s, and further increasing the cooling rates, the red line will be above 

the black line. This suggests that at very high cooling rates region 4 may exist. In this 

region, instead of refining, austenite deformation will lead to a larger effective grain 

size. This conception has been confirmed in investigation [52] that at cooling rates 

higher than 20˚C/s, the effective grain size is increased by austenite deformation. The 

smaller intersecting cooling rate, 20˚C/s, in investigation [52] may be attributed to the 

large hardenability of the steel used in that research because of its large austenite 

grain size, 125µm. 

 



 

Based on the analysis above, the controversial effect of austenite deformation on 

effective grain size refinement can be well understood as being cooling rate dependent. 

In investigations [10, 16, 17], due to the high transformation temperatures or the low 

cooling rates, the transformed microstructures from deformed austenite are PF/QF or 

AF dominant so that the transformed microstructures are refined by austenite 

deformation as in regions 1~3 in Figure 10. However, in investigations [11, 18-20], 

owing to the high cooling rates (50˚C/s [11, 18]) or the low transformation 

temperatures (350˚C[19], 400˚C [20]), BF microstructure dominated, therefore, the 

transformed microstructures are coarsened by austenite deformation as in region 4 in 

Figure 10. 

 

 
5 Conclusion 

In this study, a low carbon Nb microalloyed steel was subjected to different 

austenite deformation conditions and was continuously cooled at a wide range of 

cooling rates (0.5~50˚C/s) to investigate the influence of austenite deformation on 

effective grain size refinement. It was found that: 

(1) At low cooling rates of 0.5~1˚C/s, the transformed microstructures consist of 

PF/QF grains plus BF packets for recrystallised austenite, and PF/QF grains 

plus microphases for deformed austenite. Because of the increase of driving 

force, the rise of nucleation site density and the weakening of the effect of 

niobium on hardenability, the effective grain size is refined by austenite 

deformation at these cooling rates. 

(2) At cooling rates of 5~10˚C/s, the transformed microstructures are BF 

(recrystallised austenite) or AF dominant (deformed austenite). At these 

cooling rates, BF microstructures have a low density of lath boundaries and 

favour variants belonging to the same Bain group, resulting in large effective 

grain sizes. In contrast, AF dominant microstructures have an intrinsic high 

density of lath boundaries and weakened variant selection as a result of 

intragranular nucleation. Consequently, the effective grain size is refined by 

austenite deformation under these conditions. 

(3) At cooling rates of 20~50˚C/s, although the effective grain size is refined by 

austenite deformation, the developing trends with the rise of cooling rate are 

very different, decreasing for recrystallised austenite while increasing for 

deformed austenite. The transition from AF to BF and the strong BF variant 

selection were proposed to be responsible for the increased effective grain  



 

size for deformed austenite. 

(4) According to the experimental results, the influence of austenite deformation 

on effective grain size was proposed to be cooling rate dependent in a wider 

cooling rate range, and possible explanations for the contradicting results in 

the literature were discussed based on this. 
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