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A psychophysical measurement on subjective
well-being and air pollution
Yuan Li1,2, Dabo Guan 3*, Yanni Yu1,2*, Stephen Westland 4, Daoping Wang5, Jing Meng 6,

Xuejun Wang 7, Kebin He8 & Shu Tao 7

Although the physical effects of air pollution on humans are well documented, there may be

even greater impacts on the emotional state and health. Surveys have traditionally been used

to explore the impact of air pollution on people’s subjective well-being (SWB). However, the

survey techniques usually take long periods to properly match the air pollution characteristics

from monitoring stations to each respondent’s SWB at both disaggregated spatial and

temporal levels. Here, we used air pollution data to simulate fixed-scene images and psy-

chophysical process to examine the impact from only air pollution on SWB. Findings suggest

that under the atmospheric conditions in Beijing, negative emotions occur when PM2.5

(particulate matter with a diameter less than 2.5 µm) increases to approximately 150 AQI

(air quality index). The British observers have a stronger negative response under severe air

pollution compared with Chinese observers. People from different social groups appear to

have different sensitivities to SWB when air quality index exceeds approximately 200 AQI.
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Subjective well-being (SWB) has attracted increasing attention
from researchers and policymakers in recent decades1–4. For
example, Bhutan officially established the gross national

happiness (GNH) measure to legally replace the traditional eco-
nomic policy goal of increased gross domestic product (GDP)5.
Many developed countries are likely to consider SWB during
planning processes and when assessing the impacts of policy
decisions. Studies show that SWB is significantly negatively
related to many air pollutants6–9, and individuals place a higher
value on the loss of an environmental feature than on gaining an
equivalent feature10,11. Researchers using surveys usually evaluate
people’s overall SWB state via interviews or questionnaires cov-
ering rich information on the idiosyncrasies of subjects.
Researchers continue to make efforts to match air pollution data
and happiness data in a more disaggregated way. For example, in
a study by Zhang et al. in 2017, they successfully valued air
quality using moment-to-moment happiness data on a daily and
local level and found that bad daily air quality does not affect
overall life satisfaction that much but reduces hedonic happiness
and increases the rate of depressive symptoms12. The psycho-
physcial method was first used to estimate scenic beauty in the
1970s13 and was then widely used to establish visual air quality
standards due to its robustness and effectiveness14–17. In 2018,
Li et al. reviewed the features and limitations of previous survey
studies on quantifying the effects of air pollution on SWB, and
further displayed the progress of psychophysics and its applica-
tion in landscape and air quality research, and then proposed
using a psychophysics application to quantify air pollution impact
on SWB18. In 2018, Yang et al. adopted a psychophysical method
to collect self-reported data and the analysis method which is
widely employed in a survey approach to analyze and measure the
moment-to-moment emotions19. They found that extreme emo-
tional experiences related to hazardous air conditions may
overpower people’s memory and mislead their judgement on
improved air quality. In our current research, we adopted the
classic colour management technique to process and control air
quality images. The Categorical Judgement Model, one of the
popular methods in the visual perception field, was adopted to
design experiments and collect and process psychophysical data.
The psychophysical data processing method applied allowed us to
closely qualify the air pollution effect on SWB and directly
monitor the trends of SWB and effects as air pollution changes18.
Wider air pollutants scales were covered and richer air pollutants
were considered in our study.

This study employed psychophysical methods and experiments
to investigate people’s emotion’s changes due to air pollution (see
Methods). Relevent ethical procedures were approved by the
Ethics and Research Committee at Shandong University (Wei-
hai). Informed consent was obtained from every individual
observer.

Results and discussion
General air pollution effects. We simulated a set of air pollution
images of Beijing by building a model to explain the relationship
between colour information from colour-managed fixed-scene
digital images and collected hourly air pollution data and
weather/climate data in Beijing5. Then, we conducted laboratory-
based psychophysical visual experiments. Observers were asked to
use their positive and negative emotions as a ruler to measure/
judge simulated image samples exhibiting various air pollution
levels20. Thus, the personal SWB data and air pollution data with
fixed locations/scenes, times, weather and climate conditions,
could be perfectly matched. The psychophysical method used for
analyzing the data also automatically removes the idiosyncrasies
of the observers without the need to collect personal data that

have the potential to influence SWB13. The details of the method
are provided in the supporting information (SI) and Supple-
mentary Fig. 1.

SWB is estimated by subtracting the average z-score (standar-
dized scale values) of all negative emotions from the average of all
positive emotions for each air condition20; thus, if SWB is greater
than zero, a positive emotion dominates, and if SWB is less than
zero, a negative emotion dominates. Polynomial was adopted to
fit SWB and each emotion with PM2.5. The R-squared of all
regressions is higher than 0.98. The detailed statistical indicators
of polynomial fitting and coefficients for Fig. 1 are presented in
Supplementary Table 2 in SI. Threshold regression was adopted
to locate and estimate the numbers of thresholds. All the tested
threshold regressions achieve a significant level of p < 0.0001. The
detailed statistical indicators of threshold regressions for Fig. 1 are
presented in SI from Supplementary Tables 3–9. Generally, SWB
changes negatively with increasing air pollution but in different
phases (see Fig. 1g and Supplementary Table 9). In first pollutant
regions, where PM2.5 has not achieved the first threshold of 114
AQI, positive emotions are recorded, but people’s SWB scores are
very sensitive (SWB falling slope= 3.71) to any change in stimuli
(air pollution) until their emotions become negative when PM2.5

is approximately 150 AQI and SO2, NO2, O3 and CO
simultaneously increase to 14.7, 33.8, 9.5 and 19.1, respectively.
In this study, PM2.5 is used as a representative pollutant, and the
relations between all other air pollutants and PM2.5 are illustrated
in the SI (see Supplementary Fig. 2). In the second air pollutant
region, SWB continues to decrease but at a slightly slower speed
(SWB falling slope is 3.28) until PM2.5 increases to the second
threshold 184 AQI. People’s perception of SWB is still sensitive to
air pollution changes but not to the same degree as before. SWB
declines much more gently as air pollution increases. When PM2.5

increases above approximately 184 AQI getting into the third air
pollutant regions and further passing the third threshold of 277
AQI, SWB becomes stable (albeit very negative) and the SWB
falling slope reduces to lower than 1.55.

Similar changes can also be found in positive emotions
(Fig. 1a, b and Supplementary Tables 3, 4). Both happiness and
future expectations decrease fast in the first two regions before
PM2.5 increases to about 190 AQI (the second thresholds in both
sub-figures). Then future expectations (fu-exp) and happiness
steadily decline before PM2.5 increases to 229 AQI and 305 AQI
separately. After happiness and future expectations pass the third
thresholds both of them remain more stable. Interestingly, when
air condition is under 80 AQI (corresponding to the first
pollutant region in Fig. 1b; the first region and 1/3 of the second
region in Fig. 1a), the indicator of people’s happiness tends to
decline more gradually than fu-exp, according to the regional
falling slopes. This result indicates that as air pollution becomes
serious and tends to break people’s bottom line, people will lose
future expectations quickly rather than gradually, such as losing
their happiness. However, after the air pollution level exceeds 190
AQI getting into the third and fourth regions, the falling slopes of
fu-exp become less, and less than the falling slopes of happiness.
This result indicates that as air pollution becomes serious and
breaks people’s bottom line, their fu-exp will become numb more
quickly than their happiness. Negative emotions have positive
relationships with increasing air pollution, and all of them show
changes with air pollution that occur in three key stages (see
Fig. 1c–f and Supplementary Tables 5–8). People’s worry (181
AQI), stress (175 AQI), depression (194 AQI) and irritation (213
AQI) sharply increase until PM2.5 exceeds around 190 AQI, after
which the rising slope reduces significantly and shows negative
feelings become less sensitive. People’s negative emotions tend to
be more stable than before when PM2.5 gets into the fourth
region. Interestingly, stress, depression and irritation all have
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relatively lower starting points than worry, and they exhibit
sharper increases with lower rising slopes from zero until PM2.5

increases to nearly 50 AQI. This finding suggests that people’s
stress, depression and irritation are more sensitive to air pollution
than worry at very low levels of air pollution, and people start to
worry about air pollution as the air quality reaches higher levels
(although they already feel more stress, depression and irritation).

Effects from social factors. Social factors that may affect the
subjective responses of people to air pollution were investigated,
including whether they were parents, their gender, their age
group, their attitude towards the necessity of wearing a mask
outdoors, their knowledge of the harmfulness of air pollution,
and their outdoor exposure time. Polynomial regression and
Threshold regression were adopted to analyze raw z-score data.
The R-squared of all polynomial regressions is higher than 0.98
and all the tested threshold regression achieve a significant level
of p < 0.0001. The detailed statistical indicators for Fig. 2 are
presented in SI from Supplementary Tables 10–33. It was found
that whether people are parents or not influenced their SWB
response to different air pollutants. Figure 2a and Supplementary
Tables 10–12 show that people with children (red) had higher
SWB z-scores when PM2.5 is lower than 42 AQI (first threshold of
red line). Prior to air pollution level increases to around 40 AQI,
the decline slope of SWB for people who have children is twice
faster than the value of people who do not have children (−0.05
versus −0.02). Moreover, the SWB scores of parents decline more
rapidly as air pollution increases than those of people without
children when air pollution is between 42 and 230 AQI (first
threshold of blue line). Compared with the people who have

children, the SWB of people without children appears to remain
much steadier during the decline in air quality. Furthermore,
when air pollution becomes truly hazardous (PM2.5 > 230 AQI),
the SWB of parents tends to remain stable and higher than that of
people without children.

After air pollution level breaks 230 AQI, the decline slope of
SWB are −0.0068 and −0.0113, respectively, for people with and
without children. This finding suggests that people with children
are more sensitive and emotional to air quality changes and that
they also become numb to very hazardous air quality earlier
than people without children. Figure 2b and Supplementary
Tables 13–15 shows the comparison of the standardized z-scores
of SWB for males (blue) and females (red). Surprisingly, the
finding shows that females are slightly happier at very low air
pollution levels and numb slightly earlier to hazardous air
conditions than the males. Figure 2c and Supplementary
Tables 16–20 show the SWB responses to air pollution for four
age groups. The grey line is higher than the other lines when the
air pollution values are very low (PM2.5 is roughly below 40 AQI),
and then it sharply declines as air pollution increases to about 205
AQI (the first threshold of blue line). After that, when air
pollution achieves a hazardous level, the grey line stays above all
the other lines. This finding indicates that the SWB of older
people (between the ages of 41 and 56 in this study; shown in
grey) is found to be higher under good air conditions than that of
younger people (red, blue and brown). Moreover, the SWB of
older people (grey) declines faster than that of younger people as
air pollution deteriorates from about 40 to 205 AQI. However, the
SWB of older people (grey) remains stable after PM2.5 increases to
250 AQI (the second threshold of grey line). This result suggests
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that older people care more about air quality and health than
younger people and also become numb to very hazardous air
quality earlier than younger people. Figure 2d and Supplementary
Tables 21–25 show the SWB comparisons among people with
different attitudes towards wearing masks. This figure indicates
that when the air condition is very good under 59 AQI (the first
threshold of grey line), the red and blue lines are higher than the
brown and grey lines, and then as the air condition deteriorates to
about 250 AQI around the second thresholds of red, blue and
grey lines, the red and blue lines drop more sharply than the
brown and grey ones. However, after that, when the air condition
reaches a hazardous level, the red and blue lines remain above the
brown and grey lines. When air quality is good and hazardous,
the people who always wear masks (all Chinese observers have
this choice) and wear masks during periods with air pollution
(red, blue and brown), have higher SWB than people who never
wear masks (grey). This result indicates that the more carefully
people tend to protect themselves, the higher SWB they will have
in good air conditions and they will become numb earlier in
hazardous air conditions. However, during the deterioration of air
pollution from moderate about 60 AQI to very unhealthy
conditions about 250 AQI, the SWB of people that more carefully
protect themselves (red, blue and brown) declines more rapidly
than that of people who never wear masks (grey). In this attitude
question about the necessity of wearing mask, all the Chinese
observers selected Always to wearing a mask. Figure 2e and
Supplementary Tables 26–29 show the SWB comparisons among

people with different beliefs about the harmfulness of air
pollution. When the air condition is very good with PM2.5 lower
than about 50 AQI, the red and blue lines are higher than the
brown one. However, when the air condition reaches a hazardous
level with PM2.5 above 277 AQI (the second threshold of brown
line), the red and blue lines remain above the brown line. People
who believe that air pollution is more harmful (red) than or
similar (blue) to smoking have higher z-scores of SWB than
people that believe air pollution is less harmful (green) at the
beginning and end of the air pollution scale. However, in between
the good and hazardous air conditions with PM2.5 from around
50 to 280 AQI, people who believe air pollution is more harmful
than smoking have lower SWB z-scores. Again, people’s knowl-
edge of the general harmfulness of air pollution also proves that
the more harmful people believe air pollution is, the more
sensitive they are to the variation in air quality. A similar
tendency is shown in Fig. 3f, which indicates the effect of outdoor
exposure time on SWB judgement. Figure 2f and Supplementary
Tables 30–33 show that the brown line (under 3 h outside
per day) and blue line (between 3 and 4 h per day) is higher than
and red (more than 4 h per day) line at the beginning and also the
end of the PM2.5 scale. This result indicates that the shorter
people stay outdoors, the higher z-scores of SWB they have
during good and hazardous air conditions. This result could
be because the shorter time people are able to spend outdoors, the
more people are sensitive to air quality changes.
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Effects from national backgrounds. Long-term living in an
environment with serious air pollution can affect people’s SWB
and emotions. All of the Chinese observers lived in Beijing for at
least 2 years and experienced serious air pollution, especially
during the cold seasons. Their raw z-score data were compared
with data for observers living in the UK in Supplementary Fig. 7.
In Fig. 3, polynomial fittings of air pollutants and perceptual data
(SWB and emotions) are plotted in China and UK backgrounds.
R-squared of all the fittings is above 0.9690. Threshold regression
was adopted to estimate the locations and the significance of
thresholds. All the statistical indicators are presented in SI from
Supplementary Tables 34–52. Clearly, under good air conditions
where PM2.5 is under about 50 AQI, the observers in China (red)
had obviously higher z-scores and stronger positive responses
than UK observers (blue) regarding future expectations and SWB
(see Fig. 3b, g). In Fig. 3g, before air pollution increases to around
100 AQI, the decline slopes of SWB are −0.0279 and −0.0224,
respectively, for Chinese and British. As PM2.5 increased to about
270 AQI the second threshold of blue line in Fig. 3g, the z-scores
of future expectations and SWB for the Chinese observers
decreased faster (with falling slopes of 2.84 and 5.54) than those
of the observers living in the UK (with falling slopes of 2.60 and
5.32). In contrast, the z-scores of future expectations and SWB for
the observers living in the UK declined much more smoothly as
the air pollution conditions deteriorated. These relatively strong
mood swings could result from the frustration of long-term living
in environments with air pollution and the rejoicing for blue sky
conditions. Not surprisingly, when PM2.5 increases and exceeds
the thresholds (around 290 AQI in Fig. 3b and 270 AQI in
Fig. 3g), Chinese observers show a much more stable response for
indicators of both future expectations and SWB. For example,
after air pollution breaks around 270 AQI, the decline slope of

SWB are −0.0057 and −0.0122, respectively, for Chinese and
British. Figure 2b, g show that for Chinese observers the increase
in PM2.5 from approximately 180 to 350 AQI reduces the z-scores
of future expectations by 0.51 units and those of SWB by 1.70
units. Comparatively, a similar extent of PM2.5 increase from 0 to
180 AQI reduces future expectations by 2.29 units and SWB by
4.29 units. The responses of the UK observers also reflect this
unusually stable response shown by the Chinese observers to
serious air pollution, as the responses of the observers in the UK
continued to decrease gradually until 270 AQI the last threshold
of blue line in Fig. 3g, and a large jump was found for the worst
air conditions shown in this study. This result indicates that long-
term living in an environment with serious air pollution can
increase the tolerance level to hazardous air pollution and make
people numb to it. These trends were confirmed by the negative
emotions for both groups of observers living in China and the UK
(see Fig. 3c–f). Chinese observers tended to give a lower score for
almost all negative emotions when the sky was blue, which
indicates they have more positive emotions than people living in
the UK when sunshine and blue sky are available. Additionally,
when the air pollution becomes very unhealthy or hazardous (for
example, PM2.5 above 300 AQI), UK observers usually gave a
higher score than Chinese observers to negative emotions. This
finding suggests that the emotions of the observers living in the
UK are more sensitive under conditions of severe air pollution,
and these observers have a stronger negative mood response.

We conducted a comparative analysis between Chinese and
British observers in aspects of age, gender, outdoor time spending
and the knowledge of the harmfulness of air pollution.
Polynomial regression is adopted to fit SWB and air pollution
data in Supplementary Figs. 8–11. The country comparison
focusing on age indicates that the SWB of people who have
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experienced serious air pollution, such as Chinese citizens, is
more sensitive to air condition changes and among the
experienced people the older ones are even more sensitive than
the younger ones. For those who have no experience of serious air
pollution, like the British, the factor of age does not make too
much difference on SWB under different air conditions
(Supplementary Fig. 8). It can be concluded, based on the
country comparison focusing on gender, that in China under
frequent serious air pollution, gender plays a little role in the
effect of SWB under different air pollution conditions. However,
in the UK the overall air quality is much higher than China,
females show more sensitivity than males in SWB with air quality
changes (Supplementary Fig. 9). Based on the country compar-
ison focusing on outdoor time spending, it is found that in serious
air pollution areas like China those people who have less
opportunities to spend time outside care more about the air
quality when they are out. They are eager to enjoy the limited
outdoor time they have each day. However, British people who
spend longer outdoor time daily are more sensitive in SWB to air
pollution than those who are spending 2 h or less each day. This
could be due to the fact that people living in the UK have been
used to excellent air quality. It is very difficult for people to
accept spending lots of time outdoors in air pollution conditions
(Supplementary Fig. 10). The country comparison on the
knowledge of the harmfulness of air pollution indicates that
when people do not believe air pollution affects health, the
experience of living in serious air pollution—which Chinese
have—is displayed more strongly. For those British with the
knowledge that air pollution is more harmful than—or similar
to—smoking, the gap between the two countries is shrinking
(Supplementary Fig. 11).

Policy implications. The impact of long-term (approximately
2 months) air pollution on SWB is quantified by the visual psy-
chophysical method. This research identifies the thresholds of air
pollution impact to mental health and demonstrate a new method
that could replace or augment traditional surveys to enhance our
knowledge of the impact of air pollution on people’s subjective
experience and well-being. A boundary of 150 AQI is found
where people’s SWB is approximately 0 and becomes negative.
After 184 AQI (the second threshold in Fig. 1g), people start to
become numb to air pollution until approximately 277 AQI (the
third threshold in Fig. 1g). Some social groups may reflect
thresholds more strongly, such as people with experience of living
in serious air pollution, people with children, older people, people
who care about their health, and people who spend more time
outdoors. We suggest that special air hazard measures could
be considered during the governance process to treat sensitive
groups to build a society with better SWB. Some special figures in
AQI (150, 184 and 277) should be taken into consideration
during policy development.

Method
Experimental design. Two psychophysical experiments were conducted in China
and the UK. Observers made judgements on six emotions in response to air pol-
lution image samples under standard laboratory viewing conditions. The six
emotions were happiness, expectations for the future, worry, stress, depression and
irritation. The workflow, including the preparation of experimental samples,
characterization of the monitor, the visual experiments and analyses, is shown in
Supplementary Fig. 1.

In both visual experiments, a total of 18 different air pollution image samples
were considered. These samples were simulated images intended to differ in only
air pollution levels with identical weather/climate conditions, such as humidity,
wind direction, wind speed, temperature, sea level (SL) pressure, cloud cover and
sun angle (controlled by the number of minutes after sunrise). Therefore, in each
simulated image, the weather/climate conditions were the same, but the air
pollutants, including PM2.5, SO2, CO, O3 and NO2, were different. This goal is
achieved by the following steps.

Colour information and air quality model building. First, to obtain the targeted
image samples for the experiments, a model was constructed to explain the rela-
tionship between the colour information (the RGB values) from air pollution
photos and the corresponding pollutant and weather/climate data of the photos. A
total of 180 photos were taken by Sigma DP3 Merril in sunlight mode and the
photos were saved in raw format so that the real sky colour information could be
accurately recorded. The reason of using the fixed scene is to exclude the effects
from scene beauty difference on people’s emotions so that the only difference
among simulated images is air conditions. Therefore, a model between colour
information of each photo and its corresponding air condition can be built. To
match the colour information in each photo, hourly air pollutant data of PM2.5,
SO2, CO, O3 and NO2 were obtained from the US embassy in Beijing, and weather/
climate data were obtained every 3 h from the World Meteorological Organization
(see supporting data 1). The PM2.5 varied from 17 to 399, ozone varied from 2 to
32, NO2 varied from 5 to 38, SO2 varied from 2 to 50, and CO varied from 2 to 60.
By taking all pollutants and climate factors into consideration, the colour-AQI
model M1 gives best statistical relationship. The colour changing in image simu-
lation is mainly driven by coloured air pollution, for example PM2.5. Equation (1)
was used to obtain the colour-AQI model M1 of the coefficients between photo
colour information IRGB and air pollution and weather/climate data. The adjusted
R2 between the colour information (RGB values) of the simulated images and
original photos was 0.83.

M1 ¼ IRGB
Ti PM2:5 O3 CO NO2 SO2 Te WS Hum Pre cos WD ´ π=180ð ÞCl C½ �

ð1Þ
where IRGB is a 111 by nmatrix, which refers to the RGB values of all pixels of each
of the 111 photos

M1 is a 13 by nmatrix, which refers to all 12 variable coefficients and one constant;
Ti refers to the number of minutes since sunrise on the day the photo was shot

to the shooting time;
Te refers to the temperature at the hour the photo was shot;
WS refers to the wind speed at the hour the photo was shot;
Hum refers to the relative humidity at the hour the photo was shot;
Pre refers to the SL pressure of the location at the hour the photo was shot;
WD refers to the wind direction at the hour the photo was shot;
Cl refers to the cloud cover at the hour the photo was shot;
PM2.5, O3, CO, NO2 and SO2 refer to the air pollutant levels in AQI;
C is a constant.

Image samples production. Second, to generate a new set of air pollution images
for the experiments, all air pollutant and weather/climate variables were estimated.
Fixed values of the weather/climate variables Ti, Te, WS, Hum, Pre, WD and Cl
were given for all simulated air quality images, and they were 140, −1, 4, 44, 1026,
204 and 0.5, respectively. Interestingly, the air pollutant data of SO2, CO, O3 and
NO2 were all found to be related to PM2.5, so they were not fixed values but
changed with PM2.5 values when producing the simulated images. A power model
was used to predict O3 and NO2 from PM2.5, with R values of 0.74 and 0.86. The
first-order polynomial was used to predict SO2 and CO, with R values of 0.71 and
0.86, as shown in Supplementary Fig. 2. With the fixed weather/climate values and
the models between the other air pollutants and PM2.5, a set of predicted air quality
images with various PM2.5 and other air pollutant values (AQI of PM2.5 ranged
from 5 to 340) were generated, as shown in Supplementary Fig. 3. To simplify the
explanation, PM2.5 was used as the key air pollutant indicator in the discussion of
the main text. However, this does not mean that the other air pollutants remained
the same when PM2.5 changed.

For both experiments, the same physical display unit model was used to collect
the visual data, which were characterized using standard colour science methods21.
The RGB values were therefore adjusted to account for the characteristics (and
settings) of the monitors used in the experiments to enable accurate colorimetric
display. Monitor characterizations were conducted for each display in the UK and
Beijing, which were both based on 36 colour samples with 18 neutral samples, 3
pure colours (red, green and blue) and 15 samples of other colours. The channel
independence of both displays was estimated, and their CIELAB colour differences
ΔE were 1.23 (in the UK laboratory) and 1.68 (in the Beijing laboratory) units with
black correction. A characterization model was used, and the parameters for this
model were determined for both displays. In total, 15 colour samples were selected
from the original sample set to test the performance of both display
characterization models. Thus, the CIELAB ΔE can be obtained from the original
XYZ values and the new measurements after image processing by the
characterization models. The average CIELAB ΔE between the two measurements
for the 15 samples was 0.58 for the display in the UK laboratory and 0.76 for the
display in the Beijing laboratory. Thus, all simulated images were adjusted based on
the colour characterization models before the experiments.

Psychophyscial experiments. Two psychophysical experiments were conducted
using two groups of observers in Beijing and the UK in a dark room with constant
lighting conditions. The traditional Categorical Judgement was used to collect data
during both experiments. Categorical Judgement is a widely used method for
collecting and analyzing data in modern psychophysical research22,23. It is
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developed from Thurstone’s law of comparative judgement24. This theory aims to
locate a given series of stimuli with different amounts of some attribute to which
observers can have different response on a psychophysical continuum. In total, 18
images of different air quality conditions were examined, and 6 emotions were
evaluated. During the experiment, one image (24 cm × 16 cm) was presented at a
time in the centre of the display (see Supplementary Fig. 4), and the image was
viewed from approximately 80 cm. Experimental simulated images are presented to
each observer by random order. The observers were presented with 7 buttons
underneath each image that they could click to select one of the 6 emotions. Then,
the air quality image disappeared and was replaced by a new image. This process
continued until all 6 emotions were judged. Before the experiment started, some
basic information on the observers was collected, including gender, age and atti-
tudes regarding the necessity to wear a mask and the impact of air pollution on
health, the average number of hours spent outside and whether they had children.
Then, the observers were asked to imagine that in the next 5–10 years, they would
live for approximately 2 months in the air quality conditions shown on the display.
The 6 emotion questions are Please select the level of happiness you receive from
the 7 levels (in each case 1 refers to the lowest level, and 7 refers to the highest
level); What are your expectations for the future?; Please select the level of worry
you feel from the 7 levels; Please select the level of stress you feel from the 7 levels;
Please select the level of depression you feel from the 7 levels; Please select the level
of irritation you feel from the 7 levels. A total of 79 observers, 38 from the UK and
41 from China, took part in the study. Ten of the UK observers were originally
from China, and the rest were mostly from Europe. The observers were university
students or staff consisting of 31 males and 48 females, and their ages ranged from
18 to 56. All of the observers passed the Ishihara colour vision test25, and there
were no time restrictions. Each observer made 108 (18 images × 6 questions)
observations; thus, there were 8532 observations (18 × 6 × 79) in both visual
experiments.

Data analysis. The classic method of Torgerson’s law of categorical judgement was
used to estimate the interval scale values from the raw psychophysical data22,26, as
shown in Eq. (2). This processing data procedure automatically removes the
idiosyncrasies of observers resulting from the use of their own standards to judge
the experimental images. Using this procedure, the interval scale value s of each
simulated image for a given effect was estimated. However, the ranges of the scale
values for each effect differed, so that they could not be combined for further
calculations. Equation (3) was applied to standardize the scale value s for all
effects27. Thus, all the perceptual parameters Z for different emotions were
approximately 2.5 with limits of 0 to 5. SWB researchers usually use 3 kinds of
measures, life evaluation (a reflective assessment on a person’s life), effect measures
(a person’s feelings or emotional states, typically measured with reference to a
particular point in time)20 and eudaimonic measures (a sense of meaning and
purpose in life)20,28. Here, SWB is measured based on the Kahneman model
(DRM)29. Using his model, the net effects of each selected activity in a day are
estimated. The overall SWB of the subject can be calculated by considering the
duration of each activity. The net effect of each activity is the average of the positive
effects minus the average of the negative effects. Multiple items are used to reduce
the impact of question ambiguity or conceptual fuzziness28. The aim of our
research is not to assess the national SWB as empirical research but to directly
assess the response to air pollution. Thus, in our case, the effect on SWB from
viewing air pollution images could be measured as the net effect of the average of
all positive effects (expectations for the future, happiness) minus the average of all
negative effects (stressed, depressed, worry, irritation). The SWB values based on
positive and negative effects caused by air quality were estimated by using the
averaged z-scores Z of positive emotions (happiness and expectation) minus the
average z-scores Z of negative emotions (worry, stress, depression and irritation)
for each simulated image. The z-scores of all emotions and SWB are shown in
Supplementary Table 1.

tgf � sjf ¼ xjgf σ2jf þ σ2gf � 2rjgf σ jf σgf
� �1=2 ð2Þ

where tg is the mean location of the gth category boundary on the perceptual
continuum emotion f;

sj is the scale value of simulated image j;
σg is the standard deviation of the gth category boundary;
σj is the standard deviation of simulated image j;
rjg is the correlation coefficient between the momentary positions of simulated

image j and category boundary g;
xjg is the unit accounted for in the normal deviate corresponding to the

proportion of times simulated image j is sorted below boundary g.

Zsjf ¼
sjf ��sf
σ f

þ 5 ð3Þ

where Zsjf is the standardized z-score of scale value s of the simulated image j of the
emotion f;

sjf is the scale value of the simulated image j of emotion f;
�sf is the mean of variable s of the emotion f;
σg is the standard deviation of variable s of the emotion f.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data and matlab codes are deposited at our data publishing website – China Emission
Accounts and Datasets (http://www.ceads.net/wp-content/uploads/delightful-downloads/
2019/10/data-link.zip). Those data can be also obtained from the corresponding author
on reasonable request. Polynomial regression has been adopted to fit PM2.5 and
Categorical Judgement Model processed perception data including all emotions and
SWB. Cross-validation analysis is applied to help to decide the orders of polynomials in
each fitting. Threshold regression analysis is adopted to test the number, position and
significance of thresholds in each curve. All the statistical indicators and plots of raw z-
score data are presented in the SI, Supporting Results session.
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