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Abstract 22 

Neuroimaging research has identified category-specific neural response patterns to a 23 

limited set of object categories. For example, faces, bodies, and scenes evoke activity 24 

patterns in visual cortex that are uniquely traceable in space and time. It is currently 25 

debated whether these apparently categorical responses truly reflect selectivity for 26 

categories or instead reflect selectivity for category-associated shape properties. In the 27 

present study, we used a cross-classification approach on fMRI and MEG data to reveal 28 

both category-independent shape responses and shape-independent category 29 

responses. Participants viewed human body parts (hands and torsos) and pieces of 30 

clothing that were closely shape-matched to the body parts (gloves and shirts). 31 

Category-independent shape responses were revealed by training multivariate classifiers 32 

on discriminating shape within one category (e.g., hands versus torsos) and testing these 33 

classifiers on discriminating shape within the other category (e.g., gloves versus shirts). 34 

This analysis revealed significant decoding in large clusters in visual cortex (fMRI), 35 

starting from 90ms after stimulus onset (MEG). Shape-independent category responses 36 

were revealed by training classifiers on discriminating object category (bodies, clothes) 37 

within one shape (e.g., hands versus gloves) and testing these classifiers on 38 

discriminating category within the other shape (e.g., torsos versus shirts). This analysis 39 

revealed significant decoding in bilateral occipitotemporal cortex (fMRI), and from 130 to 40 

200ms after stimulus onset (MEG). Together, these findings provide evidence for 41 

concurrent shape and category selectivity in high-level visual cortex, including category-42 

level responses that are not fully explicable by 2D shape properties. 43 

Keywords: Category Selectivity, Visual Cortex Organization, Body Representations  44 



Introduction 45 

Functional magnetic resonance imaging (fMRI) studies have shown that multi-voxel 46 

response patterns in high-level visual cortex reliably discriminate different object 47 

categories (Haxby et al., 2001), and that these show a meaningful categorical 48 

organization (e.g., an animate-inanimate distinction; Kriegeskorte et al., 2008). Similarly, 49 

signatures of category-specific processing in the time domain have been identified using 50 

magneto- and electroencephalography (MEG/EEG), with MEG sensor patterns across the 51 

scalp allowing for reliable classification of object categories (Carlson et al., 2013; Cichy et 52 

al., 2014).  53 

 However, it is unclear whether such categorical responses are truly reflecting 54 

category membership, detached from specific visual features, or whether they are 55 

instead driven by visual properties of objects that systematically covary with category 56 

membership. For example, the face-selective fusiform face area (Kanwisher et al., 1997) 57 

is preferentially activated for round, non-face stimuli that have a higher spatial 58 

concentration of elements in the upper half even when these stimuli are not recognized 59 

as faces (Caldara et al., 2006), and the occipital face area (Gauthier et al., 2000) has been 60 

shown to be causally involved in the perception of stimulus symmetry (Bona et al., 2015). 61 

Furthermore, large-scale response patterns in monkey IT can be well explained by the 62 

objects’ shape similarity without the need to refer to category membership (Baldassi et 63 

al., 2013). Such findings prompt the hypothesis that closely matching shape properties of 64 

objects from different categories would largely abolish category-specific response 65 

patterns.  66 

 We tested this prediction by investigating how matching for 2D shape properties 67 

impacts neural responses to a specific category -- the human body. Previous studies have 68 



characterized distinct spatio-temporal signatures of body perception, recruiting specific 69 

regions in occipitotemporal and fusiform cortices and evoking specific 70 

electrophysiological waveform components (for review, see Peelen and Downing, 2007). 71 

Furthermore, bodies can be reliably separated from other categories based on MEG and 72 

fMRI response patterns (Cichy et al., 2014; Kriegeskorte et al., 2008). It is unknown 73 

whether these body-specific fMRI and MEG responses reflect selectivity for particular 74 

shape properties of bodies (e.g., symmetry) or whether they reflect, at least partly, a 75 

truly categorical response. 76 

  Participants were tested in separate fMRI and MEG experiments with largely 77 

identical experimental procedures. Multivariate classification techniques were used to 78 

characterize category representations in space (fMRI) and time (MEG). The stimulus set 79 

consisted of human body parts (hands and torsos) and pieces of clothing (gloves and 80 

shirts) that were closely shape-matched to the body part stimuli. To reveal category-81 

independent shape responses, classifiers were trained to discriminate between different 82 

shapes within one category (e.g., hands versus torsos), and tested to discriminate these 83 

shapes within the other category (e.g., gloves versus shirts). To reveal shape-84 

independent category responses, classifiers were trained to discriminate between the 85 

categories (bodies, clothes) within one shape (e.g., hands versus gloves), and tested to 86 

discriminate these categories within the other shape (e.g., torsos versus shirts).  87 



Materials & Methods 88 

Participants. Twenty-four healthy adults (11 male; mean age 24.2 years, SD=3.4) 89 

took part in the fMRI experiment and 21 healthy adults (14 male; mean 25.0 years, SD=3.2) 90 

took part in the MEG experiment. One participant completed both experiments. All 91 

participants had normal or corrected-to-normal visual acuity. All procedures were carried 92 

out in accordance with the Declaration of Helsinki and were approved by the ethical 93 

committee of the University of Trento.  94 

Stimuli and Procedure. Unless otherwise noted, all aspects of the design were 95 

identical between the fMRI and MEG experiments. The full stimulus set consisted of nine 96 

different categories (hands, gloves, torsos, shirts, brushes, pens, trees, vegetables, and 97 

chairs), with 21 different exemplars per category. Four of these categories (brushes, 98 

pens, trees, vegetables) were related to a different research question, and are not 99 

analyzed here. Chairs served as target stimuli (see Fig. 1b), and were also excluded from 100 

all analyses. Our analyses were focused on the comparison between stimuli depicting 101 

human body parts (human hands and torsos, i.e. shirts with a human upper body inside) 102 

and stimuli depicting solely pieces of clothing despite being very similar to the human 103 

body parts in their shape properties (gloves and shirts; Fig. 1a). 104 

  105 

>> Figure 1 << 106 

 107 

Both experiments consisted of multiple runs, where participants viewed grey-108 

scale images of the different categories for 500ms in a randomized order (see Fig. 1b), 109 

with stimuli being separated by a fixation interval varying randomly between 1500 and 110 

2000ms (in discrete steps of 50ms). Participants were instructed to maintain central 111 



fixation and press the response button whenever they saw a chair (these trials appeared 112 

equally often as all other categories, e.g., 21 times per run). For the MEG experiment, 113 

participants were additionally instructed to specifically use the chair trials for eye blinks. 114 

Each run contained each individual exemplar of every category exactly once, leading to a 115 

total of 189 trials per run and an average run duration of 7.1 minutes. In the fMRI 116 

experiment, every run additionally contained a 10s fixation period at the beginning and 117 

end. During the fMRI experiment, participants completed six of these runs (for one 118 

participant only data from five runs was collected due to a technical problem), and 119 

during the MEG experiment, participants completed ten runs (one participant performed 120 

eleven runs). Stimulus presentation was controlled using the Psychtoolbox (Brainard, 121 

1997); in the MRI stimuli were back-projected onto a screen at the end of the scanner 122 

bore and participants saw the stimulation through a tilted mirror mounted on the head 123 

coil, while in the MEG, stimuli were back-projected onto a translucent screen located in 124 

front of the participant. 125 

fMRI data acquisition and preprocessing. MR imaging was conducted using a 126 

Bruker BioSpin MedSpec 4T head scanner (Bruker BioSpin, Rheinstetten, Germany), 127 

equipped with an eight-channel head coil. During the experimental runs, T2*-weighted 128 

gradient-echo echo-planar images (EPI) were collected (repetition time TR=2.0s, echo 129 

time TE=33ms, 73° flip angle, 3 x 3 x 3mm voxel size, 1mm gap, 34 slices, 192mm field of 130 

view, 64×64 matrix size). Additionally, a T1-weighted image (MPRAGE; 1 x 1 x 1mm voxel 131 

size) was obtained as a high-resolution anatomical reference. All resulting data were 132 

preprocessed using MATLAB and SPM8. The functional volumes were realigned and 133 

coregistered to the structural image. Additionally, structural images were spatially 134 

normalized to the MNI-305 template (as included in SPM8), to obtain normalizing 135 



parameters for each participant. These parameters were later used to normalize 136 

individual participants’ searchlight result maps before entering them into statistical 137 

analysis.  138 

fMRI decoding analysis. Multivariate pattern analysis (MVPA) was carried out on a 139 

TR-based level using the CoSMoMVPA toolbox (www.cosmomvpa.org). To reveal areas 140 

yielding above chance decoding throughout the brain, a searchlight analysis was 141 

conducted, where a spherical neighborhood of 40 voxels (6.4mm average radius) was 142 

moved across the whole brain. For each voxel belonging to a specific neighborhood, TRs 143 

corresponding to the conditions of interested were selected by shifting the voxel-wise 144 

time-course of activation by three TRs (to account for the hemodynamic delay). 145 

Subsequently, for each run separately, activation values were extracted from the 146 

unsmoothed EPI-volumes for each TR coinciding with the onset of a specific condition. 147 

Similar to the MEG analysis, MVPA was done in a pairwise fashion: Linear discriminant 148 

analysis (LDA) classifiers were trained to discriminate response patterns for two 149 

conditions in all but one runs and were subsequently tested on response patterns for 150 

these two conditions taken from the remaining, left-out run. This procedure was 151 

repeated, so that every run served as the testing set once. For the cross-decoding 152 

analysis, classifiers were trained on discriminating two conditions (e.g. hands versus 153 

gloves), and tested on two different conditions (e.g. torsos versus shirts); thus, for this 154 

analysis, all available trials were used in the training and test set. Pairwise classification 155 

accuracy for every voxel was assessed by comparing the labels predicted by the classifier 156 

to the actual labels, with chance performance always being 50%. Individual-subject 157 

searchlight maps were normalized to MNI-space before they were entered into statistical 158 

analyses. Above-chance classification was identified using a threshold-free cluster 159 



enhancement (TFCE) procedure (Smith and Nichols, 2009), where the observed decoding 160 

accuracy was tested against a simulated null-distribution (generated from 10,000 161 

bootstrapping iterations). The resulting statistical maps were thresholded at p < 0.05 162 

(one-tailed).  163 

MEG acquisition and preprocessing. Electromagnetic brain activity was recorded 164 

using an Elekta Neuromag 306 MEG system (Elekta Neuromag® systems, Helsinki, 165 

Finland), composed of 204 planar gradiometers and 102 magnetometers. Signals were 166 

sampled continuously at 1000 Hz and band-pass filtered online between 0.1 and 330Hz. 167 

Offline preprocessing was done using MATLAB and the fieldtrip analysis package 168 

(Oostenveld et al., 2011). Data were concatenated for all runs, high-pass filtered at 1Hz, 169 

and epoched into trials ranging from -100 to 500ms with respect to stimulus onset. Based 170 

on visual inspection, trials containing eye blinks and other movement-related artifacts 171 

were completely discarded from all analyses. Data was then baseline-corrected with 172 

respect to the pre-stimulus window and downsampled to 100 Hz to increase the signal-173 

to-noise ratio of the multivariate classification analysis (see Carlson et al., 2013).  174 

MEG decoding analysis. MVPA was carried out on single trial data using the 175 

CoSMoMVPA toolbox (www.cosmomvpa.org). Only magnetometers were used, as these 176 

sensors allowed for the most reliable classification in previous work in our lab (Kaiser et 177 

al., 2015). Classification was performed using LDA classifiers. For the shape cross-178 

decoding analysis, classifiers were trained on one category-matched shape comparison 179 

(i.e., hands versus torsos or gloves versus shirts) and tested on the other comparison 180 

(i.e., gloves versus shirts or hands versus torsos).  For the category cross-decoding 181 

analysis, classifiers were trained on one shape-matched category comparison (i.e., hands 182 

versus gloves or torsos versus shirts) and tested on the other comparison (i.e., torsos 183 



versus shirts or hands versus gloves).  To increase the reliability of the data supplied to 184 

the classifiers, new, “synthetic” trial data was created by averaging single trial data 185 

separately for every condition and chunk, by randomly picking 25% of trials and averaging 186 

this data across trials. This procedure was repeated 100 times (with the constraint that 187 

no trial was used more than one time more often than any other trial), so that for every 188 

condition and chunk, 100 of these synthetic trials were available for classification. 189 

Classification accuracy was then assessed by computing the percentage of correctly 190 

classified trials in the test chunk, with chance performance being 50%. Classification was 191 

repeated for every possible combination of training and testing time points, leading to a 192 

60 X 60 time points (600 X 600ms, with 100Hz temporal resolution) matrix of 193 

classification accuracies. Individual subject accuracy maps were smoothed using a 3 X 3 194 

time points (i.e. 30ms in train and test time) averaging filter. To identify time periods of 195 

significant above-chance classification, similar to the fMRI analysis, a TFCE procedure was 196 

used, where the observed decoding accuracy was tested against a simulated null-197 

distribution (generated from 10,000 bootstrapping iterations). The baseline (pre-198 

stimulus) interval was not taken into account for statistical testing. The resulting 199 

statistical maps were thresholded at p < 0.05 (one-tailed). 200 

  201 



Results 202 

Shape Cross-Decoding. Brain regions representing object shape across categories 203 

were identified by training classifiers on discriminating shape within one category (e.g., 204 

hands versus torsos), and testing these classifiers on discriminating shape within the 205 

other category (e.g., gloves versus shirts). Results from both possible train/test-206 

directions were averaged. An fMRI searchlight using this approach revealed regions in 207 

right (33,128mm³; peak MNI coordinate: x=48, y=-68, z=-4; t23=8.5) and left (30,368mm³; 208 

peak MNI coordinate: x=-6, y=-94, z=-12; t23=9.6) visual cortex, spanning early visual areas 209 

and regions of lateral occipitotemporal cortex (Fig. 2a,b). The MEG data showed above-210 

chance decoding of shape, starting at 90ms after stimulus onset, and peaking along the 211 

diagonal at 170ms and 240ms (467 time points in total, maximum decoding accuracy: 212 

70.2%; t20=11.4; Fig. 2c).  213 

 214 

>> Figure 2 << 215 

 216 

Category Cross-Decoding. A second cross-decoding analysis was conducted to test 217 

for responses that reflect object category (body parts versus clothes), independently of 218 

shape properties. To detect such shape-independent responses, classifiers were trained 219 

to discriminate bodies and clothes for one shape-matched comparison (e.g., hand versus 220 

glove), and subsequently tested on the other comparison (e.g., torso versus shirt). 221 

Results from both possible train/test-directions were averaged. 222 

 223 

>> Figure 3 << 224 

 225 



In the fMRI searchlight analysis, clusters in right (3,664mm³; peak MNI coordinate: 226 

x=52, y=-70, z=6; t23=6.5) and left (5,752mm³; peak MNI coordinate: x=-44, y=-78, z=10; 227 

t23=5.8) lateral occipitotemporal cortex were identified (Fig. 3a). These clusters 228 

overlapped with the extrastriate body area (EBA; Fig. 3b; coordinates of Downing et al., 229 

2001: x=+/-51, y=-72, z=5). Performing the same cross-classification analysis on the MEG 230 

data revealed a specific temporal signature associated with shape-independent category 231 

responses: classifiers could reliably discriminate between bodies and clothes between 232 

130–160ms with respect to the hand-glove comparison and 160–200ms with respect to 233 

the torso-shirt comparison (12 time points in total, maximum decoding accuracy: 53.6%; 234 

t20=6.9; Fig. 3c).   235 



Discussion 236 

Here we asked whether categorical representations in visual cortex are fully driven by 237 

category-associated visual features or if they (at least partly) reflect category 238 

membership. Unlike previous studies investigating category selectivity, the stimuli 239 

presented in the current study were matched for shape properties, including object-part 240 

structure (e.g. hands and gloves both have five "fingers"), outline similarity, and 241 

symmetry. We found that large clusters in visual cortex are sensitive to shape differences 242 

(i.e., “hand/glove”-shape versus “upper body”-shape): classifiers trained on 243 

discriminating hands and torsos successfully discriminated gloves and shirts (and vice 244 

versa), in both early visual areas and occipitotemporal cortex. These shape differences 245 

were reliably decodable from MEG response patterns as early as 90ms after stimulus 246 

onset.  247 

Crucially, we also found evidence for shape-independent category responses: 248 

classifiers trained on discriminating hands and gloves successfully discriminated torsos 249 

and shirts (and vice versa) in bilateral clusters in the occipitotemporal cortex. These large 250 

clusters likely encompass body-, motion-, and object-selective regions of visual cortex, 251 

which closely overlap both at the group-level and within individual subjects (Downing et 252 

al., 2007). Interestingly, the MEG data showed a specific temporal profile associated with 253 

such shape-independent body representations. Response patterns between 130 and 254 

200ms after stimulus onset allowed for successful cross-classification, in line with 255 

previous electrophysiological findings showing that bodies can be differentiated from 256 

other categories based on scalp distributions from 130 to 230 ms (Thierry et al., 2006). 257 

These fMRI and MEG results thus confirm previous studies on body-selective responses 258 

but additionally show that this selectivity is not fully explicable by 2D shape properties.  259 



A particular strength of the cross-decoding approach used here is that it provides 260 

a rigorous control of possible visual differences between the two categories (bodies, 261 

clothes), beyond the shape matching of the two body-clothing pairs: uncontrolled visual 262 

differences in one comparison (e.g., the presence of a neck in torsos, not shirts) would 263 

also need to be present in the other comparison (e.g., hand versus glove) for these 264 

differences to lead to successful decoding. Thus, successful decoding in this analysis 265 

likely reflects genuine category membership rather than visual or shape properties. 266 

Similarly, it is unlikely that differences in the deployment of spatial attention could 267 

account for the results: classifiers picking up on such differences between the two 268 

training stimuli (e.g., a preferential allocation of attention to the upper part of torsos, but 269 

not shirts) are unlikely to benefit from this when tested on the other comparison. It is still 270 

possible, in principle, that there are remaining visual differences, such as skin texture or 271 

3D volume, that are shared by the body conditions but not the clothes conditions. 272 

However, we think it is unlikely that such features would drive body-selective responses, 273 

considering previous work showing body-selective responses to highly schematic 274 

depictions of the body lacking these cues (e.g., point-light motion, stick figures, 275 

silhouettes; Peelen and Downing, 2007). Nevertheless, further studies are needed to 276 

identify and rule out any such remaining differences. 277 

We interpret the present findings as showing that the presence of particular 278 

visual or shape features is not necessary for evoking a body-selective response. Rather, 279 

these responses appear to reflect (or follow from) the categorization of an object as 280 

being a body part – a category that is associated with specific perceptual and conceptual 281 

properties, such as bodily actions/movements, social relevance, and agency (Sha et al., 282 

2014). Different cues can support the inference that a perceived object is a body. These 283 



cues are often part of the object itself (e.g., characteristic body shapes or movements) 284 

but may also come from the surrounding context (Cox et al., 2004), from other 285 

modalities, or from expectations and knowledge (e.g., knowing that a mannequin in a 286 

shopping window is not a human). Our results show that body-selective responses in 287 

lateral occipitotemporal cortex, emerging at around 130-200ms, follow from this 288 

categorical inference rather than reflecting a purely stimulus-driven response to the 289 

visual features of the object. 290 

Interestingly, clusters exhibiting category-independent shape responses 291 

overlapped with clusters exhibiting shape-independent category responses. This 292 

observation is congruent with previous studies highlighting both visual (Andrews et al., 293 

2015; Baldassi et al., 2013) and semantic (Huth et al., 2012; Sha et al., 2014) dimensions as 294 

organizational principles of high-level visual cortex. Response patterns in inferotemporal 295 

cortex seem to be best explicable by models using a combination of visual feature 296 

attributes and category membership (Khaligh-Razavi and Kriegeskorte, 2014), suggesting 297 

that in high-level visual cortex these representations co-exist.  298 

While the fMRI data demonstrated that shape and category responses are 299 

spatially entwined, the MEG results revealed differing temporal dynamics of these 300 

responses: while shape-specific responses could be decoded early and across a relatively 301 

long time interval, shape-independent category responses showed a specific temporal 302 

signature between 130 and 200ms. We interpret this as a temporally restricted period 303 

where cortical responses reflect processing of category membership: successful 304 

decoding in the category cross-decoding analysis does not only require shape-305 

independence of body-specific responses, but also generalization across different body 306 

parts. This generalization might be restricted to the specific time window revealed here, 307 



with earlier computations reflecting stimulus-specific attributes (related to individual 308 

body parts), and later processing reflecting more sophisticated stimulus analysis that 309 

diverges for different body parts (e.g., hands carry different social and action-related 310 

information than torsos). Hence, the temporally specific generalization across body parts 311 

observed here might reflect a unique timestamp of category-level recognition. 312 

Interestingly, this category-level recognition occurred at different time points for the two 313 

body parts included in the study, with slightly faster categorization of the hands (130-314 

160ms) than the torso (160-200ms). This later discriminability of torsos and shirts may 315 

reflect the greater similarity of these two stimuli on a perceptual level (see Fig. 1a), 316 

leading to relatively delayed recognition of the torsos as being a body part.  317 

To conclude, the present study characterizes the spatial and temporal profiles of 318 

shape-independent categorical neural responses by showing that MEG and fMRI 319 

response patterns distinguish between body parts and closely matched control stimuli. 320 

The patterns that distinguished each of the two body parts from their respective shape-321 

matched controls showed sufficient commonality to allow for cross-pair decoding of 322 

object category. These generalizable category-selective response patterns were localized 323 

in space (lateral occipitotemporal cortex) and time (130-200ms after stimulus onset).  324 
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Figure Legends 392 

 393 

Fig. 1. Stimuli and Paradigm. a) The stimulus set contained two human body parts (hands 394 

and torsos; see first and third row for examples), and two pieces of clothing that are 395 

highly similar in their shape (gloves and shirts; second and fourth row). b) Stimuli were 396 

presented for 500ms, separated by a variable 1500 – 2000ms fixation interval. 397 

Participants were instructed to maintain central fixation and to manually respond to 398 

chairs.  399 

 400 

Fig. 2. Shape cross-decoding analysis. To reveal shape-selective mechanisms, classifiers 401 

were trained to discriminate shape within one category (e.g. hands versus torsos), and 402 

tested on the other category (e.g. gloves versus shirts). Results from both train/test 403 

directions were averaged.  a,b) fMRI decoding was significantly above chance in large 404 

areas of visual cortex, spanning primary visual areas and regions of occipitotemporal 405 

cortex. c) MEG decoding was significantly above chance along the diagonal, starting from 406 

90ms after stimulus onset and peaking after 170ms and 240ms. Note that the axes here 407 

reflect time with respect to the two possible train and test comparisons, independently 408 

of the actual train/test-direction. The connected area indicates above-chance decoding. 409 

 410 

Fig. 3. Category cross-decoding analysis. To reveal generalization across the two body-411 

clothes pairs, classifiers were trained on one comparison (e.g. hands versus gloves), and 412 

tested on the other (e.g. hands versus gloves). Results from both train/test directions 413 

were averaged.  a) fMRI decoding was significantly above chance in bilateral regions of 414 

lateral occipito-temporal cortex. b) The clusters obtained in this searchlight analysis fell 415 



within regions previously reported as body-selective -- the black outline represents the 416 

boundaries of a group map of body-selectivity in occipitotemporal cortex (taken from 417 

http://web.mit.edu/bcs/nklab/GSS.shtml). c) MEG decoding revealed a temporally specific 418 

window of successful cross-classification ranging from 130–160ms with respect to the 419 

hand-glove comparison (“hand time”) and from 160–200ms with respect to the torso-420 

shirt comparison (“torso time”). Note that the axes here reflect time with respect to the 421 

two possible train and test comparisons, independently of the actual train/test-direction. 422 

The connected area indicates above-chance decoding.  423 
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