
This is a repository copy of Multi-agent deployment under the leader displacement 
measurement : a PDE-based approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/153388/

Version: Accepted Version

Proceedings Paper:
Wei, J., Fridman, E., Selivanov, A. orcid.org/0000-0001-5075-7229 et al. (1 more author) 
(2019) Multi-agent deployment under the leader displacement measurement : a 
PDE-based approach. In: 2019 18th European Control Conference (ECC). 18th European 
Control Conference (ECC), 25-28 Jun 2019, Naples, Italy. IEEE , pp. 2424-2429. ISBN 
9781728113142 

10.23919/ECC.2019.8796132

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Multi-agent deployment under the leader displacement

measurement: a PDE-based approach

Jieqiang Wei, Emilia Fridman, Anton Selivanov, Karl H. Johansson

Abstract— We study the deployment of a first-order multi-
agent system over a desired smooth curve in 3D space. We
assume that the agents have access to the local information
of the desired curve and their displacements with respect to
their closest neighbors, whereas in addition a leader is able to
measure his absolute displacement with respect to the desired
curve. In this paper we consider the case that the desired
curve is a closed C2 curve and we assume that the leader
transmit his measurement to other agents through a commu-
nication network. We start the algorithm with displacement-
based formation control protocol. Connections from this ODE
model to a PDE model (heat equation), which can be seen as
a reduced model, are then established. The resulting closed-
loop system is modeled as a heat equation with delay (due to
the communication). The boundary condition is periodic since
the desired curve is closed. By choosing appropriate controller
gains (the diffusion coefficient and the gain multiplying the
leader state), we can achieve any desired decay rate provided
the delay is small enough. The advantage of our approach is in
the simplicity of the control law and the conditions. Numerical
example illustrates the efficiency of the method.

Index Terms— Distributed parameters systems; Lyapunov
method; Time delays; Multi-agent systems; Deployment.

I. INTRODUCTION

Most of the existing work on multi-agent systems (MAS)

consider interconnected agents modeled using ordinary dif-

ferential equations (ODEs) or difference equations, and de-

sign the control for each agent depending either on global or

local information. Besides these studies, there has been some

work using partial differential equations (PDEs) to describe

the spatial dynamics of multi-agent systems, e.g., [3], [4],

[7], [17], [19]. This approach is especially powerful when

the number of the agents is large. One of the advantages of

using PDE models for MAS is to reduce a high-dimensional

ODE system to a single PDE. Reversely, given a desired

PDE model, the corresponding performance and the control

protocol for the individual agents (in ODE form) can be

designed by proper discretization. In principle, this procedure

is independent with respect to the number of agents, provided

this number is large enough.
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In this paper, we consider a formation control problem

which is referred to as deployment. This can be seen as

a combination of a displacement-based and position-based

formation control method. Each agent measures the relative

positions (displacements) of its neighboring agents with

respect to a global coordinate system. The desired formation

is specified by the desired displacements between pair of

agents. Then the agents, without knowing their absolute

positions, achieve the desired formation by controlling the

displacements of their neighboring agents. This will lead the

agents to the desired formation up to a constant distance.

As pointed out in [15], in order to move the agents to the

prescribed absolute positions, a small number of agents able

to measure their absolute positions are needed. For existing

ODE methods we refer to [1], [20] and the references within.

Here we review some related work on the multi-agent

deployment using PDE models. In [7] and [17], the agents

dynamics are modeled by reaction-advection-diffusion PDEs.

By using the backstepping approach to boundary control,

the agents are deployed onto families of planar curves and

2D manifolds, respectively. In [14], the authors consider

finite-time deployment of MAS into a planar formation, via

predefined spatial-temporal paths, using a leader-follower

architecture, i.e., boundary control. The same problem of

deployment into planar curves using boundary control is

considered in [19] and [3] by using non-analytic solutions

and a modified viscous Burger’s equation, respectively. In

[16], the authors proposed a boundary control law for a

MAS, which is modeled as the heat equation, to achieve

state consensus.

The main contributions of the paper is that we propose a

framework which connects a ODE formation control protocol

and a PDE model for the deployment of mobile agents onto

arbitrary closed C2 curves. Furthermore, in this framework

we assume only leader measures its absolute position and

use simple static output-feedback control. More precisely, the

leader calculates its displacement with respect to the desired

curve. Then the leader sends the value of its displacement

to all the agents by using a communication network which

results in time-varying delay due to sampling and communi-

cation [4]. The other agents, which are referred as followers,

have access only to the local information of the desired curve

and displacements with respect to their neighbors. Since the

desired formation is a closed curve, the MAS is modeled

as a diffusion equation with periodic boundary condition.

The method used in this paper is based on [6] and [18]
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which deal with Dirichlet and mixed boundary conditions.

We derive linear matrix inequality (LMI) conditions with

arbitrary delay for desired convergence rate. Compared to

the ODE MAS with communication delay, e.g., [13], the

LMI conditions derived in this paper are simpler with lower

dimension, and they are always feasible.

The paper is organized as follows. In Section II, some

useful inequalities are recalled. The MAS deployment prob-

lem using sampled control is formulated in Section III. The

main results are included in Section IV and V. In Section

IV, we derive LMI conditions to guarantee the deployment

on the closed C2 curve for the desired decay rate without

communication delay. In Section V, the similar type of the

result is obtained for the case with delay. Simulations are

presented in Section VI. The paper is concluded in Section

VII.

Notations. With R>0 we denote the set of non-negative

real numbers, respectively. L2(a, b) is the Hilbert space of

square integrable functions φ(ξ), ξ ∈ [a, b] with the corre-

sponding norm given as ‖φ‖L2
=

√

∫ b

a
z2dξ. H1(a, b) is

the Sobolev space of absolutely continuous scalar functions

φ : [a, b] → R with dφ
dξ

∈ L2(a, b) . H2(a, b) is the Sobolev

space of scalar functions φ : [a, b] → R with absolutely

continuous dφ
dξ

and with d2φ
dξ2

∈ L2(a, b).

II. PRELIMINARIES

Lemma 1 (Wirtinger’s inequality [11]). For f ∈ H1(a, b),

‖f‖ ≤
2(b− a)

π
‖f ′‖ if f(a) = 0 or f(b) = 0.

Lemma 2 (Halanay’s inequality, [10], [4]). Let 0 < δ1 <
2δ0 and let V : [t0 − τM ,∞) → [0,∞) be an absolutely

continuous function that satisfies

V̇ (t) 6 −2δ0V (t) + δ1 sup
−τM6θ60

V (t+ θ), t > t0. (1)

Then

V (t) 6 e−2δ(t−t0) sup
−τM6θ60

V (t0 + θ), t > t0, (2)

where δ > 0 is the unique positive solution of

δ = δ0 −
δ1e

2δτM

2
. (3)

III. PROBLEM FORMULATION

We consider N agents in R
3 governed by

żi = ui, i ∈ {1, . . . , N}, (4)

where zi ∈ R
3 are the states and ui ∈ R

3 are the control

inputs. The goal is to deploy the agents on a given closed

C2 curve γ : [0, 2π] → R
3.

Let us denote the ring graph with N vertices as Gℓ =
{V, E}, where V = {v1, . . . , vN} is the vertex set and

E = {(vi, vi+1), i = 1, . . . , N − 1} ∪ {(vN , v1)} is the

edge set. As a typical formation control procedure, one

assigns N points on the curve, denoted as γ(h), . . . , γ(Nh),

where h = 2π/N . Consider the following displacement-

based formation control protocol

żi(t) =a
(zi−1(t)− zi(t)) + (zi+1(t)− zi(t))

h2

− a
(γ((i− 1)h)− γ(ih)) + (γ((i+ 1)h)− γ(ih))

h2

i = 1, . . . , N.
(5)

where z0 = zN , zN+1 = z1, zi ∈ R
3 is the position of the

agent vi, and a > 0, guarantees that all agents converge to

the formation

E := {(z1, . . . , zN ) | zi − zj = γ(ih)− γ(jh)}, (6)

which is the desired curve up to constant translations [15].

Remark 1. The implementation of the system (5) includes

firstly the agents align the local coordination system, then

the agent compare the displacement (to its neighbors) with

respect to the desired displacement continuously. It can be

proved that the formation of the agents converges to the

formation given by desired displacements asymptotically up

to a constant translation [15].

As suggested in [2], when N is large, the model (5) is an

approximation of

zt(x, t) = a(zxx(x, t)− γxx(x)). (7)

By denoting the error e(x, t) = z(x, t) − γ(x), the error

dynamic of (7) is given as the following heat equation

et(x, t) = aexx(x, t), x ∈ [0, 2π]. (8)

Notice that the components of e(x, t) ∈ R
3 are decoupled.

It can be seen that system (7) cannot drive the agents onto

the desired curve γ, but up to a constant translation. In fact,

z∗ = γ + c is an equilibrium of system (7) for any constant

c. This is consistent with the displacement-based formation

control in [15]. In order to solve this problem, we shall

employ additional control input to guarantee the convergence

to the desired curve. More precisely, we assign leader agents

who can measure the absolute positions of themselves and

of their targets.

Since the desired curve γ is closed and is C2, it is natural

to consider the multi-agent system with periodic boundary

condition
z(0, t) = z(2π, t)

zx(0, t) = zx(2π, t).
(9)

Furthermore, we assume, without loss of generality, that the

leader is located at x = π and it can measure z(π, t) −
γ(π) and send this information to the other agents through

a communication network which results in a bounded time-

varying delay. The closed-loop system is given as

zt = a(zxx − γxx)−K(z(π, tk − ηk)− γ(π)), (10)

where t ∈ [tk, tk+1), a > 0, K > 0, tk is the updating

time of the controller, and ηk is the network-induced delay.



Parameters a and K are the control gains. By using the time-

delay approach to networked control systems [4, Chapter 7],

we denote τ(t) = t− tk + ηk. Then the system (10) can be

presented as

zt = a(zxx − γxx)−K(z(π, t− τ(t))− γ(π)). (11)

Here τ(t) 6 τM , where τM is the sum of the maximum

transmission interval and maximum network-induced delay.

We shall refer to (11) with boundary condition (9) as the

system with periodic boundary condition. In this paper, we

set t0 = 0. In this case, the error dynamics are given as

et = aexx −Ke(π, t− τ(t)) (12)

= aexx −K[e(x, t− τ(t))−

∫ x

π

eζ(ζ, t− τ(t))dζ].

with boundary condition

e(0, t) = e(2π, t)

ex(0, t) = ex(2π, t).
(13)

Consider the initial condition for (12), (13) as

e(x, t) = e(x, 0), t < 0. (14)

The stability of this system will be analyzed in Section V.

By defining

X ={w ∈ H1(0, 2π) | w(0, t) = w(2π, t)},

the existence and uniqueness of the strong solution of system

(12) with periodic boundary condition (13) is guaranteed by

the arguments in [18], for the initial conditions e(·, 0) ∈ X .

In this paper, we design sufficient conditions for the

system (11), with delay bound τM , to achieve exponential

stabilization (with any desirable decay rate for small enough

τM > 0).

In the following two sections, we consider the cases

without (i.e., τ(t) = 0) and with delay in the communication

channel, respectively. For both cases, we derive LMI condi-

tions for desired decay rate with given system parameters

a,K, and τM (the case with delay).

IV. PDE-BASED DEPLOYMENT

Firstly, we shall consider the sampled-data controller with-

out delay in this subsection, i.e.,

zt = a(zxx(x, t)− γxx)−K(z(π, t)− γ(π)) (15)

with periodic boundary condition (9). In this case the dy-

namic of the error e = z(x, t)− γ(x) is given as

et = aexx −Ke(π, t). (16)

Similarly to the previous section, we assume e ∈ R.

Theorem 3. For any δ > 0, let K > δ and a >
K2

K−δ
. Then

the system (16), (13) is exponentially stable with the decay

rate δ in the H1-norm:

∃C > 0: ‖e(·, t)‖H1 ≤ Ce−2δt‖e(·, 0)‖H1 . (17)

Proof. Since the components of e are decoupled, here we

prove the case that e : [0, 2π] × R>0 → R. Consider the

Lyapunov functional

V (t) =

∫ 2π

0

e2(x, t)dx+ q

∫ 2π

0

e2x(x, t)dx. (18)

Let σ := e(x, t) − e(π, t). Then the system (16) can be

written as

et = aexx −Ke+Kσ. (19)

Then the time derivative of V is given as

V̇ =2

∫ 2π

0

e(aexx −Ke+Kσ)dx

− 2q

∫ 2π

0

exx(aexx −Ke+Kσ)dx

=− 2a‖ex‖
2 − 2K‖e‖2 + 2K

∫ 2π

0

eσdx

− 2qa‖exx‖
2 − 2Kq‖ex‖

2 − 2qK

∫ 2π

0

exxσdx,

where we used the integral by parts. By Lemma 1, we have

‖σ‖2 6 4‖ex‖
2 which implies

0 6 −λ‖σ‖2 + 4λ‖ex‖
2, ∀λ > 0. (20)

Hence,

V̇ + 2δV

6− 2a‖ex‖
2 − 2K‖e‖2 + 2K

∫ 2π

0

eσdx

− 2qa‖exx‖
2 − 2Kq‖ex‖

2 − 2qK

∫ 2π

0

exxσdx

− λ‖σ‖2 + 4λ‖ex‖
2 + 2δ‖e‖2 + 2δq‖ex‖

2

=

∫ 2π

0

η⊤Φηdx+ (4λ+ 2δq − 2a− 2Kq)‖ex‖
2

where η = [e, exx, σ]
⊤ and

Φ =





−2K + 2δ 0 K
∗ −2qa −qK
∗ ∗ −λ



 . (21)

We have V̇ +2δV 6 0 if Φ 6 0. By using Schur complement,

Φ 6 0 if K > δ and

−λ+
[

K −qK
]

[ 1
2K−2δ 0

0 1
2qa

] [

K
−qK

]

6 0.

Taking λ = a+Kq−δq
2 , the last inequality is equivalent to

(

K2

a
− (K − δ)

)

q 6 a−
K2

K − δ
.

Such q exists if and only if a >
K2

K−δ
. Then V̇ 6 −2δV ,

which implies the exponential stability in the H1-norm.

Remark 2. If there are several leaders (e.g. at π/2 and

3/2π), then in (15), we can use −K(z(π/2, t)−γ(π/2)) for



z ∈ [0, π), and −K(z(1.5π, t) − γ(1.5π)) for z ∈ [π, 2π],
that allows to reduce the gain a [6].

V. NETWORK-BASED DEPLOYMENT

In this subsection, we consider the stability of system (11)

with bounded delay and periodic boundary condition (9).

The main result is given as follows.

Theorem 4. Consider the boundary-value problem (12),

(13). Given positive scalars δ0, τM ,K and δ1 satisfying

δ1 < 2δ0, let there exist positive scalars p1, p2, p3, r, g and

s satisfying the following LMIs

δ0p3 6 p2, Φ 6 0,

[

r s
s r

]

> 0, (22)

where Φ = {Φij} with

Φ11 = g + 2δ0p1 − e−2δ0τM r, Φ12 = p1 − p2,

Φ14 = −p2K + e−2δ0τM (r − s), Φ13 = e−2δ0τM s,

Φ15 = p2K, Φ22 = τ2Mr − 2p3,

Φ24 = −p3K, Φ25 = p3K,

Φ33 = −ge−2δ0τM − e−2δ0τM r, Φ34 = e−2δ0τM (r − s),

Φ44 = −2e−2δ0τM (r − s)− δ1p1, Φ55 = −
δ1p3a

4
.

Then the system (12), initialized with e(x, t) = e(x, 0) ∈
X, ∀t < 0, is exponentially stable with a decay rate δ, where

δ is the unique solution to (3), in the H1-norm:

∃C > 0: ‖e(·, t)‖H1 6 Ce−2δt‖e(·, 0)‖H1 . (23)

Moreover, given any δ > 0 and K > δ0, LMIs (22) are

always feasible for large enough a.

Proof. Consider the Lyapunov-Krasovskii functional

V (t) =p1

∫ 2π

0

e2(x, t)dx+ p3

∫ 2π

0

ae2x(x, t)dx

+

∫ 2π

0

[

τMr

∫ 0

−τM

∫ t

t+θ

e−2δ0(t−s)e2s(x, s)dsdθ

+ g

∫ t

t−τM

e−2δ0(t−s)e2(x, s)ds

]

dx. (24)

Notice that for the strong solution of (12), the functional V
is well-defined and continuous. The time derivative of V is

given as

V̇ + 2δ0V =2δ0p1

∫ 2π

0

e2(x, t) + 2δ0p3a

∫ 2π

0

e2x(x, t)dx

+ 2p1

∫ 2π

0

etedx+ 2p3a

∫ 2π

0

exetxdx

+ g

∫ 2π

0

[e2(x, t)− e−2δ0τM e2(x, t− τM )]dx

− τMr

∫ 2π

0

∫ t

t−τM

e2δ0(s−t)e2s(x, s)dsdx

+ τ2Mr

∫ 2π

0

e2t (x, t)dx. (25)

By applying Jensen’s inequality [9, Proposition B.8] and

further Park inequality (Lemma 1 in [5]), we have

− τMr

∫ 2π

0

∫ t

t−τM

e2δ0(s−t)e2s(x, s)dsdx

6−
τM

τM − τ(t)
re−2δ0τM

∫ 2π

0

[

∫ t−τ(t)

t−τM

es(x, s)ds]
2dx

−
τM
τ(t)

re−2δ0τM

∫ 2π

0

[

∫ t

t−τ(t)

es(x, s)ds]
2dx

6− e−2δ0τM

∫ 2π

0

ξ⊤
[

r s
s r

]

ξdx (26)

where ξ⊤ := [e(x, t)−e(x, t−τ), e(x, t−τ)−e(x, t−τM )]
and the parameter s satisfies the last inequality of (22).

Due to (12), we have

0 =2

∫ 2π

0

[p2e+ p3et][−et + aexx

−Ke(π, t− τ(t))]dx. (27)

Using (26) in (25) and adding (27), we find

V̇ + 2δ0V − δ1 sup
θ∈[−τM ,0]

V (t+ θ)

6V̇ + 2δ0V − δ1V (t− τ(t))

6

∫ 2π

0

ϕ⊤Φϕdx− (2p2a− 2δ0p3a)

∫ 2π

0

e2x(x, t)dx

with Φ given below (22) and ϕ⊤ = [e(x, t), et(x, t), e(x, t−
τM ), e(x, t− τ), e(x, t− τ)− e(π, t− τ)]. This implies that,

if p2 > δ0p3 and Φ 6 0, then (1) holds and Halanay’s

inequality implies that

V (t) 6 e−2δt sup
θ∈[−τM ,0]

V (θ). (28)

Finally, since the initial condition is set to be e(x, t) =
e(x, 0), ∀t < 0, we have

sup
θ∈[−τM ,0]

V (θ) (29)

=p1

∫ 2π

0

e2(x, 0)dx+ p3

∫ 2π

0

ae2x(x, 0)dx

+ g

∫ 2π

0

∫ 0

−τM

e2δ0se2(x, 0)dsdx (30)

6C‖e(·, 0)‖2H1 (31)

where constant C depends on the initial condition, which

implies the inequality (23).

Now we show that the LMIs are feasible. Denote by Ψ the

matrix Φ with the deleted last column and row and δ1 = 0.

Then Ψ < 0 guarantees via the descriptor method that the

system

ż(t) = −Kz(t− τ)

is exponentially stable with a decay rate δ0 (cf. (4.23) in

[4]). Moreover, given any δ0 > 0 and K > δ0 by arguments

of [4] it can be shown that Ψ < 0 is always feasible for



Fig. 1: Deployment of the agent according to the system (15)

with periodic boundary condition (9).

small enough τM . Given any δ > 0 and choosing δ1 = 0.1δ
and δ0 = δ + 2δ1 and K > δ0, we find further p1, p2, p3, r
and s that solve Ψ < 0 for small τM . Then, applying Schur

complements to the last column and row of Φ, we conclude

that Φ < 0 for large enough a. The latter implies that the

system is exponentially stable with a decay rate δ.

Remark 3. For φ ∈ H1(0, l), we have [12]

max
x∈[0,l]

φ2(x) 6 2

∫ l

0

φ2(ξ)dξ +

∫ l

0

φ2
ξ(ξ)dξ.

Therefore, (24) implies

∃C ′ > 0: max
x∈[0,2π]

e2(x, t) 6 C ′e−2δt‖e(0, t)‖2H1 .

VI. SIMULATIONS

In this section, we present a simulative result of the

proposed control laws in Section IV and V. In the simulation,

we consider a multi-agent system with N = 45 agents. For

the system parameters, we set a = 10,K = 1. In the figure

of the deployment, the blue dashed lines are the desired

formation, and the red dashed lines are the initial positions

of the agents which are set to be (0.5 ∗ sin(i 2π
N
), 0.5 ∗

cos(i 2π
N
), 0), i = 1, . . . , N . The black solid lines are the

trajectories of the agents.

We start with the case without delay. Suppose the desired

decay rate is δ = 0.6. Notice that K > δ and a >
K2

K−δ
.

Hence the decay rate is guaranteed. The performance of the

system (15) is presented in Fig. 1. The first dimension of the

error, i.e., e1(x, t), is depicted in Fig. 2. It can be seen that

the error converges to zero.

Next, we present an example for the case with delay. We

choose δ0 = 2.5. Furthermore, the parameter δ1 in Halanay’s

Fig. 2: The H1 norm of error of the first dimension of the

simulation given in Fig. 1.

Fig. 3: Deployment of the agent according to the system (11)

with periodic boundary condition (9).

inequality is set to be equal to 1.5δ0 which is less than 2δ0.

The LMI conditions (22) is satisfied by p1 = 0.19, p2 =
0.32, p3 = 0.12, r = 10, g = 0.04, s = 0.41 and τM =
0.01 which is verified by CVX [8]. This guarantees the same

decay rate as without delay, i.e., δ = 0.60. The performance

of (11) is given in Fig. 3 and the error of the first dimension

is plotted in Fig. 4.

VII. CONCLUSION

In this paper, we considered the deployment of the first-

order multi-agents onto a desired closed smooth curve. The

model is motivated by the displacement-based multi-agent

formation control algorithm. We assumed that the agents

have access to the local information of the desired curve and

their displacements with respect to their closest neighbors,

whereas a leader is able to measure its absolute displacement

with respect to the desired curve and transmit it to other

agents through communication network. It was proved that,

based on LMI conditions, by choosing appropriate controller

gains, any desired decay rate can be achieved provided the



Fig. 4: The H1 norm of error of the first dimension of the

simulation given in Fig. 3.

delay is small enough. More precisely, exponential conver-

gence to any closed C2 curve is guaranteed.
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