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Sampled-data relay control of semilinear diffusion PDEs

Anton Selivanov and Emilia Fridman

Abstract— We consider sampled-data relay control of semilin-
ear diffusion PDEs. Several control signals, subject to unknown
bounded disturbances, enter the system through shape func-
tions. The only information required for calculating the control
signal is the sign of a weighted average of the state. First, for
a nonlinearity from an arbitrary sector, we derive LMI-based
conditions that determine how many controllers one should use
to ensure local convergence to a bounded set. For a fixed domain
of initial conditions the size of a limit set is proportional to a
sampling period. Then we propose a switching procedure for
controllers’ gains that ensures convergence from an arbitrary
domain to the same limit set.

I. INTRODUCTION

Networked control systems (NCSs), which are comprised

of spatially distributed sensors, actuators, and controllers

connected via a communication network, have become

widespread due to great advantages they bring: long distance

control, low cost, ease of reconfiguration, reduced system

wiring, etc [1], [2]. Networked control of distributed pa-

rameter systems is applicable to a long distance control of

chemical reactors [3] or air polluted areas [4]. Since it is

usually problematic to transmit continuous signals through

communication networks, measurements sampling is one of

the main challenges in NCSs. A variety of methods has been

developed to analyze PDEs under a sampled-data control: the

discrete-time approach has been studied in [5], [6], the model

decomposition techniques have been applied in [7], [8], the

time-delay approach has been proposed in [9], [10]. To

save computational and communicational resources, event-

triggered approach can be used [11]. In [12] event-triggered

control of parabolic PDEs with quantized measurements has

been considered. In this work we develop a control strategy

that is even less demanding to system resources, namely,

relay control.

Relay control has undeniable advantages: simple imple-

mentation, control saturation/quantization, finite time con-

vergence, full compensation of matched disturbances [13].

However, analysis of a relay control is not a trivial task

even for linear systems. In [14] it has been shown that a

relay control does not lead to the asymptotic stability of

a finite-dimensional linear system in the presence of input

delay. In this case ultimate boundedness is achieved with a

limit set whose size is proportional to the time-delay bound.

In [15] a convex optimization approach has been used to

study generalized relays for finite-dimensional systems. In

that work sampled measurements were modeled as input
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delays and the size of the limit set was proportional to a

sampling period.

In this work we consider sampled-data relay control of

semilinear diffusion PDEs. The control signals are subject

to unknown disturbances, enter the system through shape

functions, and remain constant within a sampling period.

The only information required for calculating the control

signal is the sign of a weighted average of the state. First,

for a nonlinearity from an arbitrary sector, we derive LMI-

based conditions that determine how many controllers one

should use to ensure local convergence to a bounded set.

For a fixed domain of initial conditions the size of the limit

set is proportional to a sampling period. Then we propose

a switching procedure for controllers’ gains that ensures

convergence from an arbitrary domain to the same limit set.

The results are demonstrated by an example.

Notations and preliminaries

The partial (weak) derivatives of function z(x, t) are

denoted by zt, zx, zxx. The symbol N0 stands for nonneg-

ative integers, H1(0, 1) is the Sobolev space of absolutely

continuous functions with square integrable first derivatives,

H1
0(0, 1) = {f ∈ H1(0, 1) : f(0) = f(1) = 0}. For a square

matrix P the notation P > 0 indicates that P is symmetric

and positive-definite, the symbol ∗ denotes its symmetric

elements.

Lemma 1 (Wirtinger inequality [16]): For a < b let f ∈
H1(a, b) be a scalar function such that f(a) = 0 or f(b) = 0.

Then, for any α ≥ 0,

∫ b

a

e2αtf2(t) dt ≤ e2α(b−a) 4(b− a)2

π2

∫ b

a

e2αtḟ2(t) dt.

Moreover, if z(0) = z(1) = 0 then

∫ b

a

f2(t) dt ≤
(b− a)2

π2

∫ b

a

ḟ2(t) dt.

Lemma 2 (Poincaré inequality [17]): For a < b let f ∈

H1(a, b) be a scalar function with
∫ b

a
f(x) dx = 0. Then

∫ b

a

f2(x) dx ≤
(b− a)2

π2

∫ b

a

[

df

dx
(x)

]2

dx.

II. SYSTEM DESCRIPTION

Consider a semilinear diffusion PDE

zt(x, t)=zxx(x, t)+ϕ(x, t, z)+

N
∑

j=1

bj(x)(uj(tk)+wj(t)),

x ∈ [0, 1], t ∈ [tk, tk+1), k ∈ N0 (1)



Fig. 1. Example of the shape function bj(x)

with sampling instants t0 < t1 < t2 < . . . and a scalar state

z : [0, 1]× [t0,∞) → R.

Assumption 1: For all x ∈ [0, 1], t ≥ t0, z ∈ R the

nonlinearity ϕ satisfies the sector condition

(ϕ(x, t, z)− ϕmz)(ϕMz − ϕ(x, t, z)) ≥ 0

with some ϕm, ϕM ∈ R.

If ϕm < ϕM , Assumption 1 indicates that ϕ lies in the

sector [ϕm, ϕM ] [18].

Assumption 2: The sampling instants satisfy

lim
k→∞

tk = ∞, 0 < tk+1 − tk ≤ h, k ∈ N0.

Consider the points xj = j/N , j = 0, . . . , N that divide

[0, 1] into N subintervals. The control inputs uj(tk) ∈ R and

the matched disturbances wj(t) ∈ R enter (1) through the

shape functions bj(x) ∈ H1(0, 1) such that (see Fig. 1)










bj(x) = 1, x ∈ [xj−1 + ε, xj − ε],

bj(x) = 0, x /∈ [xj−1, xj ],

bj(x) ∈ [0, 1], x ∈ (xj−1, xj−1+ε)∪(xj−ε, xj),

(2)

where j = 1, . . . , N and ε ∈ (0, 1
2N ) is a parameter. Similar

shape functions appear, e.g., in the problem of compressor

rotating stall with air injection actuator [19], where z(x, t)
denotes the axial flow through the compressor.

Remark 1: The shape functions (2) are chosen to be from

H1 to guarantee well-posedness of the resulting closed-loop

system. For ε → 0 these functions approach piecewise

constant functions

bj(x) =

{

1, x ∈ [xj−1, xj),

0, x /∈ [xj−1, xj),
j = 1, . . . , N.

Note that for ε = 0, the practical stability conditions of

Theorem 1 below are less restrictive.

We consider (1) under the Dirichlet boundary conditions,

Neumann boundary conditions, or both:

z(0, t) = 0 or zx(0, t) = 0,

z(1, t) = 0 or zx(1, t) = 0.
(3)

The system (1) may be unstable for large ϕm or ϕM (see

[20] for ϕ(z, x, t) = ϕMz). We study (1) under the control

laws

uj(tk) = −K sign

∫ xj

xj−1

bj(x)z(x, tk) dx, (4)

where j = 1, . . . , N , k ∈ N0, K > 0. The implementation

of the control laws (4) is very simple. It requires to transmit

through a communication network only the signs of different

weighted averages of the state z(x, tk).
Assumption 3: There exists ρ ∈ [0, 1) such that

|wj(t)| ≤ ρK, ∀t ≥ t0, j = 1, . . . , N.
This assumption guarantees that, in the absence of time-

sampling, continuous versions of the controllers (4) can com-

pensate the matched disturbances wj(t). The disturbance-free

case corresponds to ρ = 0.

A. Well-posedness of (1)–(4)

For the boundary conditions z(0, t) = 0, zx(1, t) = 0
consider a Hilbert space X = {g ∈ H1(0, 1) : g(0) = 0}
with a norm ‖ · ‖X = ‖ · ‖H1 . Denoting ζ(t) = z(·, t) ∈ X ,

we rewrite the system (1)–(4) in the form

d

dt
ζ(t) = Aζ(t) + f(t, ζ(t)), t ∈ [tk, tk+1), k ∈ N0, (5)

where A = ∂2

∂x2 has a dense in X domain

D(A) = {g ∈ H2(0, 1) : g(0) = 0, g′(1) = 0}

and f : [t0,∞)×X → X is given by

f(t, ζ) = ψ(t, ζ) +

N
∑

j=1

bj(·)(uj(tk) + wj(t)),

where ψ : [t0,∞)×X → X ,

(ψ(t, ζ))(x) = ϕ(x, t, (ζ(t))(x)).

Assumption 4: ψ ∈ C1([tk, tk+1) × X → X) and wj ∈
C1[tk, tk+1) for all k ∈ N0, j = 1, . . . , N .

This assumption guarantees that f is continuously differ-

entiable from any [tk, tk+1)×X to X . Then, since A is the

infinitesimal generator of a C0 semigroup, Theorem 1.5 from

[21, p.187] guarantees that for ζ(t0) ∈ D(A) the system (5)

has a classical solution ζ on [t0,∞).
The existence of a classical solution for other boundary

conditions (3) can be established in a similar manner with

X=H1
0(0, 1) if z(0, t)=z(1, t)=0,

X={g ∈ H1(0, 1) : g(1) = 0} if zx(0, t)=0, z(1, t)=0,

X=H1(0, 1) if zx(0, t)=zx(1, t)=0.

Note that the controllers (4) are discontinuous in time.

However, the motion along the discontinuity surface is not

possible due to sampling. Therefore, there is no need to

consider Filippov solutions [22].

III. STABILITY CONDITIONS

For h > 0, q ≥ 0, z(·, t) ∈ H1(0, 1) define

‖z(·, t)‖2q =

∫ 1

0

z2(x, t) dx+ qh

∫ 1

0

z2x(x, t) dx.

The choice of such a norm is motivated by the Lyapunov-

Krasovskii functional (10) used in the proof of the stability

conditions.



Ξ=

























Ξ1 1 + λϕ(ϕm + ϕM )/2 M 0 hM 0 0 0
∗ −λϕ 0 −qh 0 0 0 pheαh

∗ ∗ −λκN
2π2/(1 + ν) 0 −hM 0 0 0

∗ ∗ ∗ −2qh 0 −qh −qh pheαh

∗ ∗ ∗ ∗ −phπ2/4 h h 0
∗ ∗ ∗ ∗ ∗ −βuh 0 pheαh

∗ ∗ ∗ ∗ ∗ ∗ −βwh pheαh

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ph

























,

Ξ1=−2M + 2λκεN
3π2/ν + 2α− λϕϕmϕM−dλπ2/4

(6)

The following theorem provides the ultimate boundedness

conditions with an ultimate bound C∞ proportional to the

sampling intervals bound h.

Theorem 1: For a given controller gain K > 0 consider

the system (1), (2) with the boundary conditions (3) and

the control laws (4) subject to Assumptions 1–4. For given

decay rate α > 0 and tuning parameter ν > 0, let there exist

nonnegative scalars p, q, M , λϕ, λκ, λ, βu, and βw such

that
Ξ ≤ 0,

2αqh+ λκ + λ ≤ 2,
λ = 0 if zx(0, t) = zx(1, t) = 0,

d =

{

4 if z(0, t) = z(1, t) = 0,

1 otherwise

(7)

whith Ξ given in (6). Denote

C0 = (1− ρ)2
K2

NM2
,

C∞ = (βu + βwρ
2)
K2h

2α
.

If C∞ < C0 then for initial conditions z(·, t0) ∈ H2(0, 1)
subject to (3), such that

‖z(·, t0)‖
2
q < C0 (8)

a unique classical solution of the system satisfies

‖z(·, t)‖2q ≤ ‖z(·, t0)‖
2
qe

−2α(t−t0) + C∞. (9)

Remark 2: A MATLAB code for solving the LMI

of Theorem 1 is available at https://github.com/

AntonSelivanov/CDC16b

Proof: Consider the Lyapunov function

V (t) = V1(t) + V2(t) + VW (t), (10)

where

V1(t) =

∫ 1

0

z2(x, t) dx,

V2(t) = qh

∫ 1

0

z2x(x, t) dx,

VW (t) = phe2αh
∫ 1

0

∫ t

tk

e2α(s−t)z2s(x, s) ds dx

−
π2ph

4

∫ 1

0

∫ t

tk

e2α(s−t)η2(x, s) ds dx, t ∈ [tk, tk+1).

The functional VW is nonnegative due to Lemma 1.

We divide the proof into two parts. First, we assume that

MN

∣

∣

∣

∣

∣

∫ xj

xj−1

z(x, t) dx

∣

∣

∣

∣

∣

≤ (1− ρ)K, j = 1, . . . , N (11)

and show that

V (t) ≤ (V (t0)− C∞) e−2α(t−t0) + C∞. (12)

Then we prove (11) for t ≥ t0.

I. Proof of (12) under the assumption (11)

Denoting η(x, t) = [z(x, t) − z(x, tk)]/h and integrating

by parts, for t ∈ [tk, tk+1) we obtain

V̇1 = 2
∫ 1

0
z(x, t)zxx(x, t) dx+ 2

∫ 1

0
z(x, t)ϕ(x, t, z) dx

+2
∑N

j=1

∫ xj

xj−1

z(x, t)bj(x)(uj(tk) + wj(t)) dx

= −2
∫ 1

0
z2x(x, t) dx+ 2

∫ 1

0
z(x, t)ϕ(x, t, z) dx

+2
∑N

j=1

∫ xj

xj−1

hη(x, t)bj(x)(ρuj(tk) + wj(t)) dx

+2
∑N

j=1

∫ xj

xj−1

z(x, tk)bj(x)(ρuj(tk) + wj(t)) dx

+2
∑N

j=1(1− ρ)
∫ xj

xj−1

z(x, t)bj(x)uj(tk) dx.
(13)

The penultimate term is not positive. Indeed, since

ρuj(tk) = −ρK sign
∫ xj

xj−1

bj(x)z(x, tk) dx

= argminv∈[−ρK,ρK] v
∫ xj

xj−1

bj(x)z(x, tk) dx,

for any wj(t) satisfying Assumption 3, we have

ρuj(tk)

∫ xj

xj−1

bj(x)z(x, tk) dx

≤ −wj(t)

∫ xj

xj−1

bj(x)z(x, tk) dx. (14)

Now consider the last term of V̇1. Denoting

κ(x, t)=z(x, t)−Nbj(x)

∫ xj

xj−1

z(y, t) dy, x ∈ [xj−1, xj),

https://github.com/AntonSelivanov/CDC16b
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for j = 1, . . . , N we obtain

2(1− ρ)
∫ xj

xj−1

z(x, t)bj(x)uj(tk) dx

= 2(1− ρ)
∫ xj

xj−1

z(x, t)bj(x)uj(tk) dx

±2M
∫ xj

xj−1

z2(x, t) dx

±2MN
∫ xj

xj−1

bj(x)z(x, t) dx
∫ xj

xj−1

z(y, t) dy

= −2M
∫ xj

xj−1

z2(x, t) dx+ 2M
∫ xj

xj−1

z(x, t)κ(x, t) dx

+2
[

(1− ρ)uj(tk) +MN
∫ xj

xj−1

z(y, t) dy
]

×
∫ xj

xj−1

z(x, t)bj(x) dx

= −2M
∫ xj

xj−1

z2(x, t) dx+ 2M
∫ xj

xj−1

z(x, t)κ(x, t) dx

+2
[

(1− ρ)uj(tk) +MN
∫ xj

xj−1

z(y, t) dy
]

×
∫ xj

xj−1

hη(x, t)bj(x) dx

+2
[

(1− ρ)uj(tk) +MN
∫ xj

xj−1

z(y, t) dy
]

×
∫ xj

xj−1

z(x, tk)bj(x) dx.
(15)

Similarly to (14), the last term of (15) is not positive. Indeed,

since

(1−ρ)uj(tk) = argmin
v∈[−(1−ρ)K,(1−ρ)K]

v

∫ xj

xj−1

bj(x)z(x, tk) dx,

the condition (11) implies

(1− ρ)uj(tk)

∫ xj

xj−1

z(x, tk)bj(x) dx

≤ −MN

∫ xj

xj−1

z(y, t) dy

∫ xj

xj−1

z(x, tk)bj(x) dx. (16)

In view of (13)–(16), we obtain

V̇1 ≤
∑N

j=1

∫ xj

xj−1

{

−2Mz2(x, t)− 2z2x(x, t)

+2z(x, t)ϕ(x, t, z) + 2Mz(x, t)κ(x, t) + 2hη(x, t)×
[bj(x)uj(tk)+Mz(x, t)−Mκ(x, t)+bj(x)wj(t)]

}

dx.
(17)

To compensate the cross terms with ϕ, we use S-procedure

[23] by adding

λϕ

N
∑

j=1

∫ xj

xj−1

(ϕ(x, t, z)−ϕmz(x, t))(ϕMz(x, t)−ϕ(x, t, z)) dx,

(18)

which is nonnegative due to Assumption 1. The terms with

κ(x, t) will be compensated in a manner similar to [12], [24].

Namely, Young’s inequality implies
∫ xj

xj−1

κ2(x, t) dx =
∫ xj

xj−1

[

z(x, t)−N
∫ xj

xj−1

z(y, t) dy

+(1− bj(x))N
∫ xj

xj−1

z(y, t) dy
]2
dx

≤ (1 + ν)
∫ xj

xj−1

(

z(x, t)−N
∫ xj

xj−1

z(y, t) dy
)2

dx

+(1 + ν−1)
∫ xj

xj−1

(1− bj(x))
2N2

(

∫ xj

xj−1

z(y, t) dy
)2

dx.

Since
∫ xj

xj−1

(

z(x, t)−N
∫ xj

xj−1

z(y, t)dy
)

dx = 0, Lemma 2

implies

(1 + ν)
∫ xj

xj−1

(

z(x, t)−N
∫ xj

xj−1

z(y, t) dy
)2

dx

≤ 1+ν
(Nπ)2

∫ xj

xj−1

z2x(x, t) dx.

Furthermore, the definition of bj(x) and Jensen’s inequality

[25] imply

(1 + ν−1)
∫ xj

xj−1

(1− bj(x))
2N2

(

∫ xj

xj−1

z(y, t) dy
)2

dx

≤ (1 + ν−1)2εN
∫ xj

xj−1

z2(x, t) dx

Therefore,

λκ
∑N

j=1

[∫ xj

xj−1

z2x(x, t) dx− (Nπ)2

1+ν

∫ xj

xj−1

κ2(x, t) dx

+ 2εN3π2

ν

∫ xj

xj−1

z2(x, t) dx
]

≥ 0.
(19)

The terms with η(x, t) are compensated by

V̇W = −2αVW − π2ph
4

∑N
j=1

∫ xj

xj−1

η2(x, t) dx

+phe2αh
∑N

j=1

∫ xj

xj−1

(zxx(x, t) + ϕ(x, t, z)

+bj(x)uj(tk) + bj(x)wj(t))
2 dx.

(20)

The term zxx that appeared in V̇W is compensated by

V̇2(t) = 2qh
∫ 1

0
zxzxt = −2qh

∫ 1

0
zxxzt

= −2qh
∫ 1

0
z2xx − 2qh

∫ 1

0
zxxϕ

−2qh
∑N

j=1

∫ xj

xj−1

zxx(x, t)bj(x)(uj(tk)+wj(t))dx.
(21)

If z(0, t) = 0 or z(1, t) = 0, Lemma 1 (with α = 0) implies

λ

[
∫ 1

0

z2x(x, t) dx−
dπ2

4

∫ 1

0

z2(x, t) dx

]

≥ 0. (22)

By summing up (17)–(22), for t ∈ [tk, tk+1) we obtain

V̇ + 2αV−
∑N

j=1

∫ xj

xj−1

hb2j (x)(βuu
2
j (tk) + βww

2
j (t)) dx

≤
∑N

j=1

∫ xj

xj−1

ξTj (x, t)Ξ
′ξj(x, t) dx

+(2αqh+ λκ + λ− 2)
∫ 1

0
z2x

+phe2αh
∑N

j=1

∫ xj

xj−1

(zxx(x, t) + ϕ(x, t, z)

+bj(x)uj(tk) + bj(x)wj(t))
2 dx,

(23)

where ξj = col{z, ϕ, κ, zxx, η, bjuj(tk), bjwj} and Ξ′ is

obtained from Ξ by deleting the last column and the last

row. By applying Schur complement formula [25] to the last

term, we obtain that relations (7) of the theorem guarantee

that the right-hand side of (23) is not positive. Therefore,

V̇ ≤ −2αV + 2αC∞,

which implies (12).

II. Proof of (11) for t ≥ t0
Using Jensen inequality and Lemma 1 we obtain

(

∫ xj

xj−1

z(x, t) dx

)2

≤
1

N

∫ xj

xj−1

z2(x, t) dx ≤
V (t)

N
. (24)

Therefore, if V (t) ≤ C0 then (11) is true. Initial conditions

(8) imply V (t0) < C0 (note that VW (t0) = 0). Let t∗ ∈
(t0,∞) be the smallest time instance such that V (t∗) ≥ C0.

Since V is continuous on [tk, tk+1) and V (tk) ≤ V (tk −
0), we have V (t∗) = C0 and V (t) < C0 for t ∈ [t0, t∗).
Together with (24) this implies (11) and, therefore, (12) is

true for t ∈ [t0, t∗]. Since C∞ < C0 and V (t0) < C0,



(12) guarantees that V (t∗) < C0, what contradicts to the

definition of t∗. Thus, for t ≥ t0 we have

V (t) < C0 ⇒ (11) ⇒ (12) ⇒ (9).

Remark 3: If the conditions of Theorem 1 are satisfied

for h > 0 then they are satisfied for all h′ ∈ [0, h] with

the same decision variables (this can be verified using Schur

complement formula). Since C0 does not depend on h and

C∞ is linear in h, this implies that by decreasing h one

ensures exponential convergence of the solutions from a fixed

set (8) to an arbitrary small vicinity of zero. For h→ 0 one

obtains exponential convergence to zero.

Remark 4: Consider (6) with h = ε = ν = 0. Then for

any ϕm and ϕM from Assumption 1 one can always ensure

the feasibility of (7) by increasing N . Then the conditions

of Theorem 1 will be feasible for small enough h, ε, and ν.

That is, for a nonlinearity from an arbitrary sector [ϕm, ϕM ],
the relations (7) determine how many controllers (i.e., what

N ) one should take to ensure the ultimate boundedness of

the system.

Remark 5: The presented sampled-data control may be

efficiently used for network-based control of diffusion PDEs.

The control laws (4) allow to use the event-triggering

mechanism that sends the messages only when the sign of

the state weighted average changes its value. This allows

to significantly reduce the network workload during the

transient period. When the norm of the state starts to oscillate

in the vicinity of zero, the sign has to be sent almost every

sampling period.

Remark 6: Consider the system (1) with local distur-

bances (i.e., wj(t) 6≡ 0 for some j and wl(t) ≡ 0 for l 6= j)
and ϕ ≡ 0. By using collocated controllers (4) (assuming

bl(t) ≡ 0 for l 6= j) and slightly modifying the proof

of Theorem 1, one can achieve ultimate boundedness with

an arbitrary small limit bound for small enough sampling

period h whereas the open-loop system is input-to-state

stable with an ultimate bound proportional to the disturbance

bound.

IV. SWITCHING CONTROL

The relations (7) do not depend on the controller gain K.

The feasibility of the relation C∞ < C0 also does not

depend on K. Therefore, if the conditions of Theorem 1 are

satisfied for some K, they remain true for any K such that

supj,t |wj(t)| ≤ ρK. This observation allows to construct a

switching controller that ensures convergence of the system

trajectories from an arbitrary set to a fixed vicinity of zero.

Corollary 1: Consider the system (1)–(3) subject to As-

sumptions 1–4. Let the relations (7) be satisfied and assume

that C∞ + δ < C0 for some δ > 0. For initial conditions

from an arbitrary subset of X (defined in Subsection II-A)

choose some µ0 > 1 such that

‖z(·, t0)‖
2
q < µ2

0C0. (25)

Fig. 2. Solution of the system

Consider the controllers

uj(tk) = −µiK sign

∫ xj

xj−1

bj(x)z(x, tk) dx,

t ∈ [ti, ti+1), i ∈ N0, j = 1, . . . , N, (26)

where

ti = t0 +
i

2α
ln
C0

δ
, i ∈ N0,

µi+1 = max
{

1, µi

√

(C∞ + δ)/C0

}

, i ∈ N0.

Then the system trajectories converge to the set

‖z(·, t)‖2q ≤ C∞ + δ.
Proof: Since C∞ + δ < C0, the sequence ti mono-

tonically increases to infinity and the controllers (26) are

well-defined for all t ≥ t0. Theorem 1 implies

‖z(·, t)‖2q ≤ µ2
0(C0e

−2α(t−t0) + C∞), t ∈ [t0, t1].

If µ1 > 1, this implies

‖z(·, t1)‖2q ≤ µ2
0(C∞ + δ) = µ2

1C0.

By induction we obtain

‖z(·, ti+1)‖2q ≤ µ2
i (C∞ + δ), i ∈ N0.

The assertion of the corollary follows from the fact that µi

monotonically decrease to 1.

V. NUMERICAL EXAMPLE

Consider the system (1) with N = 1, boundary conditions

z(0, t) = 0, zx(1, t) = 0,

and the controllers (4) with K = 50. Let Assumptions 1–4

be satisfied with [ϕm, ϕM ] = [−5, 3], h = 10−3, and ρ =
0.1. For ϕ(x, t, z) = ϕMz cos(0.1z) the system is unstable.

For the decay rate α = 1 the conditions of Theorem 1 are

satisfied with C0 = 36, C∞ = 1.93. In Fig. 2 one can see

the solution of the system with the above nonlinearity and

z(x, 0) = 8 sin
πx

2
, x ∈ [0, 1].



Fig. 3. Evolution of ‖z(·, t)‖2q for t ∈ [0, 0.3]

Fig. 4. Evolution of ‖z(·, t)‖2q for t ∈ [0.28, 0.3]

In Figs. 3, 4 one can see that the norm ‖z(·, t)‖2q converges to

a small vicinity of zero and starts to shake. After the sign of

the state weighted average is sent at t = 0, it does not change

till t = 0.123. This time corresponds to a transient period.

When the norm of the state starts to shake in a vicinity

of zero, the state weighted average is sent almost every

sampling period. Note that unknown disturbances subject

to supj,t |wj(t)| ≤ ρK = 5 are compensated by the

controllers (4).

VI. CONCLUSIONS

In this work we studied sampled-data relay control of

semilinear diffusion PDEs. We derived LMI-based condi-

tions ensuring that the system state locally converges to a

vicinity of zero. Then we propose a switching procedure for

controllers gains that ensures convergence from an arbitrary

domain to the same limit set. The future work will be devoted

to the extension of these results to vector N -D parabolic sys-

tems with nonuniform diffusion and asynchronous sampling.
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